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Abstract

Facial expression editing is a challenging task as it needs a
high-level semantic understanding of the input face image.
In conventional methods, either paired training data is re-
quired or the synthetic face’s resolution is low. Moreover,
only the categories of facial expression can be changed. To
address these limitations, we propose an Expression Gen-
erative Adversarial Network (ExprGAN) for photo-realistic
facial expression editing with controllable expression inten-
sity. An expression controller module is specially designed
to learn an expressive and compact expression code in addi-
tion to the encoder-decoder network. This novel architecture
enables the expression intensity to be continuously adjusted
from low to high. We further show that our ExprGAN can
be applied for other tasks, such as expression transfer, image
retrieval, and data augmentation for training improved face
expression recognition models. To tackle the small size of the
training database, an effective incremental learning scheme
is proposed. Quantitative and qualitative evaluations on the
widely used Oulu-CASIA dataset demonstrate the effective-
ness of ExprGAN.

Introduction

Facial expression editing is the task that transforms the ex-
pression of a given face image to a target one without af-
fecting the identity properties. It has applications in facial
animation, human-computer interactions, entertainment, etc.
The area has been attracting considerable attention both
from academic and industrial research communities.

Existing methods that address expression editing can be
divided into two categories. One category tries to manipulate
images by reusing parts of existing ones (Yang et al. 2011;
Mohammed, Prince, and Kautz 2009; Yeh et al. 2016) while
the other resorts to synthesis techniques to generate a face
image with the target expression (Susskind et al. 2008;
Reed et al. 2014; Cheung et al. 2014). In the first category,
traditional methods (Yang et al. 2011) often make use of
the expression flow map to transfer an expression by im-
age warping. Recently, Yeh et al. (2016) applied the idea to
a variational autoencoder to learn the flow field. Although
the generated face image has high resolution, paired data
where one subject has different expressions are needed to
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train the model. In the second category, deep learning-based
methods are mainly used. The early work by Susskind et
al. (2008) used a deep belief network to generate emotional
faces, which can be controlled by the Facial Action Coding
System (FACS) labels. In (Reed et al. 2014), a three-way
gated Boltzmann machine was employed to model the re-
lationships between the expression and identity. However,
the synthesized images of these methods have low resolu-
tion (48 x 48), lacking fine details and tend to be blurry.

Moreover, existing works can only transform the expres-
sion to different classes, like Angry or Happy. However, in
reality, the intensity of facial expression is often displayed
over a range. For example, humans can express the Happy
expression either with a huge grin or by a gentle smile.
Thus it is appealing if both the type of the expression and
its intensity can be controlled simultaneously. Motivated
by this, in this paper, we present a new expression edit-
ing model, Expression Generative Adversarial Network (Ex-
prGAN) which has the unique property that multiple diverse
styles of the target expression can be synthesized where the
intensity of the generated expression can be continuously
controlled from weak to strong, without the need for train-
ing data with intensity values.

To achieve this goal, we specially design an expression
controller module. Instead of feeding in a deterministic one-
hot vector label like previous works, the expression code
generated by the expression controller module is used. It
is a real-valued vector conditioned on the label, thus more
complex information such as expression intensity can be de-
scribed. Moreover, to force each dimension of the expression
code to capture a different factor of the intensity variations,
the conditional mutual information between the generated
image and the expression code is maximized by a regular-
izer network.

Our work is inspired by the recent success of the im-
age generative model, where a generative adversarial net-
work (Goodfellow et al. 2014) learns to produce samples
similar to a given data distribution through a two-player
game between a generator and a discriminator. Our Ex-
prGAN also adopts the generator and discriminator frame-
work in addition to the expression controller module and
the regularizer network. However, to facilitate image edit-
ing, the generator is composed of an encoder and a decoder.
The input of the encoder is a face image, the output of the
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decoder is a reconstructed one, and the learned identity and
expression representations bridge the encoder and decoder.
To preserve the most prominent facial structure, we adopt
a multi-layer perceptual loss (Johnson, Alahi, and Fei-Fei
2016) in the feature space in addition to the pixel-wise L1

loss. Moreover, to make the synthesized image look more
photo-realistic, two adversarial networks are imposed on the
encoder and decoder, respectively. Because it is difficult to
directly train our model using the small training set, a three-
stage incremental learning algorithm is also developed.

