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Abstract

Most state-of-the-art scene text detection algorithms are deep
learning based methods that depend on bounding box regres-
sion and perform at least two kinds of predictions: text/non-
text classification and location regression. Regression plays a
key role in the acquisition of bounding boxes in these meth-
ods, but it is not indispensable because text/non-text predic-
tion can also be considered as a kind of semantic segmenta-
tion that contains full location information in itself. However,
text instances in scene images often lie very close to each
other, making them very difficult to separate via semantic seg-
mentation. Therefore, instance segmentation is needed to ad-
dress this problem. In this paper, PixelLink, a novel scene text
detection algorithm based on instance segmentation, is pro-
posed. Text instances are first segmented out by linking pixels
within the same instance together. Text bounding boxes are
then extracted directly from the segmentation result without
location regression. Experiments show that, compared with
regression-based methods, PixelLink can achieve better or
comparable performance on several benchmarks, while re-
quiring many fewer training iterations and less training data.

1 Introduction

Reading text in the wild, or robust reading has drawn great
interest for a long time (Ye and Doermann 2015). It is usu-
ally divided into two steps or sub-tasks: text detection and
text recognition.

The detection task, also called localization, takes an im-
age as input and outputs the locations of text within it. Along
with the advances in deep learning and general object detec-
tion, more and more accurate as well as efficient scene text
detection algorithms have been proposed, e.g., CTPN (Tian
et al. 2016), TextBoxes (Liao et al. 2017), SegLink (Shi, Bai,
and Belongie 2017) and EAST (Zhou et al. 2017). Most of
these state-of-the-art methods are built on Fully Convolu-
tional Networks (Long, Shelhamer, and Darrell 2015), and
perform at least two kinds of predictions:

1. Text/non-text classification. Such predictions can be taken
as probabilities of pixels being within text bounding boxes
(Zhang et al. 2016). But they are more frequently used
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as confidences on regression results (e.g., TextBoxes,
SegLink, EAST).

2. Location regression. Locations of text instances, or their
segments/slices, are predicted as offsets from reference
boxes (e.g., TextBoxes, SegLink, CTPN), or absolute lo-
cations of bounding boxes (e.g., EAST).

In methods like SegLink, linkages between segments are
also predicted. After these predictions, post-processing that
mainly includes joining segments together (e.g., SegLink,
CTPN) or Non-Maximum Suppression (e.g., TextBoxes,
EAST), is applied to obtain bounding boxes as the final out-
put.

Location regression has long been used in object detec-
tion, as well as in text detection, and has proven to be effec-
tive. It plays a key role in the formulation of text bounding
boxes in state-of-the-art methods. However, as mentioned
above, text/non-text predictions can not only be used as the
confidences on regression results, but also as a segmentation
score map, which contains location information in itself and
can be used to obtain bounding boxes directly. Therefore,
regression is not indispensable.

However, as shown in Fig. 1, text instances in scene im-
ages usually lie very close to each other. In such cases, they
are very difficult, and are sometimes even impossible to sep-
arate via semantic segmentation (i.e., text/non-text predic-
tion) only; therefore, segmentation at the instance level is
further required.

To solve this problem, a novel scene text detection algo-
rithm, PixelLink, is proposed in this paper. It extracts text
locations directly from an instance segmentation result, in-
stead of from bounding box regression. In PixelLink, a Deep
Neural Network (DNN) is trained to do two kinds of pixel-
wise predictions, text/non-text prediction, and link predic-

semantic segmentationoriginal image

Figure 1: Text instances often lie close to each other, making
them hard to separate via semantic segmentation.
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tion. Pixels within text instances are labeled as positive (i.e.,
text pixels), and otherwise are labeled as negative (i.e., non-
text pixels). The concept of link here is inspired by the
link design in SegLink, but with significant difference. Ev-
ery pixel has 8 neighbors. For a given pixel and one of its
neighbors, if they lie within the same instance, the link be-
tween them is labeled as positive, and otherwise negative.
Predicted positive pixels are joined together into Connected
Components (CC) by predicted positive links. Instance seg-
mentation is achieved in this way, with each CC representing
a detected text. Methods like minAreaRect in OpenCV (Its
2014) can be applied to obtain the bounding boxes of CCs
as the final detection result.

