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Abstract

The ability of machine-based agents to play games in human-
like fashion is considered a benchmark of progress in AI. In
this paper, we introduce the first computational model aimed
at Pictionary, the popular word-guessing social game. We first
introduce Sketch-QA, an elementary version of Visual Ques-
tion Answering task. Styled after Pictionary, Sketch-QA uses
incrementally accumulated sketch stroke sequences as visual
data. Notably, Sketch-QA involves asking a fixed question
(“What object is being drawn?”) and gathering open-ended
guess-words from human guessers. To mimic Pictionary-style
guessing, we propose a deep neural model which generates
guess-words in response to temporally evolving human-drawn
sketches. Our model even makes human-like mistakes while
guessing, thus amplifying the human mimicry factor. We evalu-
ate our model on the large-scale guess-word dataset generated
via Sketch-QA task and compare with various baselines. We
also conduct a Visual Turing Test to obtain human impres-
sions of the guess-words generated by humans and our model.
Experimental results demonstrate the promise of our approach
for Pictionary and similarly themed games.

1 Introduction

In the history of AI, computer-based modelling of human
player games such as Backgammon, Chess and Go has been
an important research area. The accomplishments of well-
known game engines (e.g. TD-Gammon (Tesauro 1994),
DeepBlue (DBL 1997), AlphaGo (Silver and others 2016))
and their ability to mimic human-like game moves has been
a well-accepted proxy for gauging progress in AI. Mean-
while, progress in visuo-lingual problems such as visual cap-
tioning (Xu et al. 2015; Chen and Lawrence Zitnick 2015;
Venugopalan et al. 2015) and visual question answering (An-
tol et al. 2015; Xu and Saenko 2016; Ren, Kiros, and Zemel
2015) is increasingly serving a similar purpose for computer
vision community. With these developments as backdrop, we
explore the popular social game PictionaryTM in this paper.

The game of Pictionary brings together predominantly the
visual and linguistic modalities. The game uses a shuffled
deck of cards with guess-words printed on them. The par-
ticipants first group themselves into teams and each team
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Figure 1: We propose a deep recurrent model of Pictionary-
style word guessing. Such models can enable social robots
to participate in real-life game scenarios as shown above.
Picture credit:Trisha Mittal.

takes turns. For a given turn, a team’s member selects a card.
He/she then attempts to draw a sketch corresponding to the
word printed on the card in such a way that the team-mates
can guess the word correctly. The rules of the game forbid any
verbal communication between the drawer and team-mates.
Thus, the drawer conveys the intended guess-word primarily
via the sketching process.

Consider the scenario depicted in Figure 1. A group of
people are playing Pictionary. New to the game, a ‘social’
robot is watching people play. Passively, its sensors record
the strokes being drawn on the sketching board, guess-words
uttered by the drawer’s team members and finally, whether
the last guess is correct. Having observed multiple such game
rounds, the robot learns computational models which mimic
human guesses and enable it to participate in the game.

As a step towards building such computational models, we
first collect guess-word data via Sketch Question Answer-
ing (Sketch-QA), a novel, Pictionary-style guessing task. We
employ a large-scale crowdsourced dataset of hand-drawn
object sketches whose temporal stroke information is avail-
able (Eitz, Hays, and Alexa 2012). Starting with a blank
canvas, we successively add strokes of an object sketch and
display this process to human subjects (see Figure 2). Every
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Figure 2: The time-line of a typical Sketch-QA guessing session: Every time a stroke is added, the subject either inputs a
best-guess word of the object being drawn (stroke #5, 10). In case existing strokes do not offer enough clues, he/she requests the
next stroke be drawn. After the final stroke (#15), the subject is informed the object’s ground-truth category.

time a stroke is added, the subject provides a best-guess of
the object being drawn. In case existing strokes do not offer
enough clues for a confident guess, the subject requests the
next stroke be drawn. After the final stroke, the subject is
informed the object category.