The main contributions of our work are as follows:

• We propose a novel model called ExprGAN that can
change a face image to a target expression with multi-
ple styles, where the expression intensity can also be con-
trolled continuously.

• We show that the synthesized face images have high per-
ceptual quality, which can be used to improve the perfor-
mance of an expression classifier.

• Our identity and expression representations are explicitly
disentangled which can be exploited for tasks such as ex-
pression transfer, image retrieval, etc.

• We develop an incremental training strategy to train the
model on a relative small dataset without the rigid require-
ment of paired samples.

Related Works

Deep Generative Model Deep generative models have
achieved impressive success in recent years. There are
two major approaches: generative adversarial network
(GAN) (Goodfellow et al. 2014) and variational autoencoder
(VAE) (Kingma and Welling 2014). GAN is composed of a
generator and a discriminator, where the training is carried
out with a minimax two-player game. GAN has been used
for image synthesis (Radford, Metz, and Chintala 2016), im-
age superresolution (Ledig et al. 2017), etc. One interesting
extension of GAN is Conditional GAN (CGAN) (Mirza and
Osindero 2014) where the generated image can be controlled
by the condition variable. On the other hand, VAE is a prob-
abilistic model with an encoder to map an image to a la-
tent representation and a decoder to reconstruct the image. A
reparametrization trick is proposed which enables the model
to be trained by backpropogation (Rumelhart et al. 1988).
One variant of VAE is Adversarial Autoencoder (Makhzani
et al. 2016), where an adversarial network is adopted to reg-
ularize the latent representation to conform to a prior dis-
tribution. ExprGAN also adopts an autoencoder structure,
but there are two main differences: First, an expression con-
troller module is specially designed, so a face with different
types of expressions across a wide range of intensities can be
synthesized. Second, to improve the generated image qual-
ity, a face identity preserving loss and two adversarial losses
are incorporated.

Facial Expression Editing Facial expression editing has
been actively investigated in computer graphics. Traditional
approaches include 3D model-based (Blanz et al. 2003),
2D expression mapping-based (Liu, Shan, and Zhang 2001)

and flow-based (Yang et al. 2011). Recently, deep learning-
based methods have been proposed. Susskind et al. (2008)
studied a deep belief network to generate facial expression
given high-level identity and facial action unit (AU) labels.
In (Reed et al. 2014), a higher-order Boltzman machine with
multiplicative interactions was proposed to model the dis-
tinct factors of variation. Cheung et al. (2014) proposed a
decorrelating regularizer to disentangle the variations be-
tween identity and expression in an unsupervised manner.
However, the generated image is low resolution with size of
48 x 48, which is not visually satisfying. Recently, Yeh et
al. (2016) proposed to edit the facial expression by image
warping with appearance flow. Although the model can gen-
erate high-resolution images, paired samples as well as the
labeled query image are required.

The most similar work to ours is CFGAN (Kaneko, Hi-
ramatsu, and Kashino 2017), which uses a filter module to
control the generated face attributes. However, there are two
main differences: First, CFGAN adopts the CGAN architec-
ture where an encoder needs to be trained separately for im-
age editing, while for the proposed ExprGAN, the encoder
and the decoder are constructed in a unified framework. Sec-
ond, the attribute filter of CFGAN is mainly designed for a
single class, while our expression controller module works
for multiple categories. Most recently, Zhang, Song, and Qi
(2017) proposed a conditional AAE (CAAE) for face ag-
ing, which can also be applied for expression editing. Com-
pared with these studies, ExprGAN has two main differ-
ences: First, in addition to transforming a given face image
to a new facial expression, our model can also control the ex-
pression intensity continuously without the intensity training
labels; Second, photo-realistic face images with new identi-
ties can be generated for data augmentation, which is found
to be useful to train an improved expression classifier.

Proposed Method
In this section, we describe the architecture of ExprGAN.
We first describe the Conditional Generative Adversarial
Network (CGAN) (Mirza and Osindero 2014) and the Ad-
versarial Autoencoder (AAE) (Makhzani et al. 2016), which
form the basis of ExprGAN. Then the design of ExprGAN
is detailed. The architectures of the three models are shown
in Fig. 1.