Our experiments demonstrate the advantages of PixelLink
over state-of-the-art methods based on regression. Specif-
ically, trained from scratch, PixelLink models can achieve
comparable or better performance on several benchmarks
while requiring fewer training iterations and less training
data.

2 Related Work

2.1 Semantic&Instance Segmentation

The segmentation task is to assigning pixel-wise labels to
an image. When only object category is considered, it is
called semantic segmentation. Dominating methods for this
task usually adopts the approach of Fully Convolution Net-
works (FCN) (Long, Shelhamer, and Darrell 2015). Instance
segmentation is more challenging than semantic segmenta-
tion because it requires not only object category for each
pixel but also a differentiation of instances. It’s more rele-
vant to general object detection than semantic segmentation,
for being aware of object instances. Recent methods in this
field make heavy use of object detection systems. FCIS (Li
et al. 2016) extends the idea of position-sensitive prediction
in R-FCN (Dai et al. 2016). Mask R-CNN (He et al. 2017a)
changes the RoIPooling in Faster R-CNN (Ren et al. 2015)
to RoIAlign. They both do detection and segmentation in a
same deep model, and highly depend their segmentation re-
sults on detection performance.

2.2 Segmentation-based Text Detection

Segmentation has been adopted in text detection for a long
time. (Yao et al. 2016) cast the detection task as a seman-
tic segmentation problem, by predicting three kinds of score
maps: text/non-text, character classes, and character linking
orientations. They are then grouped into words or lines. In
(Zhang et al. 2016), TextBlocks are found from a saliency
map predicted by FCN, and character candidates are ex-
tracted using MSER (Donoser and Bischof 2006). Lines
or words are formed using hand-crafted rules at last. In
CCTN (He et al. 2016), a coarse network is used to detect
text regions roughly by generating a text region heat-map,
and then the detected regions are refined into text lines by a
fine text network, which outputs a central line area heat-map
and a text line area heat-map. These methods often suffer
from time-consuming post-processing steps and unsatisfy-
ing performances.

2.3 Regression-based Text Detection

Most methods in this category take advantage of the de-
velopment in general object detection. CTPN (Tian et al.
2016) extends RPN in Faster R-CNN(Ren et al. 2015) to pre-
dict text slices, which are then connected through heuristic
rules. TextBoxes (Liao et al. 2017), a text-specific SSD (Liu
et al. 2016), adopts anchors of large aspect ratio and ker-
nels of irregular shape, to fit for the large-aspect-ratio fea-
ture of scene text. RRPN (Ma et al. 2017) adds rotation
to both anchors and RoIPooling in Faster R-CNN, to deal
with the orientation of scene text. SegLink (Shi, Bai, and
Belongie 2017) adopts SSD to predict text segments, which
are linked into complete instances using the linkage predic-
tion. EAST (Zhou et al. 2017) performs very dense predic-
tions that are processed using locality-aware NMS. All these
regression-based text detection algorithms have predictions
for both confidences and locations at the same time.

In this paper, state-of-the-art mainly refers to published
methods that perform best on IC13 (Karatzas et al. 2013)
or IC15 (Karatzas et al. 2015), including TextBoxes, CTPN,
SegLink, and EAST.

3 Detecting Text via Instance Segmentation

As shown in Fig. 2, PixelLink detects text via instance seg-
mentation, where predicted positive pixels are joined to-
gether into text instances by predicted positive links. Bound-
ing boxes are then directly extracted from this segmentation
result.

3.1 Network Architecture

Following SSD and SegLink, VGG16 (Simonyan and Zis-
serman 2014) is used as the feature extractor, with fully con-
nected layers, i.e., fc6 and fc7, being converted into con-
volutional layers. The fashion of feature fusion and pixel-
wise prediction inherits from (Long, Shelhamer, and Darrell
2015). As shown in Fig. 3, the whole model has two sepa-
rate headers, one for text/non-text prediction, and the other
for link prediction. Softmax is used in both, so their outputs
have 1*2=2 and 8*2=16 channels, respectively.

Two settings of feature fusion layers are implemented:
{conv2 2, conv3 3, conv4 3, conv5 3, fc 7}, and {conv3 3,
conv4 3, conv5 3, fc 7}, denoted as PixelLink+VGG16 2s,
and PixelLink+VGG16 4s, respectively. The resolution of
2s predictions is a half of the original image, and 4s is a
quarter.

