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Abstract

We propose a new neural network called Temporal-enhanced
Convolutional Network (T-CN) for video-based person re-
identification. For each video sequence of a person, a spatial
convolutional subnet is first applied to each frame for rep-
resenting appearance information, and then a temporal con-
volutional subnet links small ranges of continuous frames to
extract local motion information. Such spatial and temporal
convolutions together construct our T-CN based representa-
tion. Finally, a recurrent network is utilized to further explore
global dynamics, followed by temporal pooling to generate
an overall feature vector for the whole sequence. In the train-
ing stage, a Siamese network architecture is adopted to jointly
optimize all the components with losses covering both iden-
tification and verification. In the testing stage, our network
generates an overall discriminative feature representation for
each input video sequence (whose length may vary a lot) in
a feed-forward way, and even a simple Euclidean distance
based matching can generate good re-identification results.
Experiments on the most widely used benchmark datasets
demonstrate the superiority of our proposal, in comparison
with the state-of-the-art.

Introduction
Person re-identification (Re-ID) is about associating tracks
of people by their identities from potentially any number
of cameras with or without overlapping views. Re-ID plays
a very important role in intelligent video surveillance, as
it links lower-level analytic results, such as human detec-
tion and tracking, with higher-level demands, such as trac-
ing specific persons (e.g. suspects) and understanding hu-
man activities in a relatively large time and space scale (e.g.
one day’s activity at different places). However, it is not easy
to solve this problem, because Re-ID requires reliable asso-
ciation of the same person given possibly large appearance
changes due to body motion, interactions with objects and/or
other people, dynamic and cluttered backgrounds, viewpoint
and environmental changes between cameras, etc. Mean-
while, Re-ID needs to ensure good differentiation among
people with similar appearances (body shape, clothes, etc.),
which is hard when the resolution is low.

Existing studies on person Re-ID fall into two categories
based on the type of input data: image-based person Re-ID
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Figure 1: The overall architecture of our proposed model.

when the inputs are individual still images, and video-based
person Re-ID when inputting video sequences (Zheng,
Yang, and Hauptmann 2016). The later is a relatively less
popular topic, because of some additional challenges such
as arbitrary sequence lengths for each person, unknown dy-
namic occlusions, extra noises brought by tracking inaccu-
racy, and a lack of public benchmarks in the early dates due
to hardness for ground-truth labeling. However, the most
typical application of person Re-ID is video surveillance, for
which captured data is usually in the form of videos, so it is
more natural to directly work on videos. Moreover, videos
contain not only much richer spatial information (about ap-
pearance) than few still images but also important temporal
information (e.g. gait) that does not exist in individual im-
ages but can be very helpful for re-identification, so using
videos as input can generally result in better performance.

This paper contributes to video-based person Re-ID by
proposing a new neural network called Temporal-enhanced
Convolutional Network (T-CN), as shown in Figure 1. The
main contributions and novelties are two-fold (more details
are given in the following related work section).

1. Introducing a novel network structure based on tem-
poral convolutions (thus it is called Temporal ConvNet)
for low-level and/or mid-level motion representation.
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Low-level and mid-level motion representation is criti-
cal to temporal information modeling but unfortunately
there is a lack of in-depth and proper solutions due to
its hardness. T-CN goes beyond the existing idea of ex-
ploring optical flow and temporal pooling (McLaughlin,
Martinez del Rincon, and Miller 2016) by introducing a
simple and light-weight temporal convolution block that
can work much better.

2. Proposing an end-to-end deep neural network archi-
tecture for effective and robust spatial and temporal
representation learning. The proposal integrates Tem-
poral ConvNet with image-based convolutional network
(denoted by Spatial ConvNet here), recurrent neural net-
works (RNN) and temporal pooling, which are all justified
for video-based person Re-ID in the latest references. A
Siamese network structure is adopted for optimizing both
identification loss and verification loss. The whole net-
work can take raw video sequences as input and be trained
end-to-end using backpropagation through time. In test-
ing, the network works for video sequences with various
lengths and directly output the final feature vectors which
are ready for Euclidean distance based ranking (no need
further mapping or learning).