Sketch-QA can be viewed as a rudimentary yet novel form
of Visual Question Answering (VQA) (Antol et al. 2015;
Ren, Kiros, and Zemel 2015; Xu and Saenko 2016; Venu-
gopalan et al. 2015). Our approach differs from existing VQA
work in that [a] the visual content consists of sparsely de-
tailed hand-drawn depictions [b] the visual content necessar-
ily accumulates over time [c] at all times, we have the same
question – “What is the object being drawn?” [d] the answers
(guess-words) are open-ended (i.e. not 1-of-K choices) [e]
for a while, until sufficient sketch strokes accumulate, there
may not be ‘an answer’. Asking the same question might
seem an oversimplification of VQA. However, other factors
— extremely sparse visual detail, inaccuracies in object de-
piction arising from varying drawing skills of humans and
open-ended nature of answers — pose unique challenges that
need to be addressed in order to build viable computational
models.

In this paper, we make the following contributions:
• We introduce a novel task called Sketch-QA to serve as a

proxy for Pictionary (Section 2.2).
• Via Sketch-QA, we create a new crowdsourced dataset

of paired guess-word and sketch-strokes, dubbed
WORDGUESS-160, collected from 16,624 guess se-
quences of 1,108 subjects across 160 sketch object cat-
egories.

• We introduce a novel computational model for word guess-
ing (Section 3). Using WORDGUESS-160 data, we analyze
the performance of the model for Pictionary-style on-line
guessing and conduct a Visual Turing Test to gather human
assessments of generated guess-words (Section 4).
Please visit our project page http://val.cds.iisc.ac.in/

sketchguess for supplementary material, code and dataset
related to our work.

2 Creating the WORDGUESS-160 dataset

2.1 Sketch object dataset

As a starting point, we use hand-sketched line drawings
of single objects from the large-scale TU-Berlin sketch

dataset (Eitz, Hays, and Alexa 2012). This dataset contains
20,000 sketches uniformly spread across 250 object cate-
gories (i.e. 80 sketches per category). The sketches were
obtained in a crowd-sourced manner by providing only the
category name (e.g. “sheep”) to the sketchers. For each sketch
object, the temporal order in which the strokes were drawn is
also available. A subsequent analysis of the TU-Berlin dataset
by Schneider and Tuytelaars (Schneider and Tuytelaars 2014)
led to the creation of a curated subset of sketches which
were deemed visually less ambiguous by human subjects. For
our experiments, we use this curated dataset containing 160
object categories with an average of 56 sketches per category.

2.2 Data collection methodology

To collect guess-word data for Sketch-QA, we used a web-
accessible crowdsourcing portal. Registered participants were
initially shown a screen displaying the first stroke of a ran-
domly selected sketch object from a randomly chosen cate-
gory (see Figure 2). A GUI menu with options ‘Yes’,‘No’ was
provided. If the participants felt more strokes were needed
for guessing, they clicked the ‘No’ button, causing the next
stroke to be added. On the other hand, clicking ‘Yes’ would
allow them to type their current best guess of the object
category. If they wished to retain their current guess, they
would click ‘No’, causing the next stroke to be added. This
act (clicking ‘No’) also propagates the most recently typed
guess-word and associates it with the strokes accumulated
so far. The participant was instructed to provide guesses as
early as possible and as frequently as required. After the last
stroke is added, the ground-truth category was revealed to
the participant. Each participant was encouraged to guess a
minimum of 125 object sketches. Overall, we obtained guess
data from 1,108 participants.

Given the relatively unconstrained nature of guessing, we
pre-process the guess-words to eliminate artifacts.

2.3 Pre-processing

Incomplete Guesses: In some instances, subjects provided
guess attempts for initial strokes but entered blank guesses
subsequently. For these instances, we propagated the last
non-blank guess until the end of stroke sequence.
Multi-word Guesses: In some cases, subjects provided
multi-word phrase-like guesses (e.g. “pot of gold at the end
of the rainbow” for a sketch depicting the object category
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Figure 3: The architecture for our deep neural model of word guessing. The rectangular bars correspond to guess-word
embeddings. M3 corresponds to the CNN regressor whose penultimate layer’s outputs are used as input features to the LSTM
model. “#” reflects our choice of modelling ‘no guess’ as a pre-defined non-word embedding. See Section 3 for details.