Conditional Generative Adversarial Network

CGAN is an extension of a GAN (Goodfellow et al. 2014)
for conditional image generation. It is composed of two net-
works: a generator network G and a discriminator network
D that compete in a two-player minimax game. Network G
is trained to produce a synthetic image x̂ = G(z, y) to fool
D to believe it is an actual photograph, where z and y are the
random noise and condition variable, respectively. D tries to
distinguish the real image x and the generated one x̂. Math-
ematically, the objective function for G and D can be written
as follows:

min
G

max
D

Ex,y∼Pdata(x,y)[logD(x, y)]

+ Ez∼Pz(z),y∼Py(y)[log(1−D(G(z, y), y))]
(1)
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(a) Conditional GAN (c) ExprGAN(b) Adversarial Autoencoder
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Figure 1: Comparison of previous GAN architectures and the proposed ExprGAN.

Adversarial Autoencoder

AAE (Makhzani et al. 2016) is a probabilistic autoencoder
which consists of an encoder Genc, a decoder Gdec and a
discriminator D. Apart from the reconstruction loss, the hid-
den code vector g(x) = Genc(x) is also regularized by an
adversarial network to impose a prior distribution Pz(z).
Network D aims to discriminate g(x) from z ∼ Pz(z),
while Genc is trained to generate g(x) that could fool D.
Thus, the AAE objective function becomes:

min
Genc,Gdec

max
D

Lp(Gdec(Genc(x)), x)

+ Ez∼Pz(z)[logD(z)] + Ex∼Pdata(x)[log(1−D(Genc(x))]
(2)

where Lp(, ) is the pth norm: Lp(x
′, x) = ||x′ − x||pp

Expression Generative Adversarial Network

Given a face image x with expression label y, the objective
of our learning problem is to edit the face to display a new
type of expression at different intensities. Our approach is to
train a ExprGAN conditional on the original image x and the
expression label y with its architecture illustrated in Fig. 1
(c).

Network Architecture ExprGAN first applies an encoder
Genc to map the image x to a latent representation g(x)
that preserves identity. Then, an expression controller mod-
ule Fctrl is adopted to convert the one-hot expression label
y to a more expressive expression code c. To further con-
strain the elements of c to capture the various aspects of the
represented expression, a regularizer Q is exploited to max-
imize the conditional mutual information between c and the
generated image. Finally, the decoder Gdec generates a re-
constructed image x̂ combining the information from g(x)

and c. To further improve the generated image quality, a dis-
criminator Dimg on the decoder Gdec is used to refine the
synthesized image x̂ to have photo-realistic textures. More-
over, to better capture the face manifold, a discriminator Dz

on the encoder Genc is applied to ensure the learned identity
representation is filled and exhibits no “holes” (Makhzani et
al. 2016).

Expression Controller Networks Fctrl and Q In previ-
ous conditional image generation methods (Tran, Yin, and
Liu 2017; Zhang, Song, and Qi 2017), a binary one-hot
vector is usually adopted as the condition variable. This
is enough for generating images corresponding to differ-
ent categories. However, for our problem, a stronger control
over the synthesized facial expression is needed: we want
to change the expression intensity in addition to generating
different types of expressions. To achieve this goal, an ex-
pression controller module Fctrl is designed to ensure the
expression code c can describe the property of the expres-
sion intensity except the category information. Furthermore,
a regularizer network Q is proposed to enforce the elements
of c to capture the multiple levels of expression intensity
comprehensively.

Expression Controller Module Fctrl To enhance the de-
scription capability, Fctrl transforms the binary input y to a
continuous representation c by the following operation:

ci = Fctrl(yi, zy) = |zy| · (2yi − 1) i = 1, 2, . . . ,K (3)

where the inputs are the expression label y ∈ {0, 1}K and
uniformly distributed zy ∼ U(−1, 1)d, while the output is
the expression code c = [cT1 , . . . , c

T
K ]T ∈ RKd, K is the

number of classes. If the ith class expression is present, i.e.,
yi = 1, ci ∈ Rd is set to be a positive vector within 0 and
1, while cj , j �= i has negative values from -1 to 0. Thus,
in testing, we can manipulate the elements of c to generate



the desired expression type. This flexibility greatly increases
the controllability of c over synthesizing diverse styles and
intensities of facial expressions.