In the view of functionality, Spatial ConvNet models ap-
pearance (spatial information), Temporal ConvNet works
on lower-level (low- and mid-level) motion (local tempo-
ral information), and finally RNN and temporal pooling ex-
tracts higher-level dynamics (global temporal information).
We demonstrate the effectiveness and generalization ability
of our proposal on two commonly used benchmark datasets,
showing that it outperforms the state-of-the-art.

Related work

Image-based person re-identification

Image-based person Re-ID has a very rich literature (Zheng,
Yang, and Hauptmann 2016). Traditional solutions gener-
ally follow the hand-crafted appearance feature description
plus distance metric framework. Representative and rela-
tively more influential features include the color and tex-
ture histograms over partitioned horizontal stripes (Gray and
Tao 2008), the local maximal occurrence (LOMO) descrip-
tor (Liao et al. 2015) and the hierarchical Gaussian descrip-
tor (Matsukawa et al. 2016). Besides appearance features,
semantic attribute based representations have also been in-
vestigated recently (Layne et al. 2012; Shi, Hospedales, and
Xiang 2015; Li et al. 2016), which is intuitive and con-
sistent with human knowledge but hard to extract due to
the large semantic gap between image data and attributes.
Since hand-crafted features are usually not discriminative
enough for direct Euclidean distance based ranking, much
work has been done on distance metric learning, for which
the KISSME (Keep It Simple and Straightforward MEtric)
model (Köstinger et al. 2012) and the XQDA (Cross-view
Quadratic Discriminant Analysis) model (Liao et al. 2015)
are most influential representatives. Dimension reduction
models such as pairwise constrained component analysis
(PCCA) (Mignon and Jurie 2012) and kernel LFDA (Peda-
gadi et al. 2013) have also been investigated for further en-

hancing the performance. Recently, deep learning has been
successfully introduced to image-based Re-ID and gets pop-
ularized very quickly, with performances going beyond tra-
ditional models (Zheng, Yang, and Hauptmann 2016).

Video-based person re-identification

Research on video-based person Re-ID is much more di-
verse than that on image-based setting. Though spatial in-
formation is still very important, temporal information can
be also very useful. All recent representative works adopt
spatial appearance information, so here we categorize them
by the way they explore temporal information. Roughly, we
can put them into four groups.

The first group do not use any temporal information. In-
stead, they explore various ways to make use of individual
video frames. A straightforward way is to explore discrim-
inative learning (e.g. subspace learning) on them (Li et al.
2015). Similarly, another way is to train a multiple class
classifier (e.g. using a deep CNN model) and then do simple
temporal pooling over all the frames in a video sequence to
get an overall vector-based representation, which may be fed
into a metric learning model, as done in (Zheng et al. 2016).
Much work has also been done on directly treating each se-
quence as a set of images and explore set-based recognition
models, such as those based on set-to-set distances (Wu et
al. 2012), and sparse representation with dictionary learning
(Wu et al. 2015; Karanam, Li, and Radke 2015). Though en-
couraging results have been got, they miss all the benefits
that temporal information may bring.

The second group extracts hand-crafted spatial-temporal
features (or signatures) without explicit alignment of walk-
ing circle. Different approaches on using these spatial-
temporal features have been tested. The simplest is to di-
rectly use the features for unsupervised matching (Hamdoun
et al. 2008; Farenzena et al. 2010), and there is also further
enhancement with metric learning (You et al. 2016). More
sophisticated ones even have automatic discriminative video
fragment selection (Wang et al. 2016) which is a kind of
rough temporal alignment or rough body pose classification
which can be regarded as rough spatial alignment. However,
these alignment steps need extra efforts to make sure the im-
perfect alignment brings more benefits than hurts.

The third group relies on precise temporal alignment for
feature representation. The alignment is usually done with
an independent and explicit walking circle extraction model,
e.g. Flow Energy Profile (FEP) (Liu et al. 2015). The tem-
poral aligned features can be spatio-temporal body-action
primitives encoded by 3D Fisher vectors (Liu et al. 2015) or
just local average pooling of frame-wise appearance features
like LOMO features (Gao et al. 2016). Then re-identification
is done by applying existing metric learning models or a
customized new model (Zhu et al. 2016) to these features.
This group make the best use of temporal information, but it
highly relies on a quality alignment which is hard to ensure.