rainbow). Such guesses seem to be triggered by extraneous
elements depicted in addition to the target object. For these
instances, we used the HunPos tagger (Halácsy, Kornai, and
Oravecz 2007) to retain only the noun word(s) in the phrase.
Misspelled Guesswords: To address incorrect spellings, we
used the Enchant spell check library (Lachowicz 2010) with
its default Words set augmented with the 160 object category
names from our base dataset (Eitz, Hays, and Alexa 2012) as
the spell check dictionary.
Uppercase Guesses: In some cases, the guess-words exhibit
non-uniform case formatting (e.g. all uppercase or a mix of
both uppercase and lowercase letters). For uniformity, we
formatted all words to be in lowercase.

In addition, we manually checked all of the guess-word
data to remove unintelligible and inappropriate words. We
also removed sequences that did not contain any guesses.
Thus, we finally obtain the GUESSWORD-160 dataset com-
prising of guesswords distributed across 16,624 guess se-
quences and 160 categories. It is important to note that the
final or the intermediate guesses could be ‘wrong’, either due
to the quality of drawing or due to human error. We deliber-
ately do not filter out such guesses. This design choice keeps
our data realistic and ensures that our computational model
has the opportunity to characterize both the ‘success’ and
‘failure’ scenarios of Pictionary.

3 Computational Models

We now describe our computational model designed to pro-
duce human-like guess-word sequences in an on-line man-
ner. For model evaluation, we split the 16,624 sequences

in GUESSWORD-160 randomly into disjoint sets contain-
ing 60% , 25% and 15% of the data which are used during
training, validation and testing phases respectively.
Data preparation: Suppose a sketch I is composed of
N strokes. Let the cumulative stroke sequence of I be
I = {S1, S2, . . . SN}, i.e. SN = I (see Figure 2). Let
the sequence of corresponding guess-words be GI =
{g1, g2, . . . gN}. The sketches are first re-sized to 224× 224
and zero-centered. To ensure sufficient training data, we aug-
ment sketch data and associated guess-words. For sketches,
each accumulated stroke sequence St ∈ I is first morpholog-
ically dilated (‘thickened’). Subsequent augmentations are
obtained by applying vertical flip and scaling (paired com-
binations of −7%,−3%, 3%, 7% scaling of image side). We
also augment guess-words by replacing each guess-word in
GI with its plural form (e.g. pant is replaced by pants)
and synonyms wherever appropriate.
Data representation: The penultimate fully-connected
layer’s outputs of CNNs fine-tuned on sketches are used
to represent sketch stroke sequence images. The guess-words
are represented using pre-trained word-embeddings. Typi-
cally, a human-generated guess sequence contains two dis-
tinct phases. In the first phase, no guesses are provided by
the subject since the accumulated strokes provide insufficient
evidence. Therefore, many of the initial guesses (g1, g2 etc.)
are empty and hence, no corresponding embeddings exist. To
tackle this, we map ‘no guess’ to a pre-defined non-word-
embedding (symbol “#”).
Model design strategy: Our model’s objective is to map
the cumulative stroke sequence I to a target guess-word se-

7333



LSTM Avg. sequence-level accuracy

1 3 5

– 52.77 63.02 66.40
128 54.13 63.11 66.25
256 55.03 63.79 66.40
512 55.35 64.03 66.81

Table 1: Sequence-level accuracies over the validation set are
shown. In each sequence, only the portion with guess-words
is considered for evaluation. The first row corresponds to M3

CNN regressor. The first column shows the number of hidden
units in the LSTM. The sequence level accuracies with k-
nearest criteria applied to per-time-step guess predictions are
shown for k = 1, 3, 5.

quence GI . Given our choice of data representation above,
the model effectively needs to map the sequence of sketch
features to a sequence of word-embeddings. To achieve this
sequence-to-sequence mapping, we use a deep recurrent neu-
ral network (RNN) as the architectural template of choice
(see Figure 3).