3.2 Linking Pixels Together

Given predictions on pixels and links, two different thresh-
olds can be applied on them separately. Positive pixels are
then grouped together using positive links, resulting in a col-
lection of CCs, each representing a detected text instance.
Thus instance segmentation is achieved. It is worth noting
that, given two neighboring positive pixels, their link are
predicted by both of them, and they should be connected
when one or both of the two link predictions are positive.
This linking process can be implemented using disjoint-set
data structure.
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Figure 2: Architecture of PixelLink. A CNN model is trained to perform two kinds of pixel-wise predictions: text/non-text
prediction and link prediction. After being thresholded, positive pixels are joined together by positive links, achieving instance
segmentation. minAreaRect is then applied to extract bounding boxes directly from the segmentation result. Noise predictions
can be efficiently removed using post-filtering. An input sample is shown for better illustration. The eight heat-maps in the
dashed box stand for the link predictions in eight directions. Although some words are difficult to separate in text/non-text
prediction, they are separable through link predictions.

3.3 Extraction of Bounding Boxes

Actually, the detection task is completed after instance seg-
mentation. However, bounding boxes are required as detec-
tion results in challenges like IC13 (Karatzas et al. 2013),
IC15 (Karatzas et al. 2015), and COCO-Text (Veit et al.
2016). Therefore, bounding boxes of CCs are then extracted
through methods like minAreaRect in OpenCV (Its 2014).
The output of minAreaRect is an oriented rectangle, which
can be easily converted into quadrangles for IC15, or rectan-
gles for IC13. It is worth mentioning that in PixelLink, there
is no restriction on the orientation of scene text.

This step leads to the key difference between PixelLink
and regression-based methods, i.e., bounding boxes are ob-
tained directly from instance segmentation other than loca-
tion regression.

3.4 Post Filtering after Segmentation

Since PixelLink attempts to group pixels together via links,
it is inevitable to have some noise predictions, so a post-
filtering step is necessary. A straightforward yet efficient so-
lution is to filter via simple geometry features of detected
boxes, e.g., width, height, area and aspect ratio, etc. For ex-
ample, in the IC15 experiments in Sec. 5.3, a detected box
is abandoned if its shorter side is less than 10 pixels or if its
area is smaller than 300. The 10 and 300 are statistical re-
sults on the training data of IC15. Specifically, for a chosen

filtering criteria, the corresponding 99-th percentile calcu-
lated on TRAINING set is chosen as the threshold value.
For example, again, 10 is chosen as the threshold on shorter
side length because about 99% text instances in IC15-train
have a shorter side ≥ 10 pixels.

4 Optimization

4.1 Ground Truth Calculation

Following the formulation in TextBlocks (Zhang et al.
2016), pixels inside text bounding boxes are labeled as pos-
itive. If overlapping exists, only un-overlapped pixels are
positive. Otherwise negative.

For a given pixel and one of its eight neighbors, if they be-
long to the same instance, the link between them is positive.
Otherwise negative.

Note that ground truth calculation is carried out on input
images resized to the shape of prediction layer, i.e., conv3 3
for 4s and conv2 2 for 2s.

4.2 Loss Function

The training loss is a weighted sum of loss on pixels and loss
on links:

L = λLpixel + Llink. (1)
Since Llink is calculated on positive pixels only, the classi-
fication task of pixel is more important than that of link, and
λ is set to 2.0 in all experiments.
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Figure 3: Structure of PixelLink+VGG16 2s. fc6 and fc7 are
converted into convolutional layers. The upsampling oper-
ation is done through bilinear interpolation directly. Fea-
ture maps from different stages are fused through a cas-
cade of upsampling and add operations. All pooling layers
except pool5 take a stride of 2, and pool5 takes 1. There-
fore, the size of fc7 is the same as conv5 3, and no upsam-
pling is needed when adding scores from these two layers.
‘conv 1× 1,2(16)’ stands for a 1×1 convolutional layer with
2 or 16 kernels, for text/non-text prediction or link prediction
individually.