Regularizer on Expression Code Q It is desirable if
each dimension of c could learn a different factor of the
expression intensity variations. Then faces with a specific
intensity level can be generated by manipulating the cor-
responding expression code. To enforce this constraint, we
impose a regularization on c by maximizing the conditional
mutual information I(c; x̂|y) between the generated image x̂
and the expression code c. This ensures that the expression
type and intensity encoded in c is reflected in the image gen-
erated by the decoder. The direct computation of I is hard
since it requires the posterior P (c|x̂, y), which is generally
intractable. Thus, a lower bound is derived with variational
inference which extends (Chen et al. 2016) to the conditional
setting:

I(c; x̂|y)
= H(c|y)−H(c|x̂, y)
= Ex̂∼Gdec(g(x),c)[Ec′∼P (c′|x̂,y)[logP (c′|x̂, y)]] +H(c|y)
= Ex̂∼Gdec(g(x),c)[DKL(P (·|x̂, y)||Q(·|x̂, y))+

Ec′∼P (c′|x̂,y)[logQ(c′|x̂, y)]] +H(c|y)
≥ Ex̂∼Gdec(g(x),c)[Ec′∼P (c′|x̂,y)[logQ(c′|x̂, y)]] +H(c|y)
= Ec∼P (c|y),x̂∼Gdec(g(x),c)[logQ(c|x̂, y)] +H(c|y)

(4)

For simplicity, the distribution of c is fixed, thus H(c|y) is
treated as a constant. Here the auxiliary distribution Q is pa-
rameterized as a neural network, thus the final loss function
is defined as follows:

min
Q

LQ = −Ec∼P (c|y),x̂∼Gdec(g(x),c)[logQ(c|x̂, y)] (5)

Generator Network G The generator network G =
(Genc, Gdec) adopts the autoencoder structure where the en-
coder Genc first transforms the input image x to a latent rep-
resentation that preserves as much identity information as
possible. After obtaining the identity code g(x) and the ex-
pression code c, the decoder Gdec then generates a synthetic
image x̂ = Gdec(Genc(x), c) which should be identical as
x. For this purpose, a pixel-wise image reconstruction loss
is used:

min
Genc,Gdec

Lpixel = L1(Gdec(Genc(x), c), x) (6)

To further preserve the face identity between x and x̂, a
pre-trained discriminative deep face model is leveraged to
enforce the similarity in the feature space:

min
Genc,Gdec

Lid =
∑

l

βlL1(φl(Gdec(Genc(x), c)), φl(x))

(7)
where φl are the lth layer feature maps of a face recogni-
tion network, and βl is the corresponding weight. We use the
activations at the conv1 2, conv2 2, conv3 2, conv4 2 and
conv5 2 layer of the VGG face model (Parkhi et al. 2015).

Discriminator on Identity Representation Dz It is a
well known fact that face images lie on a manifold (He et al.
2005; Lee et al. 2003). To ensure that face images generated
by interpolating between arbitrary identity representations
do not deviate from the face manifold (Zhang, Song, and Qi
2017), we impose a uniform distribution on g(x), forcing it
to populate the latent space evenly without “holes”. This is
achieved through an adversarial training process where the
training objective is:

min
Genc

max
Dz

Lz
adv =Ez∼Pz(z)[logDz(z)]

+ Ex∼Pdata(x)[log(1−Dz(Genc(x))]
(8)

Discriminator on Image Dimg Similar to existing meth-
ods (Huang et al. 2017; Tran, Yin, and Liu 2017), an adver-
sarial loss between the generated image x̂ and the real image
x is further adopted to improve the photorealism:

min
Genc,Gdec

max
Dimg

Limg
adv = Ex,y∼Pdata(x,y)[logDimg(x, y)]+

Ex,y∼Pdata(x,y),zy∼Pzy (zy)

[log(1−Dimg(Gdec(Genc(x), Fctrl(zy, y)), y))]
(9)

Overall Objective Function The final training loss func-
tion is a weighted sum of all the losses defined above:

min
Genc,Gdec,Q

max
Dimg,Dz

LExprGAN = Lpixel + λ1Lid + λ2LQ

+ λ3L
img
adv + λ4L

z
adv + λ5Ltv

(10)

We also impose a total variation regularization Ltv (Mahen-
dran and Vedaldi 2015) on the reconstructed image to reduce
spike artifacts.