The last group just includes an impressive recent work on
exploring a new deep learning architecture called recurrent
convolutional network (denoted by RCN in this paper) for a
joint learning of spatial and temporal representations by link
convolutional neural network (CNN), recurrent neural net-
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work (RNN) and temporal pooling together (McLaughlin,
Martinez del Rincon, and Miller 2016). It is claimed that
the network covers three levels (low, middle, and high) of
temporal information via optical flow, RNN and temporal
pooling, respectively. However, we believe that both RNN
and temporal pooling are better at the high-level abstrac-
tion and the optical flow extraction for low-level temporal
information is an independent step out of the control by the
network. Our proposed network T-CN inherits the merits of
RCN and adds the low-level and mid-level temporal repre-
sentation learning by introducing the temporal concolution
network. Our experiments to be shown later verify that T-
CN can model temporal information better than RCN, while
at the same time it can replace optical flow’s ability with
almost no additional cost.

Temporal-enhanced convolutional network

Convolution networks are a kind of well-known neural net-
works for representation learning, especially when the input
is 2D image data. Such a network generally contains mul-
tiple convolution layers, in combination with pooling and
nonlinear mapping layers, for multi-scale representation and
abstraction. We extend the idea of convolution for extract-
ing both spatial information and temporal information, in the
way of 2D spatial convolution over images and 1D temporal
convolution over time, respectively.

As shown in the overall architecture of our model in Fig-
ure 1, the raw video frames of each sequence (capturing one
specific person under a certain camera) are first fed into a
convolutional network called Temporal-enhanced Convolu-
tional Network (T-CN) for feature extraction. Such a net-
work contains two concatenating subnets: spatial convolu-
tion network and temporal convolution network, where the
former focuses on extracting multi-scale spatial information
for appearance modeling and the later further explores low
level and middle level temporal information for motion mod-
eling by linking local neighboring frames.

The output of T-CN is a sequence of feature vectors, each
of which abstracts the appearance and up to mid-level mo-
tion information of several consecutive video frames. These
feature vectors are then further fed into a Recurrent Neu-
ral Network (RNN) and a temporal pooling layer for overall
appearance and dynamics extraction. Therefore, T-CN is of
great importance for all-level temporal information model-
ing and integration.

Spatial Convolution Network

The spatial convolution network (Spatial ConvNet) is a neu-
ral network with multiple convolution layers, as shown in
Figure 2 with detailed parameters stated. The first layer takes
an image as its input. To be generic, each channel of the im-
age can be regraded as a feature map. The first layer applies
convolution to all these feature maps (image channels) with
a set of convolution kernels, producing new feature maps.
Subsequential convolution layers operate similarly, just hav-
ing their inputs coming from the feature maps generated by
their previous layers. After each convolution layer, there is
max pooling layer and a nonlinear hyperboic-tangent (Tanh)

activation (not shown in the Figure). Note that in the T-CN
architecture, all the frames are fed into the same Spatial Con-
vNet, or in other words, the Spatial ConvNet share the same
parameters across all the input frames.
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Figure 2: Spatial Convolution Network.

For a brief formulation, let F = {F1, . . . , Fn} denote
an input video sequence with n frames, where Fi, i ∈
{i, . . . , n} indicates the frame i. For simplicity, we use Cs to
stand for the function of the whole Spatial ConvNet, then we
can get the output vector vs

i ∈ R
d in d-dimensional space

for Fi by
vs
i = Cs(Fi). (1)

Temporal Convolution Network

Our temporal convolution network targets at extracting low-
level and mid-level temporal information. To do that, we
build such a network with two layers: temporal convolution
layer and kernel response integration layer, as shown in Fig-
ure 3. The former one does a 1D convolution along the time
axis with a set of totally K kernels, which generates K dif-
ferent responses. Then we have another layer integrate all
the responses into one single vector for each output element,
using a full-length 1D convolution with a kernel sized 1×K.

d

1
1

Temporal ConvNet

d

1
1

d

1
1

d

1
1

Output of 
Spatial ConvNet

Output of 
Temporal ConvNet

n
K

S

K
n-S+1

Convolution 
Kernelstime time

Figure 3: Temporal Convolution Network.

