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Abstract

Visual relationship detection aims to describe the interactions
between pairs of objects. Different from individual object
learning tasks, the number of possible relationships are much
larger, which makes it hard to explore only based on the vi-
sual appearance of objects. In addition, due to the limited hu-
man effort, the annotations for visual relationships are usually
incomplete which increases the difficulty of model training
and evaluation. In this paper, we propose a novel framework,
called Deep Structural Ranking, for visual relationship de-
tection. To complement the representation ability of visual
appearance, we integrate multiple cues for predicting the re-
lationships contained in an input image. Moreover, we de-
sign a new ranking objective function by enforcing the an-
notated relationships to have higher relevance scores. Unlike
previous works, our proposed method can both facilitate the
co-occurrence of relationships and mitigate the incomplete-
ness problem. Experimental results show that our proposed
method outperforms the state-of-the-art on the two widely
used datasets. We also demonstrate its superiority in detecting
zero-shot relationships.

Introduction

To achieve the goal of holistic image understanding, re-
searchers have made great progress on recognizing, detect-
ing and describing individual objects within an image. Over
the past few years, the state-of-the-art of object recognition
(Simonyan and Zisserman 2014) and object detection (Ren
et al. 2015; Girshick 2015) have been dramatically improved
thanks to the advances of deep learning. Based on these ba-
sic building blocks for single object understanding, visual
relationship detection aims to accurately localize a pair of
objects and determine the predicate between them as shown
in Fig. 1. As a mid-level learning task, visual relationship
detection can benefit many high-level image understand-
ing tasks such as image captioning (Kulkarni et al. 2013;
Vinyals et al. 2015; Xu et al. 2015) and visual question an-
swering (Antol et al. 2015).

Different from single object based image understand-
ing, visual relationship detection is used to describe two
objects which makes the number of possible relation-
ships much larger. If we represent the relationship as
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Figure 1: Detecting the visual relationships contained in
an image. A visual relationship instance is defined as
subject-predicate-object. (a) Multiple predicates
may co-occur for a paired object, as the person can hold a
cat and also be behind the cat. (b) The annotations are usu-
ally not complete. For example, chair-in the front
of-lamp is not included. (c) The diversity within the same
predicate is high since person can wear or be behind many
kinds of objects.

subject-predicate-object, the number of possi-
ble relationships are O(N2K) when there are N ob-
ject categories and K predicates. Since the object co-
occurrence is infrequent, a large number of relation-
ships contain few examples. Therefore previous method
(Sadeghi and Farhadi 2011) which directly takes the tu-
ple subject-predicate-object as a whole learn-
ing task can not scale well on large datasets. One pos-
sible solution (Lu et al. 2016) is to learn the objects
and predicates separately and fuse the result to predict
the relationship. In that way, different relationships (e.g.
truck-on-street, car-on-street) are merged
into the same category if they share the same predicate.
Therefore, only O(N + K) detectors are needed but the
samples within the same predicate category are highly di-
verse as shown in Fig.1(c). This problem also exists in
some other relevant tasks. For visual attribute learning, an
attribute may be used to describe various objects which
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makes its manifestations highly diverse (Farhadi et al. 2009;
Liang et al. 2015). For image captioning and visual ques-
tion answering, a textual word may contain multiple senses
(Gella, Lapata, and Keller 2016).

Another challenge of visual relationship detection is that
the relationships are not annotated completely. This prob-
lem mainly comes from three aspects. Firstly, a single im-
age usually contains multiple objects and only a subset of
them have been manually localized in the dataset. Secondly,
given individual objects, some pairs of the objects are not
annotated with any predicates even they do have a relation-
ship. Thirdly, in most cases, only one predicate is defined
for an annotated object pair even though the co-occurrence
of the predicates are very common. One direct way to deal
with incomplete predicate annotation is to take the unla-
beled relationships as negative samples and solve the rela-
tionship detection problem using a multi-label classification
framework based on cross-entropy loss. In addition, since
many object pairs only contain a single predicate, some pre-
vious works (Dai, Zhang, and Lin 2017; Li et al. 2017;
Zhang et al. 2017) choose to formulate relationship detec-
tion as a multi-class classification problem based on soft-
max loss function which totally ignores the co-occurrence
of predicates.