Incremental Training Empirically we find that jointly
training all the subnetworks yields poor results as we have
multiple loss functions. It is difficult for the model to learn
all the functions at one time considering the small size of
the dataset. Therefore, we propose an incremental training
algorithm to train the proposed ExprGAN. Overall our in-
cremental training strategy can be seen as a form of curricu-
lum learning, and includes three stages: controller learning
stage, image reconstruction stage and image refining stage.
First, we teach the network to generate the image condition-
ally by training Gdec, Q and Dimg where the loss function
only includes LQ and Limg

adv . g(x) is set to be random noise
in this stage. After the training finishes, we then teach the
network to learn the disentangled representations by recon-
structing the input image with Genc and Gdec. To ensure that
the network does not forget what is already learned, Q is also
trained but with a decreased weight. So the loss function has
three parts: Lpixel, Lid and LQ. Finally, we train the whole
network to refine the image to be more photo-realistic by
adding Dimg and Dz with the loss function defined in (10).
We find in our experiments that stage-wise training is crucial
to learn the desired model on the small dataset.
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Experiments

We first describe the experimental setup and then the three
main applications: expression editing with continuous con-
trol over intensity, facial expression transfer and conditional
face image generation for data augmentation .

Dataset

We evaluated the proposed ExprGAN on the widely used
Oulu-CASIA (Zhao et al. 2011) dataset. Oulu-CASIA has
480 image sequences taken under Dark, Strong, Weak illu-
mination conditions. In this experiment, only videos with
Strong condition captured by a VIS camera are used. There
are 80 subjects and six expressions, i.e., Angry, Disgust,
Fear, Happy, Sad and Surprise. The first frame is always
neutral while the last frame has the peak expression. Only
the last three frames are used, and the total number of images
is 1440. Training and testing sets are divided based on iden-
tity, with 1296 for training and 144 for testing. We aligned
the faces using the landmarks detected from (Zhang et al.
2016), then cropped and resized the images to dimension of
128 x 128. Lastly, we normalized the pixel values into range
of [-1, 1]. To alleviate overfitting, we augmented the training
data with random flipping.

Implementation Details

ExprGAN mainly builds on multiple upsampling and down-
sampling blocks. The upsampling block consists of the
nearest-neighbor upsampling followed by a 3 x 3 stride 1
convolution. The downsampling block consists of a 5 x 5
stride 2 convolution. Specifically, Genc has 5 downsampling
blocks where the numbers of channels are 64, 128, 256, 512,
1024 and one FC layer to get the identity representation
g(x). For Gdec, it has 7 upsampling blocks with 512, 256,
128, 64, 32, 16, 3 channels. Dz consists of 4 FC layers with
64, 32, 16, 1 channels. We model Q(c|x̂, y) as a factored
Gaussian, and share many parts of Q with Dimg to reduce
computation cost. The shared parts have 4 downsampling
blocks with 16, 32, 64, 128 channels and one FC layer to
output a 1024-dim representation. Then it is branched into
two heads, one for Dimg and one for Q. Q has K branches
{Qi}Ki=1 where each Qi has two individual FC layers with
64, d channels to predict the expression code ci. Leaky
ReLU (Maas, Hannun, and Ng 2013) and batch normaliza-
tion (Ioffe and Szegedy 2015) are applied to Dimg and Dz ,
while ReLU (Krizhevsky, Sutskever, and Hinton 2012) ac-
tivation is used in Genc and Gdec. The random noise z is
uniformly distributed from -1 to 1. We fixed the dimensions
of g(x) and c to be 50 and 30, and found this configuration
sufficient for representing the identity and expression varia-
tions.

We train the networks using the Adam optimizer (Kingma
and Ba 2014), with learning rate of 0.0002, β1 = 0.5,
β2 = 0.999 and mini-batch size of 48. In the image refin-
ing stage, we empirically set λ1 = 1, λ2 = 1, λ3 = 0.01,
λ4 = 0.01, λ5 = 0.001. The model is implemented using
Tensorflow (Abadi et al. 2016).