Suppose the output sequence of Spatial ConvNet for the
whole video sequence can be denoted by a matrix Vs ∈
R

d×n, and let Ct to denote the function of Temporal Con-
vNet, and we will have

Vt = Ct(V
s). (2)
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where Vt ∈ R
d×(n−S+1) is the output sequence, with each

column indicating an element.
In greater details, the two different layers within Temporal

ConvNet can be modeled as follows.

xk
j = tanh(

S∑
u=1

wk
TC (u)vs

j+u−1), ∀j ∈ {1, . . . , n−S+1}.

vt
j = tanh(

K∑
k=1

wFI (k)x
k
j ), ∀j ∈ {1, . . . , n− S + 1}.

where wk
TC , k ∈ {1, . . . ,K} and wFI denote the convo-

lution kernels for temporal convolution and kernel response
integration, respectively, and their u-th and k-th elements
are indicated by (u) and (k). Note that each convolution is
followed by a tanh non-linear mapping.

High-level motion modeling

RNN is used for extracting high-level motion information.
Since the output of RNN is still a sequence of elements in the
time order, with each element aggregating information up
to the current time point (closer ones are aggregated more),
an extra temporal pooling step integrates all the information
together into a sequence level representation.

Recurrent neural network

Recurrent neural networks, known as RNNs, are a family of
neural networks for processing sequential data. Most RNNs
could deal with long sequences with variable lengths. For
each time step, the structure of RNNs share the same pa-
rameters, which enable extending and applying the model
to samples with different lengths. We use the same simple
RNN structure as introduced in RCN, as it is proved to be
suitable for our task by experiment. Since RNN is known
to be good at sequence-level dynamic modeling and its ef-
fectiveness usually require that the input contains clear pat-
terns over time, we think it is better to have some other net-
work extracting up to mid-level representation (not only for
the spatial information but also for the temporal informa-
tion) before feeding into RNN. Therefore, our proposed T-
CN contains temporal convolution network for that purpose.

For the input sequence vt
j , j ∈ {1, . . . , n− S + 1}, RNN

does the following:

vr
j = vt

j +WT
RNNrj−1, (3)

rj = tanh(vr
j ), (4)

where WRNN ∈ R
d×d is the projection matrix of RNN,

tanh is the non-linear hyperbolic-tangent activation func-
tion, rj is the RNN state at step j, and vr

j is the output
of RNN for element j. mathbfr0 is initialised to the zero-
vertor for computation.

Temporal Pooling

Temporal pooling over RNN outputs can aggregate infor-
mation over the whole sequence and avoid RNN’s bias to-
wards later time-steps. It has been proved to be a sim-
ple yet effective way to represent gait information, for

which GEI (Han and Bhanu 2006) is a good example. Tem-
poral pooling is alignment free, as itself is totally inde-
pendent from the order of the sequence. There exist two
widely used types of temporal pooling: average-pooling and
max-pooling, among which average-pooling is empirically
proved to be more suitable for aggregation the RNN out-
puts (McLaughlin, Martinez del Rincon, and Miller 2016).
Therefore, we choose average pooling for our model.

Given the output vr
j , j ∈ {1, . . . , n−S+1} of RNN, the

average-pooling generates the final feature vector vo ∈ R
d

by

vo =
1

n− S + 1

n−S+1∑
j=1

vr
j . (5)