In this paper, we propose a deep neural network frame-
work with structural ranking loss to tackle the visual rela-
tionship detection problem. Our proposed method separately
models object and predicate and fuses their results to pred-
icate the relationship. To handle the diversity of each predi-
cate, we propose to integrate multiple cues as the input fea-
ture. Specifically, the proposed network takes visual appear-
ance cue, spatial location cue and semantic embedding cue
as the input and further fuse them into a joint feature vector.
In addition, we explore different ways to model each input
cue and conduct experiments to validate their effectiveness.
Based on the fused feature, we propose a structural ranking
loss to learn the related predicate for a pair of localized ob-
jects. It enforces the annotated relationships to have higher
relevance score than the rest of possible relationships. Even
though some unannotated relationships may also be related
with the given image, they are usually not as salient as the
annotated ones. Moreover, we integrate the structural loss
with the probability of the predicates conditioned on its sub-
ject and object to further reduce the impact of incomplete
annotations. Experimental results show that our proposed
method outperforms the state-of-the-art on the two widely
used datasets Visual Relationship Dataset (Lu et al. 2016)
and Visual Genome (Krishna et al. 2016).

The rest of this paper is organized as follows. We first
introduce previous works in the following section. In the
third section, we present our proposed deep structural rank-
ing framework for visual relationship detection. Then we re-
port the experimental results and conclude the paper in the
last section.

Related Work
Many previous works have tackled the visual relation-
ship prediction problem. (Galleguillos, Rabinovich, and Be-
longie 2008) attempted to learn relationships that describe

spatial information such as “above”, “below”, “inside”, and
“around”. (Gould et al. 2008) further shown that this kind
of relationship can be used to improve multi-class segmen-
tation. Human-object interaction (Yao and Fei-Fei 2010;
Chao et al. 2015a) aims to learn the relationships with the
subject constrained to be human. (Farhadi et al. 2010;
Sadeghi and Farhadi 2011; Ramanathan et al. 2015; Atzmon
et al. 2016) considered each relationship as a distinct learn-
ing task. For example, (Sadeghi and Farhadi 2011) proposed
to train a detector for person-ride-horse to improve
the localization of person and horse. However, this kind
of methods can only be used for a small set of relationships
due to the long-tail distribution of visual relationships.

To facilitate large scale relationship understanding, a
promising way is to learn the visual relationship separately.
(Lu et al. 2016) proposed to use visual appearance features
to predict the relationship of a pair of the objects. The vi-
sual modules for objects and predicates are trained sepa-
rately and combined to predict the final relationships. They
further leverage language priors to improve the proposed
visual modules. One drawback of their method is that the
network for extracting visual appearance features is trained
separately from the final task. To tackle the above problem,
the works of (Dai, Zhang, and Lin 2017; Li et al. 2017;
Zhang et al. 2017; Liang, Lee, and Xing 2017) proposed to
integrate the feature learning procedure with the target re-
lationship detection task in an end-to-end training manner.
More specifically, (Zhang et al. 2017) proposed to model
visual relations by mapping subjects and objects into a com-
mon low-dimensional relation space. Therefore, the predi-
cate is considered as a translation vector between the sub-
ject and object. (Liang, Lee, and Xing 2017) proposed a
deep Variation-structured Reinforcement Learning frame-
work to sequentially detect relationship and attribute in-
stances by exploiting global context cues. (Li, Ouyang, and
Wang 2017) proposed a Visual Phrase guided Convolu-
tional Neural Network to learn three inter-connected recog-
nition problems (subject- predicate-object) simultaneously
through message passing. (Dai, Zhang, and Lin 2017) pro-
posed a novel Deep Relational Network to exploit both spa-
tial configurations and statistical dependencies among rela-
tionship predicates, subjects, and objects. However, most of
the above choose to model relationship detection as a multi-
class classification problem which ignore the relationship
co-occurrence.