Happy

Sad

Fear

Input Angry Disgust Fear SadHappy Surprise

GT

ExprGAN

CAAE

GT

ExprGAN

CAAE

GT

ExprGAN

CAAE

Figure 2: Visual comparison of facial expression editing re-
sults. For each input, we compare the ground truth images
(top), the synthetic images of ExprGAN (middle) and CAAE
(bottom). Zoom in for details.

Facial Expression Editing

In this part, we demonstrate our model’s ability to edit the
expression of a given face image. To do this, we first input
the image to Genc to obtain an identity representation g(x).
Then with the decoder Gdec, a face image of the desired ex-
pression i can be generated by setting ci to be positive and
cj , j �= i to be negative. A positive (negative) value indi-
cates the represented expression is present (absent). Here 1
and -1 are used. Some example results are shown in Fig. 2.
The left column contains the original input images, while
the middle row in the right column contains the synthesized
faces corresponding to six different expressions. For com-
parison, the ground truth images and the results from the
recent proposed CAAE (Zhang, Song, and Qi 2017) are also
shown in the first and third row, respectively. We see that
faces generated by ExprGAN preserve the identities well.
Even some subtle details like the transparent eyeglasses are
also kept. Moreover, the synthesized expressions look natu-
ral. In comparison, CAAE failed to transform the input faces
to new expressions with fine details, and the generated faces
are blurry.

We now demonstrate that our model can transform a face
image to new types of expressions with continuous intensity.
This is achieved by exploiting the fact that each dimension
of the expression code captures a specific level of expression
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Disgust

Weak

Strong

Disgust

Disgust

Weak

Strong

Disgust

SurpriseSadHappyAngry Fear Neutral

Sad

Disgust SurpriseSadHappyAngry Fear Neutral

Figure 3: Face images are transformed to new expressions with different intensity levels. The top row contains the input faces
with the original expressions, and the remaining rows show the synthesized results. Each column corresponds to a new expres-
sion with five intensity levels from weak to strong. The Neutral expression which is not in the training data is also generated.

intensity. In particular, to vary the intensity of the desired
class i, we set the individual element of the expression code
ci to be 1, while the other dimensions of ci and all other
cj , j �= i to be -1. The generated results are shown in Fig. 3.
Take the Happy expression in the forth column as an exam-
ple. The face in the first row which corresponds to the first
element of ci being 1 displays a gentle smile with mouth
closed, while a big smile with white teeth is synthesized in
the last row that corresponds to the fifth element of ci being
1. Moreover, when we set all ci to be -1, a Neutral expres-
sion is able to be generated even though this expression class
is not present in the training data. This validates that the ex-
pression code discovers the diverse spectrum of expression
intensity in an unsupervised way, i.e., without the training
data containing explicit labels for intensity levels.

Facial Expression Transfer

We now demonstrate our model’s ability to transfer the ex-
pression of another face image xB to a given face image
xA. To do this, we first input xA to Genc to get the identity
representation g(xA). Then we train an expression classi-
fier to predict the expression label yB of xB . With yB and
xB , the expression code cB can be obtained from Q. Finally,
we can get an image with identity A and expression B from
Gdec(g(xA), cB). The generated images are shown in Fig. 4.
We observe that faces having the source identities and ex-
pressions similar to the targets can be synthesized even for
some very challenging cases. For example, when the expres-
sion Happy is transferred to an Angry face, the teeth region
which does not exist in the source image is also able to be
generated.

IdA ExprB IdA+ExprB IdA ExprB IdA+ExprB

Figure 4: Facial expression transfer. Expressions from the
middle column are transferred to faces in the left column.
The results are shown in the right column.

Face Image Generation for Data Augmentation

In this part, we first show our model’s ability to generate
high-quality face images controlled by the expression label,
then quantitatively demonstrate the usefulness of the synthe-
sized images. To generate faces with new identities, we feed
in random noise and expression code to Gdec. The results
are shown in Fig. 5. Each column shows the same subject
displaying different expressions. We can see that the synthe-
sized face images look realistic. Moreover, because of the
design of the expression controller module, the generated
expressions for the same class are also diverse. For exam-
ple, for the class Happy, there are big smile showing teeth
and a gentle smile with mouth closed.

We further demonstrate that images synthesized by our
model can be used for data augmentation to train a robust

6786



Angry

Fear

Happy

Sad

Surprise

Disgust

Figure 5: Random generated subjects displaying six cate-
gories of expressions.