Model training by joint identification and

verification

Person re-identification is commonly treated as a verification
task, as generally Re-ID does not need to tell who the probe
person is, but to look for the corresponding person in the
gallery. For deep learning models, this is usually achieved
by optimizing a verification loss with a Siamese network ar-
chitecture (Hadsell, Chopra, and LeCun 2006) as shown in
Figure 1. Siamese network is a symmetric structure, contain-
ing two parts that share all the parameters. Generally, one se-
quences from one camera and the other from different cam-
era should be fed into two corresponding parts of Siamese
network. Depending on the labels of these sequences, the
Siamese structure would perform different activities based
on the verification loss. If the input is about the same person,
the verification loss should be small and the Siamese net-
work should try to make the learned features closer, while
for the opposite case (given sequences from different per-
sons), the verification loss should be high and the Siamese
network would separate them towards a prefixed margin. Be-
sides verification loss, identification loss is also applicable
for deep models with data augmentation, and it has already
been proved to be effective. So here we jointly optimize both
losses as shown in Figure 1.

Suppose there are c different persons and an input se-
quence whose final feature vector is vo ∈ R

d with iden-
tity y ∈ {1, . . . , c}, the identification loss LI(v

o) for this
sequence based on softmax function can be defined as fol-
lows:

LI(v
o) = P (y = l|vo) =

exp(WT
SM,lv

o)∑c
q=1 exp(W

T
SM,qv

o)
(6)

where WSM,l and WSM,q are the lth and qth column of the
softmax weight matrix WSM , respectively.

Given a pair of sequences with feature vectors vo
a ∈ R

d

and vo
b ∈ R

d, and with identities ya and yb, respectively,
then the verification loss LV (v

o
a,v

o
b) can be defined as:

LV (v
o
a,v

o
b) =

{
1
2 ‖vo

a − vo
b‖22 , ya = yb

1
2 [max (m− ‖vo

a − vo
b‖ , 0)]2, ya �= yb

(7)
The all overall loss is a sum of these two types of losses:

L(vo
a,v

o
b) = LI(v

o
a) + LI(v

o
b) + LV (v

o
a,v

o
b). (8)
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Experiments

Datasets and implementation details

We evaluate our proposed model (T-CN) on two commonly
used benchmark datasets: PRID 2011 (Hirzer et al. 2011)
and iLIDS-VID (Wang et al. 2014), for a fair comparison
with the state-of-the-art and a detailed empirical study of
our proposal.

PRID 2011 dataset. The PRID 2011 dataset contains data
from two cameras with non-overlapping views, where cam-
era A captured 385 persons and camera B captured 749 per-
sons. Only the first 200 persons from each of them appear
in both camera views. The literature so far have commonly
focused on matching the 200 common persons with one sin-
gle video sequence for each person from each camera view
(Wang et al. 2014). Totally there are 400 sequences and each
sequence has a variable length of 5 to 675 frames. Here
we use the same setting for a fair comparison, though the
dataset builders suggested three different evaluation settings
with gallery set(s) covering unseen people. Many existing
models have only been evaluated on a selected subset of 178
people (89% of the data) as they require longer sequences
(e.g. longer than 21 frames) for being effective (details are
shown in Table 1). Our proposed model doesn’t have such
a limitation, so we ran our experiments on all the 200 peo-
ple. It is worth mentioning that the data were collected in
an uncrowded outdoor environment with relatively simple
and clean background and serious occlusions have been fil-
tered out. The main challenges are viewpoint and illumi-
nation changes between cameras. Therefore, this dataset is
good for idea verification, and usually relatively good per-
formance can be achieved.

iLIDS-VID dataset. The iLIDS-VID dataset also has
only two cameras with non-overlapping views. It has slightly
larger size: 600 video sequences for 300 people. Again, each
person has only one sequence from each camera. The se-
quence length varies from 23 to 192, with an average num-
ber of 73. Unlike PRID 2011 dataset, the iLIDS-VID data
comes from a busy airport arrival hall, so it contains crowed
background clutter, heavy occlusions, and significant view-
point/illumination variations, making the dataset very chal-
lenging. This dataset is good for effectiveness justification.