Deep Structural Ranking
For visual relationship detection, we need to detect a set of
objects and output the predicates between each pair of them.
We use P to denote the set of all the annotated object pairs.
For each element (s, o) ∈ P , s and o represent the subject
and object involved in a relationship. Then we use Ps,o to
denote all the predicates which are annotated for the pair
(s, o). We use R = {(s, p, o)|(s, o) ∈ P ∧ p ∈ Ps,o} to de-
note all the visual relationship contained in an input image.
In the training stage, the bounding boxes and labels for all
the subjects and objects are observed. For testing, we first
conduct object detection to acquire the location and label
information for all the objects. Then we predict the rele-
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vant predicates for each pair of them. As the predicates con-
tain abundant semantic meaning and may generalize across
different types of object pair, we propose a deep convolu-
tional network which combines multiple cues to sufficiently
learn the representation for an input instance. In this paper,
we fuse the visual appearance cue, spatial location cue and
semantic embedding cue for an relationship instance as its
joint feature. Based on that, we propose to train the multiple
cue network in an end-to-end manner with a novel structural
ranking loss which considers both the natural co-occurrence
and incompleteness of predicate annotations for visual rela-
tionship detection.

Network Architecture

In this section, we introduce the proposed deep neural net-
work for visual relationship detection. It integrates multiple
cues to learn the representations of each input relationship
instances. The proposed framework is shown in Fig. 2.

Visual Appearance Cue. Based on the visual appear-
ance of two localized objects, human can easily acquire the
appropriate predicates to describe their relationship. More
specifically, human can determine both the object category
information of two localized objects and the holistic in-
terpretation from the context around them. Therefore, vi-
sual appearance cue is a key factor for the final learning
task. For a relationship instance (s, p, o), we use bs =
(xs, ys, ws, hs),bo = (xo, yo, wo, ho) to denote the bound-
ing box coordinates, width and height of its corresponding
subject and object. In addition, we use bp to denote
the area of the predicate which is usually represented as the
union of bs and bo. To capture the surrounding context, bp

can also encompass the subject and object with a small mar-
gin referring to (Dai, Zhang, and Lin 2017). Then we adopt
a convolutional neural network as the backbone and extract
the RoI Pooling features of bs,bo and bp from the last con-
volutional layer. In this paper, we choose VGG16 (Simonyan
and Zisserman 2014) as the base network and the RoI fea-
tures are further fed into two fully connected layers to be
used as the visual appearance features. In our experiments,
we first use the union area as the visual appearance and fur-
ther combine it with the feature extracted on the separate
subject and object area.

Spatial Location Cue. Spatial Location is complementary
to visual appearance, as many of the predicates (e.g.
above, under, on the left of) reflect the spa-
tial or preposition relation between two objects which is not
easy to learn only from visual feature. Here we explore two
ways to leverage spatial information. Firstly, we try to use
the relative location feature which is scale-invariant and also
specifies the relative height/width between the two counter-
part subject and object. We denote the location feature
as a 4-d vector (lx, ly, lw, lh). For subject, its spatial lo-
cation cue is represented as:

lx =
xs − xo

xo
, ly =

ys − yo
yo

, lw = log
ws

wo
, lh = log

hs

ho
, (1)

where (lx, ly) specifies the translation and (lw, lh) spec-
ifies the log-space height/width shift relative to its coun-

terpart. Secondly, we use the spatial masks of subject
and object to explore the spatial information for a re-
lationship instance. A spatial mask is defined to be a bi-
nary matrix where only the pixels within the bounding box
area are nonzero. The spatial mask is first generated as the
same size of the input image and further down-sampled to
the size 32 × 32. Then the spatial masks of both subject
and object are concatenated as the input of a spatial neu-
ral network which compresses the spatial masks into a low-
dimensional vector via three convolutional layers. In our ex-
periments, we compare the above two ways to validate their
effectiveness on leveraging spatial location cue.