For the sequential mapping process to be effective, we
need discriminative sketch representations. This ensures that
the RNN can focus on modelling crucial sequential aspects
such as when to initiate the word-guessing process and when
to transition to a new guess-word once the guessing has begun
(Section 3.2). To obtain discriminative sketch representations,
we first train a CNN regressor to predict a guess-word embed-
ding when an accumulated stroke image is presented (Section
3.1). It is important to note that we ignore the sequential na-
ture of training data in the process. Additionally, we omit
the sequence elements corresponding to ‘no-guess’ during
regressor training and evaluation. This frees the regressor
from having to additionally model the complex many-to-one
mapping between strokes accumulated before the first guess
and a ‘no-guess’.

To arrive at the final CNN regressor, we begin by fine-
tuning a pre-trained photo object CNN. To minimize the
impact of the drastic change in domain (photos to sketches)
and task (classification to word-embedding regression), we
undertake a series of successive fine-tuning steps which we
describe next.

3.1 Learning the CNN word-embedding regressor

Step-1: We fine-tune the VGG-16 object classification net (Si-
monyan and Zisserman 2014) using Sketchy (Sangkloy et
al. 2016), a large-scale sketch object dataset, for 125-way
classification corresponding to the 125 categories present in
the dataset. Let us denote the resulting fine-tuned net by M1.
Step-2: M1’s weights are used to initialize a VGG-16 net
which is then fine-tuned for regressing word-embeddings cor-
responding to the 125 category names of the Sketchy dataset.
Specifically, we use the 500-dimensional word-embeddings
provided by the word2vec model trained on 1-billion
Google News words (Mikolov et al. 2013). Our choice is
motivated by the open-ended nature of guess-words in Sketch-
QA and the consequent need to capture semantic similarity

between ground-truth and guess-words rather than perform
exact matching. For the loss function w.r.t predicted word
embedding p and ground-truth embedding g, we consider [a]
Mean Squared Loss : ‖p− g‖2 [b] Cosine Loss (Qin et al.
2008) : 1- cos(p, g) = 1 − (pT g/‖p‖ ‖g‖) [c] Hinge-rank
Loss (Frome et al. 2013) : max[0,margin − p̂T ĝ + p̂T ĥ]
where p̂, ĝ are length-normalized versions of p, g respectively
and ĥ( �= ĝ) corresponds to the normalized version of a ran-
domly chosen category’s word-embedding. The value for
margin is set to 0.1 [d] Convex combination of Cosine Loss
(CLoss) and Hinge-rank Loss (HLoss) : CLoss + λHLoss.
The predicted embedding p is deemed a ‘correct’ match if
the set of its k-nearest word-embedding neighbors contains
g. Overall, we found the convex combination loss with λ = 1
(determined via grid search) to provide the best performance.
Let us denote the resulting CNN regressor as M2.
Step-3: M2 is now fine-tuned with randomly ordered sketches
from training data sequences and corresponding word-
embeddings. By repeating the grid search for the convex
combination loss, we found λ = 1 to once again provide the
best performance on the validation set. Note that in this case,
ĥ for Hinge-rank Loss corresponds to a word-embedding ran-
domly selected from the entire word-embedding dictionary.
Let us denote the fine-tuned CNN regressor by M3.

As mentioned earlier, we use the 4096-dimensional output
from fc7 layer of M3 as the representation for each accumu-
lated stroke image of sketch sequences.

3.2 RNN training and evaluation

RNN Training: As with the CNN regressor, we configure
the RNN to predict word-embeddings (see Figure 3). For
preliminary evaluation, we use only the portion of training
sequences corresponding to guess-words. For each time-step,
we use the same loss (convex combination of Cosine Loss
and Hinge-rank Loss) determined to be best for the CNN
regressor. We use LSTM (Hochreiter and Schmidhuber 1997)
as the specific RNN variant. For all the experiments, we use
Adagrad optimizer (Duchi, Hazan, and Singer 2011) with
a starting learning rate of 0.01 and early-stopping as the
criterion for terminating optimization.
Evaluation: We use the k-nearest neighbor criteria men-
tioned above and examine performance for k = 1, 2, 3. To
determine the best configuration, we compute the propor-
tion of ‘correct matches’ on the subsequence of validation
sequences containing guess-words. As a baseline, we also
compute the sequence-level scores for the CNN regressor M3.
We average these per-sequence scores across the validation
sequences. The results show that the CNN regressor performs
reasonably well in spite of the overall complexity involved in
regressing guess-word embeddings (see first row of Table 1).
However, this performance is noticeably surpassed by LSTM
net, demonstrating the need to capture temporal context in
modelling guess-word transitions.