Table 1: Comparison of expression recognition accuracy
with different numbers of synthesized images.

# Syn. Images 0 3K 6K 30K 60K
Accuracy (%) 77.78 78.47 81.94 84.72 84.72

expression classifier. Specifically, for each expression cat-
egory, we generate 0.5K, 1K, 5K, and 10K images, re-
spectively. The classifier has the same network architecture
as Genc except one additional FC layer with six neurons is
added. The results are shown in Table 1. We can see by only
adding 3K synthetic images, the improvement is marginal,
with an accuracy of 78.47% vs. 77.78%. However, when
the number is increased to 30K, the recognition accuracy
is significantly improved, reaching 84.72% with a relative
error reduction by 31.23%. The performance starts to sat-
urate when more images (60K) are utilized. This validates
the high perceptual quality of the synthetic face images.

Feature Visualization

In this part, we demonstrate that the identity g(x) and ex-
pression c representations learned by our model are disen-
tangled. To show this, we first use t-SNE (Maaten and Hin-
ton 2008) to visualize the 50-dim identity feature g(x) on a
two dimensional space. The results are shown in Fig. 6. We
can see that most of the subjects are well separated, which
confirms that the latent identity features g(x) learn to pre-
serve the identity information.

To demonstrate that the expression code c captures the
high-level expression semantics, we perform image retrieval
experiment based on c in terms of Euclidean distance. For
comparison, the results with expression label y and image
pixel space x are also provided in Fig. 7. As expected, the
pixel space x sometimes fails to retrieve images from the

Figure 6: Identity feature space. Each color represents a dif-
ferent identity and the images for one identity are labeled.

same expression. Similarly, the images retrieved by y do not
always have the same style of expressions as the queries. For
example, the query face in the second row shows a big smile
with teeth, but the retrieved image by y only has a mild smile
with mouth closed. However, with the expression code c, we
observe that face images with similar expressions are always
retrieved. This validates that the expression code learns a
rich and diverse feature representation.

Query � ��

Figure 7: Expression-based image retrieval. First column
shows query images. Other columns show top one retrieval
based on c, y and x.

Conclusions

This paper presents ExprGAN for facial expression edit-
ing. To the best of our knowledge, it is the first GAN-based
model that can transform the face image to have a new ex-
pression where the expression intensity is allowed to be con-
trolled continuously. The proposed model learns the disen-
tangled identity and expression representations explicitly, al-
lowing for a wide variety of applications, including expres-
sion editing, expression transfer, and data augmentation for
training improved face expression recognition models. We
further develop an incremental learning scheme to train the
model on small datasets. Our future work will explore how
to apply ExprGAN to a larger and more unconstrained facial
expression dataset.

6787



Acknowledgments

This research is based upon work supported by the Office of
the Director of National Intelligence (ODNI), Intelligence
Advanced Research Projects Activity (IARPA), via IARPA
R&D Contract No. 2014-14071600012. The views and con-
clusions contained herein are those of the authors and should
not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of the
ODNI, IARPA, or the U.S. Government. The U.S. Govern-
ment is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright an-
notation thereon.