Implementation details of T-CN. In our experiments, we
randomly generated 10 different splits for each dataset, hav-
ing 50 percent of people for training and the other 50 percent
for testing. Then the results were averaged over the splits for
evaluation. For each training, we initialized the model pa-
rameters randomly. We set the margin m in the verification
loss to 2 and the dimensionality of embedded feature space
d (the final output of Spatial ConvNet) to 256. The num-
ber of convolution kernels k for Temporal ConvNet was set
to 32. We trained the whole network for 2,000 epochs with
the learning rate set to 1e-6. During Training, we use the
same 16 consecutive frames for each sequence as RCN did.
During testing, given each probe sequence, we computed its
deep features using trained network and used Euclidean dis-
tance for the result ranking. Data augmentation (cropping
and flipping for each cropped image) was applied to both
training and testing as done in the RCN work. In training the

cropping was done at all 8 positions along the diagonal line
with per-pixel shifting, while in testing we only cropped at
the 4 positions of closest to the center of the original image.
The results were averaged over all augmentation conditions.

Effectiveness and superiority of temporal
convolution network

The biggest difference between our proposed T-CN model
and the most related work RCN is that T-CN has a temporal
convolution network, while RCN does not have. For a fair
comparison, we reimplemented RCN and let it share exactly
the same codes (including the same parameters) with T-CN
for all the parts except temporal convolution network, which
only exists in T-CN. The same training/test data splits are
used. Following RCN, we use both color and optical flow
for T-CN so that its temporal convolution network can fo-
cus more on the mid-level representation of motion, while
optical flow captures low-level motion information.

The results in Figure 4 show that T-CN significantly out-
performs RCN on both datasets, with a margin of 3.7% for
PRID 2011 and 9.2% for iLIDS-VID in terms of Rank 1
accuracy. This indicates that temporal convolution is able to
extract additional motion information that optical flow, RNN
and temporal pooling cannot cover, which is likely to be the
mid-level representation.
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Figure 4: Effectiveness of temporal convolution network.
The commonly used Cumulative Matching Characteristic
(CMC) curves are adopted for evaluation. ”Color” and ”OF”
indicate the color input and optical flow input, respectively.
The Rank 1 accuracy (%) is shown in the legend as well.

Actually, T-CN is designed to be able to extract low-level
motion information by itself. While we observe the same
superiority of T-CN against RCN when color is the only in-
put, it is interesting to see that T-CN with color only can
get about the same performance as that of RCN with both
color and optical flow. Note that for the result shown here,
we had the temporal kernel size S = 2 which only mod-
els motion between adjacent frames just like what optical
flow does. so it is reasonable to say that temporal convolu-
tion can actually replace the role of optical flow on low-level
motion representation. This is very important, as it makes T-
CN a pure end-to-end model, unlike RCN which relies on
the non-learning based preprocessing of optical flow com-
putation whose performance is algorithm dependent.

It is worth mentioning that compared with RCN, the addi-
tional costs for training and testing T-CN are ignorable. The
model size (total number of parameters) of RCN is 827,424,
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while that of T-CN (with S = 2) is 827,553, with only about
0.016% increment. According to our observation, the train-
ing time increased no more than 10%. Applying the two
models for feature extraction at the testing stage takes about
the same amount of time: for a sequence with 16 frames,
RCN takes 0.3941 seconds while T-CN takes 0.3979 sec-
onds with the same Nvidia Titan X GPU (∼ 1% difference).

Comparison with the state-of-the-art

To show the superiority of T-CN, we compare it with
the state-of-the-art approaches for video-based person re-
identification on the same datasets. The comparisons are
given in Table 1 and 2. It is clear that our model shows su-
perior performance against the competitors, especially when
the most important Rank 1 accuracy is concerned.

Table 1: Comparison of T-CN with state-of-the-art methods
on the PRID 2011 dataset, in terms of Cumulative Accuracy
(%) at representative CMC ranks. The method with ∗ is our
implementation, while others are the original version from
their authors. The lower half of the results (under the sepa-
ration line) were got from a subset (89%) of the dataset with
only the sequences longer than 21 frames. The numbers are
shown in italic for differentiation, as that subset might make
the task slightly easier. Results are round to 1 decimal place
when applicable. The best result is shown in bold.