4 Overall Results

For the final model, we merge validation and training sets and
re-train with the best architectural settings as determined by
validation set performance (i.e. M3 as the feature extraction
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Figure 4: Examples of guesses generated by our model on test set sequences.

Model Avg. sequence-level accuracy

1 3 5

M3 (CNN) 43.61 51.54 54.18
Two-phase 46.33 52.08 54.46

Proposed 62.04 69.35 71.11

Table 2: Overall average sequence-level accuracy on test set
for guessing models (CNNs only baseline [first row], two-
phase baseline [second] and our proposed model [third]).

CNN, LSTM with 512 hidden units as the RNN component
and convex combination of Cosine Loss and Hinge-rank Loss
as the optimization objective). We report performance on the
test sequences.

The full-sequence scenario is considerably challenging
since our model has the additional challenge of having to
accurately determine when the word-guessing phase should
begin. For this reason, we also design a two-phase architec-
ture as an alternate baseline. In this baseline, the first phase
predicts the most likely sequential location for ‘no guess’-
to-first-guess transition. Conditioned on this location, the
second phase predicts guess-word representations for rest of
the sequence (see Figure 6). Due to space constraints, we
only report performance numbers for the two-phase baseline.
For a full description of baseline architecture and related
ablative experiments, please refer to material on our project
page http://val.cds.iisc.ac.in/sketchguess.

As can be observed in Table 2, our proposed word-guess
model outperforms other baselines, including the two-phase
baseline, by a significant margin. The reduction in long-range
temporal contextual information, caused by splitting the orig-
inal sequence into two disjoint sub-sequences, is possibly
a reason for lower performance for the two-phase baseline.
Additionally, the need to integrate sequential information is
once again highlighted by the inferior performance of CNN-
only baseline. We also wish to point out that 17% of guesses
in the test set are out-of-vocabulary words, i.e. guesses not
present in train or validation set. In spite of this, our model
achieves high sequence-level accuracy, thus making the case
for open-ended word-guessing models.
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Figure 5: Distribution of ratings for human and machine-
generated guesses.

Examples of guesses generated by our model on test set
sketch sequences can be viewed in Figure 4.
Visual Turing Test: As a subjective assessment of our model,
we also conduct a Visual Turing Test. We randomly sample
K = 200 sequences from our test-set. For each of the model
predictions, we use the nearest word-embedding as the corre-
sponding guess. We construct two kinds of paired sequences
(si, hi) and (si,mi) where si corresponds to the i-th sketch
stroke sequence (1 � i � K) and hi,mi correspond to
human and model generated guess sequences respectively.
We randomly display the stroke-and-guess-word paired se-
quences to 20 human judges with 10 judges for each of the
two sequence types. Without revealing the origin of guesses
(human or machine), each judge is prompted “Who produced
these guesses ?”.

The judges entered their ratings on a 5-point Likert scale
(‘Very likely a machine’, ‘Either is equally likely’,’Very likely
a human’). To minimize selection bias, the scale ordering is
reversed for half the subjects (Chan 1991). For each sequence
i, 1 � i � K, we first compute the mode (μH

i (human
guesses), μM

i (model guesses)) of the 10 ratings by guesser
type. To determine the statistical significance of the ratings,
we additionally analyze the K rating pairs ((μH

i , μM
i ), 1 �

i � K) using the non-parametric Wilcoxon Signed-Rank
test (Wilcoxon 1945).

