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Abstract

This paper addresses two obstacles hindering advances in
accurate gesture recognition on mobile devices. First, ges-
ture recognition performance is highly dependant on feature
selection, but optimal features typically vary from gesture
to gesture. Second, diverse user behaviors and mobile envi-
ronments result in extremely large intra-class variations. We
tackle these issues by introducing a new network layer, called
an adaptive hidden layer (AHL), to generalize a hidden layer
in deep neural networks and dynamically generate an acti-
vation map conditioned on the input. To this end, an AHL
is composed of multiple neuron groups and an extra selec-
tor. The former compiles multi-modal features captured by
mobile sensors, while the latter adaptively picks a plausible
group for each input sample. The AHL is end-to-end train-
able and can generalize an arbitrary subset of hidden layers.
Through a series of AHLs, the great expressive power from
exponentially many forward paths allows us to choose proper
multi-modal features in a sample-specific fashion and resolve
the problems caused by the unfavorable variations in mobile
gesture recognition. The proposed approach is evaluated on
a benchmark for gesture recognition and a newly collected
dataset. Superior performance demonstrates its effectiveness.

Introduction

Gesture recognition aims to identify categories of handed
gestures, which are sequences of distinct hand shapes. It
provides an intuitive and convenient means for human-
machine interaction in various mobile applications. Conven-
tional vision-based approaches have delivered promising re-
sults in controlled settings. However, in the context of mo-
bile and wearable devices, accurate gesture recognition be-
comes quite challenging due to frequently large and unfavor-
able variations caused by diverse user behaviors and ubiqui-
tous environments.

Such challenges could potentially be resolved through
using extra information from sensing modalities (Jong et
al. 2016), such as IR proximity sensors (Butler, Izadi, and
Hodges 2008), magnetic field sensors (Hwang, Ahn, and
Wohn 2013), and accelerometers (Zaen et al. 2014) on mo-
bile devices. Approaches based on multi-modal learning,
e.g. (Ngiam et al. 2011), can enhance recognition accu-
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Figure 1: Gestures of categories (a) fist, (b) fetch, and (c)
palm-up. Visual modalities are effective to separate gestures
of category fist from the rest owing to their distinctive hand
shapes. In contrast, motion-based modalities are discrimina-
tive for gestures of category palm-up due to the consistent
moving trajectories. Meanwhile, gestures of class fetch are
better predicted by using both types of modalities jointly.

racy by leveraging complementary multi-modal informa-
tion. However, two major issues hinder the development of
these approaches for mobile gesture recognition. First, these
approaches seek an immutable combination of multi-modal
information, but the optimal modality typically varies from
gesture to gesture, as an example shown in Figure 1. Second,
mobile contexts suffer from large modality-specific environ-
ment variations. For example, visual features from cameras
are sensitive to lighting conditions or viewing angles. By
contrast, motion features from accelerometers are easily af-
fected by the plane on which the gesture is performed.

In this work, we propose an approach based on deep neu-
ral networks (DNNs), which are characterized by the effec-
tiveness in joint feature extraction and nonlinear classifier
learning. Specifically, we introduce a new network layer,
called an adaptive hidden layer (AHL), which generalizes
a hidden layer in DNNs and can dynamically generate an
appropriate activation map for a given input. Unlike a con-
ventional hidden layer equipped with a single group of neu-
rons, an AHL is composed of multiple neuron groups and
an extra selector. The neuron groups in AHL extract diverse
features and are optimized so that each training data can be
well processed by at least one group, while the selector that
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implements softmax normalization can dynamically pick a
plausible group for each input sample.

The proposed AHL is a differential module which makes
the overall network end-to-end trainable. It is general in the
sense that it can generalize a subset or all of the hidden
layers in an arbitrary DNNs framework. Each AHL main-
tains multiple neuron groups and picks a group for an input.
The number of parameters increases linearly in the resultant
network. However, for an input passing through a series of
AHLs, the number of possible paths grows exponentially.
This great flexibility allows us to extract numerous combi-
nations of intra-modal and inter-modal features and address
large variations caused by the intrinsic diversity of user be-
haviors and the external variety of environments for mobile
gesture recognition.

The proposed AHL is evaluated on one benchmark dataset
for gesture recognition, the ChaLearn LAP large-scale iso-
lated gesture dataset (IsoGD) (Wan et al. 2016), and a new
dataset collected by us. Both datasets contain multi-modal
gestures for recognition. The primary goal of evaluation on
IsoGD is to compare the proposed approach with the ex-
isting ones in the same experimental settings, such as the
adopted features and data splits. The experimental results
show that using AHLs results in the state-of-the-art perfor-
mance. We collected a new multi-modal gesture dataset, an-
other contribution of this work, where the gesture samples
were recorded with two different modalities and collected
with different types of variations such as the lighting condi-
tion and the gesture performing plane. We aim at analyz-
ing how AHL leverages multi-modal features to improve
recognition on this dataset. The proposed AHL is applied
to a DNNs-based approach (Ngiam et al. 2011) for multi-
modal learning. It turns out that AHL can make the most
of the complementary multi-modal information in an input-
specific fashion, leading to a significant boost in mobile ges-
ture recognition performance.