Methods
CMC Rank

Publication
1 5 10 20

T-CN (Ours) 81.1 95.0 97.3 98.7 This paper
RCN∗ (McLaughlin et al.’s) 77.4 92.2 95.4 97.2 CVPR 2016
CNN+XQDA (Zheng et al.’s) 77.3 93.5 N/A 99.3 ECCV 2016
RCN (McLaughlin et al.’s) 70 90 95 97 CVPR 2016
PaMM (Cho et al.’s) 45.0 72.0 85.0 92.5 CVPR 2016
AFDA (Li et al.’s) 43.0 72.7 84.6 91.9 BMVC 2015
DVDL (Karanam et al.’s) 40.6 69.7 77.8 85.6 ICCV 2015
SI2DL (Zhu et al.’s) 76.7 95.6 96.7 98.9 IJCAI 2016
AvgTAPR (Gao et al.’s) 68.6 94.6 97.4 98.9 ICIP 2016
STFV3D+KISSME (Liu et al.’s) 64.1 87.3 89.9 92.0 ICCV 2015
TDL (You et al.’s) 56.7 80.0 87.6 93.6 CVPR 2016
DVR (Wang et al.’s) 39.5 61.1 71.7 81.0 TPAMI 2016

Kernel size of temporal convolution

The kernel size S of the temporal convolution is a key pa-
rameter of T-CN as it directly controls the scale/level of mo-
tion it learns to describe. Kernels of small sizes like S = 2
are more likely better at extracting low-level motion infor-
mation, while those of larger sizes can probably cover mid-
level motion description. Figure 5 show the results of T-CN
with S ranging among 2,4,6 and 8 on the PRID 2011 dataset.
It can be seen that smaller sizes generally perform better,
and the slightly larger size S = 4 is slightly better than the
smallest. Therefore, it is better to have T-CN cover the local
motion (low-level and/or mid-level) beyond that happens be-
tween two adjacent frames only (what optical flow models).

Integration of kernel responses

A set of kernels have been used for temporal convolution
to describe different motion patterns. Instead of simpling

Table 2: Comparison of T-CN with state-of-the-art methods
on the iLIDS-VID dataset. The method with ∗ is our imple-
mentation, while others are the original version from their
authors. The best result is shown in bold.

Methods
CMC Rank

Publication
1 5 10 20

T-CN (Ours) 60.6 83.8 91.2 95.8 This paper
RCN (McLaughlin et al.’s) 58 84 91 96 CVPR 2016
TDL (You et al.’s) 56.3 87.6 95.6 98.3 CVPR 2016
AvgTAPR (Gao et al.’s) 55.0 87.5 93.8 97.2 ICIP 2016
RCN∗ (McLaughlin et al.’s) 53.3 77.2 86.8 93.8 CVPR 2016
CNN+XQDA (Zheng et al.’s) 53.0 81.4 N/A 95.1 ECCV 2016
SI2DL (Zhu et al.’s) 48.7 81.1 89.2 97.3 IJCAI 2016
STFV3D+KISSME (Liu et al.’s) 44.3 71.7 83.7 91.7 ICCV 2015
DVR (Wang et al.’s) 39.5 61.1 71.7 81.0 TPAMI 2016
AFDA (Li et al.’s) 37.5 62.7 73.0 81.8 BMVC 2015
PaMM (Cho et al.’s) 30.3 56.3 70.3 82.7 CVPR 2016
DVDL (Karanam et al.’s) 25.9 48.2 57.3 68.9 ICCV 2015
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Figure 5: Performances of T-CN on PRID 2011 dataset when
different kernel sizes S are used for temporal convolution.

pooling the results in the normal way such as using aver-
age pooling (maximum pooling does not fit here as we ex-
pect to integrate information from all kernels), we propose
applying a full-length 1D convolution for a weighted aver-
aging where the weights (i.e., parameters of the convolution
kernel) can be automatically learned from the training data.
Table 3 compares the results of these two strategies. Obvi-
ously, though being very light, learned weighting in terms
of full-length 1D convolution is significantly better than the
simple average pooling. One may also use a dense layer to
do the integration, but it did not show good results in our
own experiments.