When we study the distribution of ratings (Figure 5), the
human subject-based guesses from WORDGUESS-160 seem
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Figure 6: Architecture for the two-phase baseline. The first
phase (blue dotted line) is used to predict location of the
transition to the word-guessing phase (output 1). Starting
from transition location, the second-phase (red dotted line)
sequentially outputs word-embedding predictions until the
end of stroke sequence.

to be clearly identified as such – the two most frequent rat-
ing levels correspond to ‘human’. The non-trivial frequency
of ‘machine’ ratings reflects the ambiguity induced not only
by sketches and associated guesses, but also by the possi-
bility of machine being an equally viable generator. For the
model-generated guesses, many could be identified as such,
indicating the need for more sophisticated guessing models.
This is also evident from the Wilcoxon Signed-Rank test
which indicates a significant effect due to the guesser type
(p = 0.005682, Z = 2.765593). Interestingly, the second-
most preferred rating for model guesses is ‘human’, indicat-
ing a degree of success for the proposed model.

5 Related Work

Beyond its obvious entertainment value, Pictionary involves
a number of social (Wortham 2006; Mäyrä 2007), collabo-
rative (Fay, Arbib, and Garrod 2013; Groen et al. 2012) and
cognitive (Dake and Roberts 1995; Kievit-Kylar and Jones
2011) aspects which have been studied by researchers. In
an attempt to find neural correlates of creativity, Saggar et
al. (Saggar and others 2015) analyze fMRI data of partici-
pants instructed to draw sketches of Pictionary ‘action’ words
(E.g. “Salute”,“Snore”). In our approach, we ask subjects to
guess the word instead of drawing the sketch for a given word.
Also, our sketches correspond to nouns (objects).

Human-elicited text-based responses to visual content, par-
ticularly in game-like settings, have been explored for object
categorization (Von Ahn and Dabbish 2004; Branson et al.
2010). However, the visual content is static and does not accu-
mulate sequentially, unlike our case. The work of Ullman et
al. (Ullman et al. 2016) on determining minimally recogniz-
able image configurations also bears mention. Our approach
is complementary to theirs in the sense that we incremen-
tally add stroke content (bottom-up) while they incrementally
reduce image content (top-down).

In recent times, deep architectures for sketch recogni-
tion (Yu et al. 2015; Seddati, Dupont, and Mahmoudi 2015;
Sarvadevabhatla, Kundu, and Radhakrishnan 2016) have
found great success. However, these models are trained to

output a single, fixed label regardless of the intra-category
variation. In contrast, our model, trained on actual human
guesses, naturally exhibits human-like variety in its responses
(e.g. a sketch can be guessed as ‘aeroplane’ or ‘warplane’
based on evolution of stroke-based appearance). Also, our
model solves a much more complex temporally-conditioned,
multiple word-embedding regression problem. Another im-
portant distinction is that our dataset (WORDGUESS-160)
contains incorrect guesses which usually arise due to am-
biguity in sketched depictions. Such ‘errors’ are normally
considered undesirable, but we deliberately include them
in the training phase to enable realistic mimicking. This in
turn requires our model to implicitly capture the subtle, fine-
grained variations in sketch quality – a situation not faced by
existing approaches which simply optimize for classification
accuracy.

Our dataset collection procedure is similar to the one em-
ployed by Johnson et al. (Johnson and Do 2009) as part of
their Pictionary-style game Stellasketch. However, we do
not let the subject choose the object category. Also, our sub-
jects only provide guesses for stroke sequences of existing
sketches and not for sketches being created in real-time. Un-
fortunately, the Stellasketch dataset is not available publicly
for further study.

It is also pertinent to compare our task and dataset
with QuickDraw, a large-scale sketch collection initiative
by Google (https://github.com/googlecreativelab/quickdraw-
dataset). The QuickDraw task generates a dataset of object
sketches. In contrast, our task SketchQA results in a dataset
of human-generated guess words. In QuickDraw, a sketch
is associated with a single, fixed category. In SketchQA, a
sketch from an existing dataset is explicitly associated with
a list of multiple guess words. In SketchQA, the freedom
provided to human guessers enables sketches to have arbitrar-
ily fine-grained labels (e.g. ‘airplane’, ‘warplane’,‘biplane’).
However, QuickDraw’s label set is fixed. Finally, our dataset
(WORDGUESS-160) captures a rich sequence of guesses in
response to accumulation of sketch strokes. Therefore, it can
be used to train human-like guessing models. QuickDraw’s
dataset, lacking human guesses, is not suited for this purpose.