Semantic Embedding Cue. Since the same predicate may
be used to describe different types of object pairs (e.g.
car-near-street, person-near-building), it is
hard to recognize the predicate only based on the visual ap-
pearance. To exploit the visual manifestation across differ-
ent object categories, we introduce a semantic embedding
layer to integrate the category information of subject
and object. Specifically, the proposed semantic embed-
ding layer maps the object category into a feature embed-
ding vector. Then we concatenate the embedding vectors of
subject and object to learn the joint representations of
the object pair through a fully connected layer. The learned
joint representations are further fused with both visual and
spatial features. Instead of learning the embeddings of object
categories, we can also initialize the parameters of semantic
embedding layer with the pre-trained word representations.
In this paper, we introduce word2vec (Mikolov et al. 2013)
as the off-the-shelf language model to acquire the word rep-
resentations. In this way, the semantic relatedness between
objects is well integrated into the learning procedure which
especially benefits zero-shot visual relationship detection as
shown in (Lu et al. 2016).

Structural Ranking Loss

In this section, we propose to cascade the multi-cue based
convolutional neural network with a structural ranking loss
function. Compared with multi-class based method, the pro-
posed method is no longer under the assumption of only
single predicate existing in each object pair which can bet-
ter facilitate the predicate co-occurrence. At the same time,
we do not use the hard constraint to separate the relation-
ship instances for being positive or negative which makes
our method more robust and flexible than using the cross-
entropy based loss for multi-label learning.

For an input image x, we first extract the feature repre-
sentations of visual appearance cue, spatial location cue and
semantic embedding cue for each relationship instance tuple
r = (s, p, o) ∈ R. The learned features combined with mul-
tiple cues are further concatenated and fused into a joint fea-
ture vector through one fully connected layer. We use f(·)
to denote the above procedure. Therefore, the fused features
for relationship instance r = (s, p, o) can be denoted as
f(x, s, o). Then we formulate a compatibility function be-
tween the input image x and the relationship instance r as
following:
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Figure 2: The proposed deep structural ranking framework for visual relationship detection. It contains a deep convolutional
network which combines multiple cues to learn the representation for an input instance. A structural ranking loss is further
cascaded with the network to enforce the annotated relationships with higher relevance score.

Φ(x, r) = Φ(x, {s, p, o}) = wp�f(x, s, o), (2)

where wp denotes the parameters to be learned for pth

predicate. For visual relationship detection, not all the
related predicates between subject and object are annotated.
However, the annotated predicates are usually more salient
than the unannotated predicates. To address the incomplete-
ness of annotations, we propose to minimize a structural
ranking criterion for the input image x and its associated re-
lationship instances R:

L(x) =
∑

r∈R

∑

r′∈R′
[�(r, r′) + Φ(x, r′)− Φ(x, r)]+ , (3)

where R′ = {(s′, p′, o′)|(s′, o′) ∈ P ∧ p′ /∈ Ps′,o′} is
the set of all the relationship instances that are not manually
annotated, [·]+ = max(0, ·) denotes to only remain the pos-
itive part of input and �(·, ·) is a margin that depend on the
difference between the two input relationship instances.

We design �(·, ·) to take the incompleteness problem of
visual relationship detection into account. We formulate this
margin between relationship instances via the prior proba-
bilistic distribution of relationships conditioned on the sub-
ject and object pair. The assumption is if the prior probabil-
ity is higher, the annotation of relationship instance is more
likely to be missing from the annotations. Therefore, we de-
fine the following adaptive margin function:

�(r, r′) = �({s, p, o}, {s′, p′, o′})
= 1 + P (p|cs, co)− P (p′|cs′ , co′),

(4)

where we use cs, co to denote the category label for sub-
ject and object respectively. With this adaptive margin, the
incomplete annotation with a high prior probability to ap-
pear is less penalized.