Loss on Pixels Sizes of text instances might vary a lot. For
example, in Fig. 1, the area of ‘Manchester’ is greater than
the sum of all the other words. When calculating loss, if we
put the same weight on all positive pixels, it’s unfair to in-
stances with small areas, and may hurt the performance. To
deal with this problem, a novel weighted loss for segmenta-
tion, Instance-Balanced Cross-Entropy Loss, is proposed. In
detail, for a given image with N text instances, all instances
are treated equally by giving a same weight to everyone of
them, denoted as Bi in Equ. 2. For the i-th instance with
area = Si, every positive pixels within it have a weight of
wi =

Bi

Si
.

Bi =
S

N
, S =

N∑

i

Si, ∀i ∈ {1, . . . , N} (2)

Online Hard Example Mining (OHEM) (Shrivastava,
Gupta, and Girshick 2016) is applied to select negative pix-
els. More specifically, r ∗ S negative pixels with the highest
losses are selected, by setting their weights to ones. r is the
negative-positive ratio and is set to 3 as a common practice.

The above two mechanisms result in a weight matrix, de-
noted by W , for all positive pixels and selected negative
ones. The loss on pixel classification task is:

Lpixel =
1

(1 + r)S
WLpixel CE , (3)

where Lpixel CE is the matrix of Cross-Entropy loss on
text/non-text prediction.

As a result, pixels in small instances have a higher weight,
and pixels in large instances have a smaller weight. How-
ever, every instance contributes equally to the loss.

Loss on Links Losses for positive and negative links are
calculated separately and on positive pixels only:

Llink pos = Wpos linkLlink CE ,

Llink neg = Wneg linkLlink CE ,

where Llink CE is the Cross-Entropy loss matrix on link
prediction. Wpos link and Wneg link are the weights of posi-
tive and negative links respectively. They are calculated from
the W in Equ. 3. In detail, for the k-th neighbor of pixel
(i, j):

Wpos link(i, j, k) = W (i, j) ∗ (Ylink(i, j, k) == 1),

Wneg link(i, j, k) = W (i, j) ∗ (Ylink(i, j, k) == 0),

where Ylink is the label matrix of links.

The loss on link prediction is a kind of class-balanced
cross-entropy loss:

Llink =
Llink pos

rsum(Wpos link)
+

Llink neg

rsum(Wneg link)
, (4)

where rsum denotes reduce sum, which sums all elements
of a tensor into scalar.

4.3 Data Augmentation

Data augmentation is done in a similar way to SSD with an
additional random rotation step. Input images are firstly ro-
tated at a probability of 0.2, by a random angle of 0, π/2, π,
or 3π/2, the same with (He et al. 2017b). Then randomly
crop them with areas ranging from 0.1 to 1, and aspect ra-
tios ranging from 0.5 to 2. At last, resize them uniformly to
512× 512. After augmentation, text instances with a shorter
side less than 10 pixels are ignored. Text instances remain-
ing less than 20% are also ignored. Weights for ignored in-
stances are set to zero during loss calculation.

5 Experiments

PixelLink models are trained and evaluated on several
benchmarks, achieving on par or better results than state-
of-the-art methods, showing that the text localization task
can be well solved without bounding box regression. Some
detection results are shown in Fig. 4.
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Figure 4: Examples of detection results. From left to right in columns: IC15, IC13, and MSRA-TD500.

5.1 Benchmark Datasets

ICDAR2015(IC15) Challenge 4 of IC15 (Karatzas et al.
2015) is the most commonly used benchmark for detecting
scene text in arbitrary directions. It consists of two sets: train
and test, containing 1, 000 and 500 images respectively. Un-
like previous ICDAR challenges, images are acquired using
Google Glass without taking care of viewpoint, positioning
or frame quality. Only readable Latin scripts longer than 3
characters are cared and annotated as word quadrilaterals.
‘do not care’ scripts are also annotated, but ignored in eval-
uation.

ICDAR2013(IC13) IC13 (Karatzas et al. 2013) is another
widely used benchmark for scene text detection, containing
229 images for training, and 233 for testing. Text instances
in this dataset are mostly horizontal and annotated as rectan-
gles in words.

MSRA-TD500(TD500) Texts in TD500 (Yao et al. 2012)
are also arbitrarily oriented, but much longer than those in
IC15 because they are annotated in lines. TD500 contains
500 images in total, 300 for training and 200 for testing.
Both English and Chinese scripts exist.

Corresponding standard evaluation protocols are used.