References

Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen,
Z.; Citro, C.; Corrado, G. S.; Davis, A.; Dean, J.; Devin,
M.; et al. 2016. Tensorflow: Large-scale machine learn-
ing on heterogeneous distributed systems. arXiv preprint
arXiv:1603.04467.
Blanz, V.; Basso, C.; Poggio, T.; and Vetter, T. 2003. Re-
animating faces in images and video. In Computer graphics
forum.
Chen, X.; Duan, Y.; Houthooft, R.; Schulman, J.; Sutskever,
I.; and Abbeel, P. 2016. Infogan: Interpretable representa-
tion learning by information maximizing generative adver-
sarial nets. In NIPS.
Cheung, B.; Livezey, J. A.; Bansal, A. K.; and Olshausen,
B. A. 2014. Discovering hidden factors of variation in deep
networks. arXiv preprint arXiv:1412.6583.
Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.;
Warde-Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y.
2014. Generative adversarial nets. In NIPS.
He, X.; Yan, S.; Hu, Y.; Niyogi, P.; and Zhang, H.-J. 2005.
Face recognition using laplacianfaces. IEEE TPAMI.
Huang, R.; Zhang, S.; Li, T.; and He, R. 2017. Beyond face
rotation: Global and local perception gan for photorealistic
and identity preserving frontal view synthesis. ICCV.
Ioffe, S., and Szegedy, C. 2015. Batch normalization: Accel-
erating deep network training by reducing internal covariate
shift. In ICML.
Johnson, J.; Alahi, A.; and Fei-Fei, L. 2016. Perceptual
losses for real-time style transfer and super-resolution. In
ECCV.
Kaneko, T.; Hiramatsu, K.; and Kashino, K. 2017. Gener-
ative attribute controller with conditional filtered generative
adversarial networks. In CVPR.
Kingma, D., and Ba, J. 2014. Adam: A method for stochastic
optimization. ICLR.
Kingma, D. P., and Welling, M. 2014. Auto-encoding vari-
ational bayes. NIPS.
Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012.
Imagenet classification with deep convolutional neural net-
works. In NIPS.
Ledig, C.; Theis, L.; Huszár, F.; Caballero, J.; Cunningham,
A.; Acosta, A.; Aitken, A.; Tejani, A.; Totz, J.; Wang, Z.;

et al. 2017. Photo-realistic single image super-resolution
using a generative adversarial network. CVPR.
Lee, K.-C.; Ho, J.; Yang, M.-H.; and Kriegman, D. 2003.
Video-based face recognition using probabilistic appearance
manifolds. In CVPR.
Liu, Z.; Shan, Y.; and Zhang, Z. 2001. Expressive expression
mapping with ratio images. In Proceedings of the 28th an-
nual conference on Computer graphics and interactive tech-
niques. ACM.
Maas, A. L.; Hannun, A. Y.; and Ng, A. Y. 2013. Rectifier
nonlinearities improve neural network acoustic models. In
ICML.
Maaten, L. v. d., and Hinton, G. 2008. Visualizing data
using t-sne. JMLR.
Mahendran, A., and Vedaldi, A. 2015. Understanding deep
image representations by inverting them. In CVPR.
Makhzani, A.; Shlens, J.; Jaitly, N.; Goodfellow, I.; and Frey,
B. 2016. Adversarial autoencoders. ICLR Workshop.
Mirza, M., and Osindero, S. 2014. Conditional generative
adversarial nets. arXiv preprint arXiv:1411.1784.
Mohammed, U.; Prince, S. J.; and Kautz, J. 2009. Visio-
lization: generating novel facial images. In ACM TOG.
Parkhi, O. M.; Vedaldi, A.; Zisserman, A.; et al. 2015. Deep
face recognition. In BMVC.
Radford, A.; Metz, L.; and Chintala, S. 2016. Unsupervised
representation learning with deep convolutional generative
adversarial networks. ICLR.
Reed, S.; Sohn, K.; Zhang, Y.; and Lee, H. 2014. Learning
to disentangle factors of variation with manifold interaction.
In ICML.
Rumelhart, D. E.; Hinton, G. E.; Williams, R. J.; et al. 1988.
Learning representations by back-propagating errors. Cog-
nitive modeling.
Susskind, J. M.; Hinton, G. E.; Movellan, J. R.; and Ander-
son, A. K. 2008. Generating facial expressions with deep
belief nets. In Affective Computing.
Tran, L.; Yin, X.; and Liu, X. 2017. Disentangled represen-
tation learning gan for pose-invariant face recognition. In
CVPR.
Yang, F.; Wang, J.; Shechtman, E.; Bourdev, L.; and
Metaxas, D. 2011. Expression flow for 3d-aware face com-
ponent transfer. In ACM TOG.
Yeh, R.; Liu, Z.; Goldman, D. B.; and Agarwala, A. 2016.
Semantic facial expression editing using autoencoded flow.
arXiv preprint arXiv:1611.09961.
Zhang, K.; Zhang, Z.; Li, Z.; and Qiao, Y. 2016. Joint face
detection and alignment using multitask cascaded convolu-
tional networks. IEEE Signal Process. Lett.
Zhang, Z.; Song, Y.; and Qi, H. 2017. Age pro-
gression/regression by conditional adversarial autoencoder.
CVPR.
Zhao, G.; Huang, X.; Taini, M.; Li, S. Z.; and Pietikäinen,
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