Inference

We use the object detector RCNN (Girshick 2015) to local-
ize all the object proposals within an test image x and ac-
quire the category label and confidence score for each ob-
ject proposal. Then, we perform non-maximum suppression
(NMS) for every object category. We denote the set of object

proposals as B and generate all the candidate object pairs as
P∗ = {(s, o)|s ∈ B ∧ o ∈ B ∧ s �= o} which are the combi-
nation of all the detected objects.

Finally, we can acquire the compatibility score between
the object pair (s, o) and predicate p:

score{s,p,o} = Φ(x, {s, p, o}), ∀p, (s, o) ∈ P∗. (5)

By utilizing RoI pooling operation, all the object propos-
als can share the representations below the last convolutional
layer which highly reduces the amount of computation. As
the representation of each object proposal is used repeatedly
across different object pairs, we can inference the problem
even the number of candidate object pairs is fairly large. In
our experiments, we found that integrating the above equa-
tion with the confident score from the object detector can
give further performance gain. Therefore, we propose to
model the conditional probabilistic prior by including the
object confidence from the trained detector:

P (cs, p, co|s, o) = P (p|cs, co)P (cs|s)P (co|o), (6)

where P (cs|s) and P (co|o) are the confidence of the
subject and object acquired from the detection network.
Then we combine the score from the proposed deep neu-
ral network and the prior confidence defined in Eqn. (5) and
Eqn. (6) respectively as the final score of a relationship in-
stance. According to the compatibility score, we can sort all
the relationship instances r = {s, p, o} and output the top
instances as the predictions for the test image x.

Experiments

We evaluate the proposed methods on two recently re-
leased datasets. Experimental results show that our proposed
method can surpass the previous state-of-the-art on visual
relationship detection. In addition, we investigate the effect
of using different components for the proposed method. Fi-
nally, experiments on zero-shot relationship detection show
that our proposed method can generalize well on the rela-
tionships which do not exist in the training data.
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Datasets and Experimental Settings

VRD (Lu et al. 2016). VRD (Visual Relationship Dataset)
contains 5000 images with 100 object categories and 70
predicates. Totally, VRD contains 37,993 relation instances
among 6,672 unique subject-predicate-object
triplets. We use the default dataset split which contains 4,000
training images and 1,000 test images. There are 1,877 re-
lationship triplets only appearing in the test set which are
further used for zero-shot evaluations.
VG (Krishna et al. 2016). The annotations of original VG
(Visual Genome) dataset are very noisy. Therefore, we use
the cleaned up version (Zhang et al. 2017) by using official
pruning of objects and relations. For example, young woman
and lady are merged to woman. In summary, VG contains
99,658 images with 200 object categories and 100 predi-
cates. There are totally 1,174,692 relation instances among
19,237 unique triplets. The default split contains 73,801 im-
ages for training and 25,857 images for testing.

In our experiments, we involve two relevant tasks to eval-
uate the proposed method: Predicate detection and Rela-
tionship detection. For Predicate detection, the task is to
predict the correlated predicates given a pair of localized
objects. For Relationship detection, the algorithm needs to
firstly localize the objects appearing in the input image and
then predict the relevant predicates between each pair of
them. It evaluates both object detection and predicate de-
tection. Following the original paper (Lu et al. 2016), we
use Recall@50 (R@50) and Recall@100 (R@100) as the
evaluation metrics. R@K compute the fraction of true posi-
tive relationships over the total relevant relationships among
the top K confident predictions. Because of the incomplete-
ness of annotations, mean average precision (mAP) is usu-
ally pessimistic as some of the relevant predictions may not
have that particular ground truth. Therefore we use recall
based evaluation metrics for comparison.