5.2 Implementation Details

PixelLink models are optimized by SGD with momentum
= 0.9 and weight decay = 5 × 10−4. Instead of fine-tuning
from an ImageNet-pretrained model, the VGG net is ran-
domly initialized via the xavier method (Glorot and Bengio
2010). Learning rate is set to 10−3 for the first 100 iterations,
and fixed at 10−2 for the rest. Details will be described in
each experiment individually.

The whole algorithm is implemented in Tensorflow 1.1.0
and pure Python, with the code of join operation described
in Sec. 3.2 compiled with Cython. When trained with a batch
size of 24 on 3 GPUs(GTX Titan X), it takes about 0.65s per
iteration, and the whole training processing takes about 7∼8

Table 1: Results on IC15. ‘R, P, F’ stand for Recall, Preci-
sion and F-score. All the listed methods are tested at 720P or
similar 1280× 768. ‘—’ means unreported. ‘MS’ stands for
Multi-Scale. PixelLink+VGG16 2s and 4s predict at conv2 2
and conv3 3 respectively. PVANET2x is a modified version
of PVANET (Kim et al. 2016), by doubling the channels.
All listed results for comparison are quoted from the corre-
sponding original papers.

Model R P F FPS
PixelLink+VGG16 2s 82.0 85.5 83.7 3.0
PixelLink+VGG16 4s 81.7 82.9 82.3 7.3
EAST+PVANET2x MS 78.3 83.3 81.0 —
EAST+PVANET2x 73.5 83.6 78.2 13.2

EAST+VGG16 72.8 80.5 76.4 6.5
SegLink+VGG16 76.8 73.1 75.0 —
CTPN+VGG16 51.6 74.2 60.9 7.1

hours. 128G RAM and two Intel Xeon CPUs(2.20GHz) are
available on the machine where experiments are conducted.

5.3 Detecting Oriented Text in IC15

The training starts from a randomly initialized VGG16
model, on IC15-train only. Model of 4s requires about 40K
iterations of training, and 2s longer, about 60K iterations.
Minimal shorter side length and area are used for post-
filtering and set to 10 and 300 respectively, the correspond-
ing 99th-percentiles of IC15-train by ignoring ‘do-not-care’
instances. Thresholds on pixel and link are found by grid
search and set to (0.8, 0.8). Input images are resized to
1280× 768 in testing. Results are shown in Tab. 1.

The best performance of PixelLink on IC15 is better than
the existing best single-scale method (EAST+PVA2x) by
5.5% in F-score. To further check the generalization ability
of PixelLink, the same 2s model is also tested on COCO-
Text evaluation set without any fine-tuning, achieving a per-
formance of 35.4, 54.0, 42.4 for recall, precision and F-
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Table 2: Results on MSRA-TD500. All listed results for
comparison are quoted from the corresponding original pa-
pers.

Method Recall Precision F-score
PixelLink + VGG16 2s 73.2 83.0 77.8

PixelLink + VGG16 4s 73.0 81.1 76.8
EAST + PVANET2x 67.4 87.3 76.1
EAST + VGG16 61.6 81.7 70.2
SegLink + VGG16 70.0 86.0 77.2
(Yao et al. 2016) 75.3 76.5 75.9

score, exceeding the corresponding results 32.4, 50.4, 39.5
of EAST (Zhou et al. 2017).

For the differences on implementation details and running
environment, it’s not a easy task to conduct an objective
and fair speed comparison. Speeds reported here are only
intended to show that PixelLink is not slower when com-
pared with the regression-based state-of-the-art methods, if
the same deep model, i.e., VGG16, is used as the base net-
work. Note it that although the EAST+PVANET2x runs the
fastest, its accuracy is much lower than PixelLink models.

5.4 Detecting Long Text in TD500

Since lines are detected in TD500, the final model on IC15
is not used for fine-tuning. Instead, the model is pretrained
on IC15-train for about 15K iterations and fine-tuned on
TD500-train + HUST-TR400 (Yao, Bai, and Liu 2014) for
about 25K iterations. Images are resized to 768 × 768 for
testing. Thresholds of pixel and link are set to (0.8, 0.7). The
min shorter side in post-filtering is 15 and min area 600, as
the corresponding 99th-percentiles of the training set.