Table 3: Comparison of different pooling methods for tem-
poral convolution filter response integration, in terms of Cu-
mulative Accuracy (%) at representative CMC ranks.

Dataset PRID 2011 iLIDS-VID

CMC Rank 1 5 10 20 1 5 10 20
Learned Weighting 81.1 95.0 97.3 98.7 60.6 83.8 91.2 95.8
Average Pooling 75.1 91.6 95.8 97.9 57.5 81.4 89.4 95.0
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Figure 6: Visualizing the illustrative effect of temporal convolution. Please refer to the text for details.

Cross-Dataset Testing

A very important expectation for any person re-
identification model towards real-world applications is
the ability to generalize over different camera networks, as
it is undesirable or even impossible to provide high quality
labeled training data (which is a hard task for humans) for
each network before application. Cross-dataset testing is a
simple way to test such generalization ability. We follow the
same setting as the RCN work (McLaughlin, Martinez del
Rincon, and Miller 2016) and compare with it, as it got
significantly superior results than other existing work.

Table 4 reports our results on both datasets. Though the
performances show that cross-dataset generalization is very
challenging and the state-of-the-art is still far from being sat-
isfactory, our T-CN can do a better job on it. This is encour-
aging, as it shows the learned low-level and middle-level
motion representation is more transferable than what opti-
cal flow brings. We expect more work can be done later to
improve such a generalization ability.

Table 4: Cross-dataset testing performance comparison on
PRID 2011 and iLIDS-VID, respectively (trained on the
other dataset), in terms of Cumulative Accuracy (%) at rep-
resentative CMC ranks. RCN∗ is our implementation which
is made most comparable to our T-CN model.

Test Dataset PRID 2011 iLIDS-VID

CMC Rank 1 5 10 20 1 5 10 20
T-CN 24.0 50.5 64.2 78.5 13.4 30.2 40.8 54.6
RCN∗ (CVPR 2016) 25.0 47.0 57.9 71.9 11.0 27.1 38.8 52.5

Visualizing the effect of temporal convolution

To understand why T-CN is able to learn low-level and
middle-level motion representation, we visualize the illus-
trative effect of temporal convolution in Figure 6 using a
concrete example from our experiment on the PRID 2011
dataset. From a trained model with kernel size S = 4,
we choose the temporal convolution kernel which gets the
largest learned weight during kernel response integration,

and use it to convolute along the time axis the input RGB
video sequences (one sequence from each camera) of an ar-
bitrary person. Then for each input sequence the temporal
convolution will generate a new sequence with each of its
elementary image being able to encode information from
4 continuous frames from the original input sequence, as
shown in Figure 6. For a better illustrative visualization, we
enhance each output image by adding to this output image
the difference image between it and the first input frame of
the 4 continuous frames that the kernel covers. By doing so,
the information related to motion gets more visible. From
the figure, we can see that the output is able to encode both
the appearance information and the motion information (in
terms of the overlapping shape patterns). Interestingly, the
enhancement makes some parts turn red, which seem to be
positions with relatively larger motion in each image.

Conclusion and future work

In this paper we introduce a new network architecture called
T-CN for video-based person re-identification. T-CN con-
tains a temporal convolution network being able to learn
low-level and mid-level motion representation which was
hard to achieve by existing solutions. T-CN allows build-
ing a whole end-to-end learnable representation model with
recurrent neural network and temporal pooling, which can
process video sequences of various lengths in an efficient
way. Experiments on commonly used benchmark datasets
show the superiority of our proposal to the state-of-the-art,
in terms of both effectiveness and generalization ability.

In the future, we’d like to extend and evaluate T-CN on re-
cently released larger dataset Mars (Zheng et al. 2016) with
tracking noises. Even a naive application of the simplest T-
CN with many limitations: very shallow Spatial ConvNet),
no optical flow, no data augmentation, no parameter tuning,
single query, and no re-ranking, already shows encouraging
results (rank1 accuracy of 61.2%), comparable to the state-
of-the-art (Zheng et al. 2016; Zhong et al. 2017). We believe
a much better performance can be got with deeper Spatial
ConvNet (e.g. ResNet) and other improvements.
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