Implementation Details

Our proposed deep structural ranking model use VGG16 as
the base network. We use Adam optimizer to train the whole
network and the learning rate is set to be 0.00001. During
training, the first five convolutional layers of the base net-
work are fixed without tuning. For the newly added layers,
the learning rate is multiplied by 10 to accelerate the learn-
ing process. We train the proposed model for 5 epochs and
divide the learning rate by a factor of 10 after the third epoch.
Our implementations are based on the Pytorch deep learning
framework on a single GeForce GTX TITAN X. For VRD
dataset, the training time for one epoch (4000 training im-
ages) is around 10 minutes.

Comparative Results

Firstly, we compared our proposed method with two base-
line methods JointCNN and JointBox. JointCNN aims
to predict the three components of a relationship in-
stance jointly. For example, on VRD dataset, it has a 270
(100+100+70) way classification model to predict the sub-
ject, object and predicate labels. JointBox (Zhang et al.

2017) trains a softmax classifier that classifies joint bound-
ing boxes of the subject and object into predicates. Be-
yond that, several state-of-the-art comparison methods are
involved. VR-V and VR-LP are two variants of (Lu et al.
2016) which represent using only visual appearance and full
model with language prior respectively. VR-V is a two-stage
model which use R-CNN (Girshick 2015) to detect the ob-
jects and VR-LP further combines VR-V with word2vec
language priors. VTE (Zhang et al. 2017) is a novel Vi-
sual Translation Embedding network designed for visual re-
lation detection. It is an end-to-end and fully-convolutional
architecture which use softmax loss function which only re-
wards the deterministically accurate predicates.VRL (Liang,
Lee, and Xing 2017) is a visual relationship model based on
variation-structured reinforcement learning which sequen-
tially discover object relationships in the input image. ViP-
CNN (Li, Ouyang, and Wang 2017) presents a convolutional
neural network with Phrase-guided Message Passing Struc-
ture (PMPS) to establish the connection among relation-
ship components and help the model consider the relation-
ship learning problems jointly. Finally, we compare with the
deep relational network DR-Net (Dai, Zhang, and Lin 2017)
which develops dual spatial masks to represent the spatial
configurations and exploits the statistical dependencies be-
tween objects and relationships. For our proposed method,
we use the spatial mask as the spatial feature and also apply
word2vec to acquire the category embedding.

From the results on both predicate and relationship detec-
tion in Table 1, we can see JointCNN performs the worst.
This shows that network is hard to train with the super-
vision from three components simultaneously. Compared
with JointCNN, JointBox achieves better performance as
the learning task only aims to predict the predicate between
the subject and object. From the performance gap between
VR-V and VR-LP, we observe that integrating the category
information and its language prior knowledge can improve
the performance of only using visual appearance. Integrat-
ing the feature learning procedure with visual relationship
detection learning task into a joint learning task can consis-
tently improve the performance, as VTE, VRL, ViP-CNN
and DR-Net achieve much higher Recall than VR-LP. Both
VTE and ViP-CNN propose to simultaneously detect the ob-
jects and predict the relationship within a single deep net-
work. However, this multi-task learning strategy does not
show much performance gain as it increases the difficulty of
model training. For example, it is hard to balance the contri-
bution for each object function and the low-level features for
object detection and relationship learning may not be share-
able. Since both ViP-CNN and DR-Net leverage the depen-
dencies between objects and relationships, DR-Net achieves
better performance as its proposed spatial mask can exploit
the spatial configurations more effectively.

On both learning tasks, the proposed method outperforms
the recent state-of-the-art methods dramatically. For pred-
icate detection, we improve the state-of-the-art by around
11% according to Recall@100 on both VRD and VG. For
relationship detection, our proposed method further improve
the Recall@100 by 2.4% on VRD dataset compared to the
previous best performance. With the same spatial feature as
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Methods Predicate Det. Relationship Det.
R@50 R@100 R@50 R@100

JointCNN 1.47 2.03 0.07 0.09
JointBox 25.78 25.78 - -

VR-V 7.11 7.11 1.58 1.85
VR-LP 47.87 47.87 13.86 14.70
VTE 44.76 44.76 14.07 15.20
VRL - - 18.19 20.79

ViP-CNN - - 17.32 20.01
DR-Net 80.78 81.90 17.73 20.88

Ours 86.01 93.18 19.03 23.29

Table 1: Performances (%) on VRD dataset. “-” denotes the
performance has not been reported in the original paper.