Results in Tab. 2 show that among all VGG16-based mod-
els, EAST behaves the worst for its highest demand on large
receptive fields. Both SegLink and PixelLink don’t need a
deeper network to detect long texts, for their smaller de-
mands on receptive fields.

5.5 Detecting Horizontal Text in IC13

The final 4s model for IC15 is fine-tuned on IC13-train,
TD500-train and TR400, for about 10K iterations. In single
scale testing, all images are resized to 512 × 512. Multi-
scales includes (384, 384), (512, 512), (768, 384), (384,
768), (768, 768), and a maximum longer side of 1600.
Thresholds on pixel and link are (0.7, 0.5) for single-scale
testing, and (0.6, 0.5) for multi-scale testing. The 99-th per-
centiles are 10, 300, for shorter side and area respectively,
for post-filtering.

Different from regression-based methods like EAST and
TextBoxes, PixelLink has no direct output as confidence
on each detected bounding box, so its multi-scale testing
scheme is specially designed. Specifically, prediction maps
of different scales are uniformly resized to the largest height
and the largest width among all maps. Then, fuse them by
taking the average. The rest steps are identical to single-scale
testing.

Results in Tab.3 show that multi-scale leads to an im-
provement of about 5 points in F-score, the same as observed

Table 3: Results on IC13, in DetEval. ‘MS’ stands for multi-
scale testing. ‘MS?’ means it is not reported whether MS is
used. All listed results for comparison are quoted from the
corresponding original papers.

Method Recall Precision F
PixelLink+VGG16 2s 83.6 86.4 84.5
PixelLink+VGG16 4s 82.3 84.4 83.3
PixelLink+VGG16 2s MS 87.5 88.6 88.1

PixelLink+VGG16 4s MS 86.5 88.6 87.5
TextBoxes+VGG16 74 88 81
TextBoxes+VGG16 MS 83 89 86
EAST+PVANET2x MS? 82.7 92.6 87.4
SegLink+VGG16 83.0 87.7 85.3
CTPN + VGG16 83.0 93.0 87.7

in TextBoxes.

6 Analysis and Discussion

6.1 The Advantages of PixelLink

A further analysis of experiment results on IC15 shows that
PixelLink, as a segmentation based method, has several ad-
vantages over regression based methods. As listed in Tab. 4,
among all methods using VGGNet, PixelLink can be trained
much faster with less data, and behaves much better than the
others. Specifically, after about only 25K iterations of train-
ing (less than a half of those needed by EAST or SegLink),
PixelLink can achieve a performance on par with SegLink or
EAST. Keep in mind that, PixelLink is trained from scratch,
while the others need to be fine-tuned from an ImageNet-
pretrained model. When also trained from scratch on IC15-
train, SegLink can only achieve a F-score of 67.81.

The question arises that, why PixelLink can achieve a bet-
ter performance with many fewer training iterations and less
training data? We humans are good at learning how to solve
problems. The easier a problem is, the faster we can learn,
the less teaching materials we will need, and the better we
are able to behave. It may also hold for deep-learning mod-
els. So two factors may contribute.

Requirement on receptive fields When both adopting
VGG16 as the backbone, SegLink behaves much better than
EAST in long text detection, as shown in Tab. 2. This gap
should be caused by their different requirements on recep-
tive fields. Prediction neurons of EAST are trained to ob-
serve the whole image, in order to predict texts of any length.
SegLink, although regression based too, its deep model only
tries to predict segments of texts, resulting in a less require-
ment on receptive fields than EAST.

Difficulty of tasks In regression-based methods, bounding
boxes are formulated as quadrangle or rotated rectangle. Ev-
ery prediction neuron has to learn to predict their locations
as precise numerical values, i.e. coordinates of four vertices,

1This experiment is repeated 3 times using the open source code
of SegLink. Its best performance is 63.6, 72.7, 67.8 for Recall, Pre-
cision and F-score respectively.
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Table 4: Comparison of training speed and training data for IC15. SynthText (Gupta, Vedaldi, and Zisserman 2016) is a synthetic
dataset containing more than 0.8M images. All listed results for comparison are quoted from the corresponding original papers.