Our computational model employs the Long Short Term
Memory (LSTM) (Hochreiter and Schmidhuber 1997) variant
of Recurrent Neural Networks (RNNs). LSTM-based frame-
works have been utilized for tasks involving temporally evolv-
ing content such as as video captioning (Donahue et al. 2015;
Venugopalan et al. 2015) and action recognition (Yeung et
al. 2015; Ng et al. 2015; Ma, Sigal, and Sclaroff 2016). Our
model not only needs to produce human-like guesses in re-
sponse to temporally accumulated content, but also has the
additional challenge of determining how long to ‘wait’ be-
fore initiating the guessing process. Once the guessing phase
begins, our model typically outputs multiple answers. These
per-time-step answers may even be unrelated to each other.
This paradigm is different from a setup wherein a single
answer constitutes the output. Also, the output of RNN in
aforementioned approaches is a soft-max distribution over
all the words from a fixed dictionary. In contrast, we use
a regression formulation wherein the RNN outputs a word-
embedding prediction at each time-step. This ensures scala-
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bility with increase in vocabulary and better generalization
since our model outputs predictions in a constant-dimension
vector space. (Lev et al. 2016) adopt a similar regression
formulation to obtain improved performance for image anno-
tation and action recognition.

Since our model aims to mimic human-like guessing be-
havior, a subjective evaluation of generated guesses falls
within the ambit of a Visual Turing Test (Geman et al. 2015;
Malinowski and Fritz 2014; Gao et al. 2015). However, the
free-form nature of guess-words and the ambiguity arising
from partial stroke information make our task uniquely more
challenging.

6 Discussion and Conclusion
We have introduced a novel guessing task called Sketch-
QA to crowd-source Pictionary-style open-ended guesses
for object line sketches as they are drawn. The result-
ing dataset, dubbed GUESSWORD-160, contains 16,624
guess sequences of 1,108 subjects across 160 object cat-
egories. We have also introduced a novel computational
model which produces open-ended guesses and analyzed
its performance on GUESSWORD-160 dataset for chal-
lenging on-line Pictionary-style guessing tasks. Our over-
all approach also sets the stage for analyzing other popular
guessing games such as CraniumTM (Wikipedia 2017) and
CreationaryTM (Lego 2017).

In addition to the computational model, our dataset
GUESSWORD-160 can serve researchers studying human
perceptions of iconic object depictions. Since the guess-
words are paired with object depictions, our data can also
aid graphic designers and civic planners in creation of mean-
ingful logos and public signage. This is especially important
since incorrectly perceived depictions often result in inconve-
nience, mild amusement, or in extreme cases, end up deemed
offensive. Yet another potential application domain is clinical
health care. GUESSWORD-160 consists of partially drawn
objects and corresponding guesses across a large number of
categories. Such data could be useful for neuro psychiatrists
to characterize conditions such as visual agnosia: a disor-
der in which subjects exhibit impaired object recognition
capabilities (Baugh, Desanghere, and Marotta 2010).

In future, we wish to also explore computational models
for optimal guessing, i.e. models which aim to guess the
sketch category as early and as correctly as possible. In the
futuristic context mentioned at the beginning (Figure 1), such
models would help the robot contribute as a productive team-
player by correctly guessing its team-member’s sketch as
early as possible. In our dataset, each stroke sequence was
shown only to a single subject and therefore, is associated
with a single corresponding sequence of guesses. This short-
coming is to be mitigated in future editions of Sketch-QA.
A promising approach for data collection would be to use
digital whiteboards, high-quality microphones and state-of-
the-art speech recognition software to collect realistic paired
stroke-and-guess data from Pictionary games in home-like
settings (Sigurdsson et al. 2016). It would also be worthwhile
to consider Sketch-QA beyond object names (‘nouns’) and
include additional lexical types (e.g. action-words and ab-
stract phrases). We believe the resulting data, coupled with

improved versions of our computational models, could make
the scenario from Figure 1 a reality one day.
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