Methods Predicate Det.
R@50 R@100

JointBox 46.59 46.77
VTE 62.63 62.87
Ours 69.06 74.37

Table 2: Predicate detection results (%) on VG dataset.

DR-Net, our proposed method can outperform DR-Net ac-
cording to all the evaluation metrics. This demonstrates the
co-occurrence and incompleteness of the predicates can not
be neglected for detecting the visual relationships. Compar-
ing the predicate detection and relationship detection, we
can find that the performance of object detector is a crucial
factor for visual relationship detection. In order to correctly
predict a relationship instance, the object detector must si-
multaneously localize the subject and object with 0.5 inter-
section over union (IoU) according to ground truth location.
Even the state-of-the-art object detector can not achieve sat-
isfactory performance.

Component Analysis

Our proposed network contains multiple cues to learn the
holistic representation of a relationship instance. In this sec-
tion, we discuss on how they influence the final perfor-
mance. We use V1 to denote only using the union of the
subject and object bounding boxes as the input of the net-
work. In addition, V2 combines the visual appearance fea-
tures from both the union and the separate subject and ob-
ject bounding boxes. For spatial location cue, we use S1 to
denote the scale-invariant relative location feature and the
relative height/width feature between the subject and object.
S2 represents using the spatial masks as the input spatial lo-
cation cue. E means using the 300-D word2vec representa-
tions to initialize the semantic embedding layer. The experi-
mental results are shown in Table 3.

For the comparison on visual appearance cue, V2 can im-
prove the performance of V1 by 4% and 1% according to
Recall@50 and Recall@100 respectively. From our perspec-
tive, the main reason is using the visual feature from the
separate subject and object regions give more specific in-
formation since the union bounding box may contain other

Predicate Det. Relationship Det.
R@50 R@100 R@50 R@100

Comparison on different feature
V1 66.14 82.53 17.71 21.91
V2 70.58 83.58 17.66 22.03

V2S1 79.53 89.16 18.72 22.83
V2S2 78.14 88.27 18.86 22.49
V2E 84.38 91.81 18.19 22.56

V2S1E 86.32 93.03 18.91 23.24
V2S2E 86.01 93.18 19.03 23.29

Comparison on different loss function
V2S2E+CE 79.22 89.15 17.95 21.89
V2S2E+SM 82.06 90.59 18.02 22.09

Table 3: Component Analysis (%) on VRD dataset.

objects which is usually noisy for learning the visual rela-
tionship. By further adding the spatial location cue, the per-
formance can be further improved as many of the predicates
are used to describe the spatial information of the subject
and object (e.g. sky above street). Both S1 and S2 can ef-
fectively model the spatial information to enhance visual
relationship detection. On predicate detection, S1 achieves
better performance than S2. However, the performance gain
is not very obvious on relationship detection as the location
of the detected objects are as accurate as the ground-truth
annotations. This further shows that spatial masks are more
robust than the coordinates based spatial location features.
Combining the visual appearance and semantic embedding
also improves the performance as V2E dramatically outper-
forms V2. Since the visual appearance is limited and varies
within the same object category, it is usually hard to infer
the category labels for subject and object based on their
visual appearance. We further show the proposed method
which combines all the three cues can achieve the best per-
formance. However, the performance gain of spatial loca-
tion cue and semantic embedding cue are not complemen-
tary since V2SE only improve the recall of V2E by around
2%. This is mainly because the location information is also
useful to infer the category label of an object and vice versa.
S2 can achieve slightly better performance than S1 when
combined with visual appearance and semantic embedding.
Finally, we show some qualitative results in Fig. 3. The top5
predications are shown for each image. By using spatial
and semantic information, our proposed method can avoid
predicting the relationships which are not reasonable (e.g.
person-wear-bag, shelf-on-laptop).