Method ImageNet Pretrain Optimizer Training Data Iterations F-score
PixelLink+VGG16 4s at Iter-25K No SGD IC15-train �25K 79.7
PixelLink+VGG16 4s at Iter-40K No SGD IC15-train �40K 82.3
SegLink + VGG16 Yes SGD SynthText,IC15-train �100K 75.0
EAST+VGG16 Yes ADAM IC15-train,IC13-train >55K 76.4

or center point, width, height and rotation angle. It’s pos-
sible and effective, as has long been proven by algorithms
like Faster R-CNN, SSD, YOLO, etc. However, such kind
of predictions is far from intuitive and simple. Neurons have
to study a lot and study hard to be competent for their as-
signments.

When it comes to PixelLink, neurons on the prediction
layer only have to observe the status of itself and its neigh-
boring pixels on the feature map. In another word, PixelLink
has the least requirement on receptive fields and the easiest
task to learn for neurons among listed methods.

A useful guide for the design of deep models can be
picked up from the assumption above: simplify the task for
deep models if possible, because it might make them get
trained faster and less data-hungry.

The success in training PixelLink from scratch with a very
limited amount of data also indicates that text detection is
much simpler than general object detection. Text detection
may rely more on low-level texture feature and less on high-
level semantic feature.

6.2 Model Analysis

As shown in Tab. 5, ablation experiments have been done to
analyze PixelLink models. Although PixelLink+VGG16 2s
models have better performances, they are much slower and
less practical than the 4s models, and therefore, Exp.1 of the
best 4s model is used as the basic setting for comparison.

Table 5: Investigation of PixelLink with different settings on
IC15. ‘R’: Recall, ‘P’: Precision; ‘F’: F-score.

# Configurations R P F
1 The best 4s model 81.7 82.9 82.3
2 Without link mechanism 58.0 71.4 64.0
3 Without Instance Balance 80.2 82.3 81.2
4 Training on 384x384 79.6 81.2 80.4
5 No Post-Filtering 82.3 52.7 64.3
6 Predicting at 2s resolution 82.0 85.5 83.7

Link is very important. In Exp.2, link is disabled by set-
ting the threshold on link to zero, resulting in a huge drop
on both recall and precision. The link design is important
because it converts semantic segmentation into instance seg-
mentation, indispensable for the separation of nearby texts in
PixelLink.

Instance-Balance contributes to a better model. In
Exp.3, Instance-Balance (IB) is not used and the weights

Table 6: Effect of Instance-Balance on IC13. The only dif-
ference on the two settings is the use of Instance-Balance.
Testing is done without multi-scale.

IB Recall Precision F-score
Yes 82.3 84.4 83.3
No 79.4 84.2 81.7

of all positive pixels are set to the same during loss calcu-
lation. Even without IB, PixelLink can achieve a F-score
of 81.2, outperforming state-of-the-art. When IB is used, a
slightly better model can be obtained. Continuing the experi-
ments on IC13, the performance gap is more obvious(shown
in Tab. 6).

Training image size matters. In Exp.4, images are re-
sized to 384 × 384 for training, resulting in an obvious de-
cline on both recall and precision. This phenomenon is in
accordance with SSD.

Post-filtering is essential. In Exp.5, post-filtering is re-
moved, leading to a slight improvement on recall, but a sig-
nificant drop on precision.

Predicting at higher resolution is more accurate but
slower. In Exp.6, the predictions are conducted on
conv2 2, and the performance is improved w.r.t. both re-
call and precision, however, at a cost of speed. As shown in
Tab. 1, the speed of 2s is less than a half of 4s, demonstrating
a tradeoff between performance and speed.

7 Conclusion and Future Work

PixelLink, a novel text detection algorithm is proposed in
this paper. The detection task is achieved through instance
segmentation by linking pixels within the same text instance
together. Bounding boxes of detected text are directly ex-
tracted from the segmentation result, without performing lo-
cation regression. Since smaller receptive fields are required
and easier tasks are to be learned, PixelLink can be trained
from scratch with less data in fewer iterations, while achiev-
ing on par or better performance on several benchmarks than
state-of-the-art methods based on location regression.

VGG16 is chosen as the backbone for convenient compar-
isons in the paper. Some other deep models will be investi-
gated for better performance and higher speed.

Different from current prevalent instance segmentation
methods (Li et al. 2016) (He et al. 2017a), PixelLink does
not rely its segmentation result on detection performance.
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Applications of PixelLink will be explored on some other
tasks that require instance segmentation.
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