We further conduct experiments on comparing the pro-
posed structural ranking loss with cross-entropy and soft-
max loss function. Cross-entropy loss is a widely used ob-
jective function for multi-label learning which can well fa-
cilitate the co-occurrence of predicates. Softmax loss func-
tion is adopted as the objective function in (Dai, Zhang, and
Lin 2017; Li et al. 2017; Zhang et al. 2017) since most of the
object pairs have only one predicate annotation. We use the
same input features V2S2E which combine multiple cues for
fair comparison. As shown in the bottom of Table 3, using
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Figure 3: Qualitative Results of the proposed methods. The white box denotes the results of using only visual feature while the
grey box denotes the result of using multiple cues. The correct predictions are shown in green while the wrong predictions are
in red. The correct predictions without annotating is shown in blue.

Methods Predicate Det. Relationship Det.
R@50 R@100 R@50 R@100

VR-V 3.52 3.52 0.67 0.78
VR-LP 8.45 8.45 3.13 3.52
VTE - - 1.71 2.14
VRL - - 7.94 8.52
Ours 60.90 79.81 5.25 9.20

Table 4: Zero-shot Performances (%) on VRD dataset. The
methods without reporting the performance on zero-shot set-
ting are excluded from comparison.

either cross-entropy or softmax loss function decreases the
performance on both tasks.

Zero-shot Visual Relationship Detection

Due to the long tail distribution of relationships, it is hard
to collect the images for all the possible relationships. So
it is crucial for a model to have the generalizability on
detecting zero-shot relationships. On VRD dataset, it con-
tains 1,877 relationships that only exist on the test set. Even
though elephant-stand on-street never occurs on
the training set, we can use the correlated relationships (e.g.
dog-stand on-street) to infer the unseen relation-
ship. The performance on zero-shot predicate and relation-
ship detection is reported in Table 4. Our proposed method
can achieve better performance on detecting zero-shot rela-
tionships especially on predicate detection.

We further explore the influence of using the inference
strategy defined in Eqn. (6) on zero-shot relationship de-
tection. Since the conditional probability of zero-shot rela-
tionship is zero, the performance will be decreased when
directly using the conditional probability calculated on the
training set. Therefore, we proposed to formulate the condi-
tional probability as:

P (p|cs, co) = αPD(p|cs, co) + (1− α)P̃ (p|cs, co), (7)

where PD(·) is calculated based on the training data, P̃ (·)

Figure 4: Experiments on the influence of prior knowledge
on VRD dataset. Red points indicate the performance of vi-
sual relationship detection while the blue points indicate per-
forming using the zero-shot setting.

is the prior distribution of the relationships existing in the
real world and α ∈ [0, 1] is used to balance the influence
of the above two distributions. Specifically, PD(p|cs, co) is
measured by the conditional probability of predicate p given
the category labels of its subject and object. In this paper,
we simple set P̃ (p|cs, co) to be a uniform distribution. How-
ever, the true prior knowledge can be collected from some
external data (Chao et al. 2015b). We leave it as the future
work. As shown in Fig. 4, the performance of zero-shot re-
lationship detection trends to decrease when the value of α
is increased. Without further tuning, we set α = 0.5 for all
the experiments .

Conclusion

In this paper, we propose a deep structural ranking frame-
work for visual relationship detection. Our proposed model
is based on the convolutional neural network which com-
bines multiple cues. To facilitate the co-occurrence and in-
completeness of visual relationships, we proposed a struc-
ture ranking loss which enforces the annotated relationships
to have higher relevance score since the annotated relation-
ships are usually more salient. We explore different ways
to effectively leverage auxiliary information. Experimental
results show that our proposed method outperform the state-
of-the-art according to both predicate detection and relation-
ship detection on the widely used datasets.
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