Related Work
Two components, feature extraction and classifier learning,
are crucial to the establishment of gesture and action recog-
nition systems. In vision-based approaches, spatio-temporal
features, e.g., (Feng, Xu, and Shapiro 2012; Song et al. 2014;
Taylor et al. 2014; Tang et al. 2015), are widely adopted
to characterize hand shapes and motion trajectories. Meth-
ods based on graphical models such as (Lee and Kim 1999;
Chen, Fu, and Huang 2003; Lin et al. 2017) encode tem-
poral dynamics and facilitate recognition. Non-vision-based
approaches to gesture recognition, e.g. (Gupta et al. 2012;
Pu et al. 2013), often rely on features generated via domain
knowledge. The adopted features in the aforementioned ap-
proaches serve as the inputs to learn the classifiers for ges-
ture recognition. However, these features are handcrafted
and may provide suboptimal performance.

Deep learning offers the superior capability of extracting
useful features from data and has been successfully applied
to broad applications, e.g., activity recognition (Simonyan
and Zisserman 2014; Hammerla, Halloran, and Plötz 2016),
speech recognition (Hinton et al. 2012), saliency detec-
tion (Hsu, Lin, and Chuang 2017), object recognition (Shih

et al. 2017), and ubiquitous computing applications (Kim,
On, and Zhang 2016; Song, Kanasugi, and Shibasaki 2016),
demonstrating high adaptability to various data statistics.
Features in deep learning are derived to best optimize the
objective of the coupled classifier, thus leading to superior
performance.

Research efforts, e.g., (Ngiam et al. 2011; Srivastava
and Salakhutdinov 2012; Sohn, Shang, and Lee 2014),
have been made to generalize deep autoencoders (Hin-
ton and Salakhutdinov 2006) and deep Boltzman ma-
chines (Salakhutdinov and Hinton 2009) to multi-modal
learning. Empirical studies have shown that the mid-level
features generated on modality-specific layers typically have
lower within-modality correlation than the raw features, fa-
cilitating cross-modal fusion. Thus, these approaches first
build the modality-specific layers, and then fuse the mid-
level features across modalities on higher layers.

This aforementioned strategy is also commonly used for
multi-modal gesture recognition. Li et al. (Li et al. 2016)
proposed a C3D-based model (Tran et al. 2015) to train
two seperate sub-networks from RGB and depth modali-
ties respectively, and used the concatenated mid-level fea-
tures as the input to the SVM classifier for final prediction.
Zhu et al. (Zhu et al. 2017) presented a gesture recogni-
tion approach combining the C3D-based model and con-
volutional LSTM, and fused different modalities with equal
weights. Neverova et al. (Neverova et al. 2016) proposed the
ModDrop model by introducing a random dropping tech-
nique on different channels to learn cross-modal correla-
tions. However, most methods of this class use fixed weights
for multi-modal feature fusion, and neglect the fact that op-
timal features for recognition differ from gesture to gesture.
To address this issue, the proposed AHL learns multiple neu-
ron groups for diverse feature fusions, and employs a selec-
tor to adaptively select a plausible group condition input.

Recent studies have addressed the issue of large data vari-
ations by predicting the output conditioned on the input.
For example, the tree-structured convolutional neural net-
works (CNNs) was presented in (Li et al. 2015) for facial
trait recognition, where one of the learned sub-networks at a
tree node is dynamically selected for each local facial patch.
In (Xiong et al. 2015), the tree-structured CNNs were ap-
plied to face recognition, where the sub-networks and the
split functions at the tree nodes can be jointly optimized.
The drawback of the tree-structured CNNs models is that
the number of sub-networks increases exponentially with
the tree level, making training a deep architecture infeasible.
Our approach provides a feasible means of leveraging the
expressive power enabled by the exponentially many paths
like the tree-structured models because its parameters grow
linearly, with a leading coefficient of around 2 in our case.

The Proposed Approach

We introduce our approach adaptive hidden layer (AHL) in
this section. Given a target DNNs architecture, our goal is
to generalize a subset or all of the hidden layers to AHLs so
that the adaptation power of AHLs can be leveraged to better
handle the large variations in mobile gesture recognition. In
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Figure 2: (a) AHL. (b) The network architecture generalized by AHLs for gesture recognition on the dataset we collected.

the following, the forward pass and the backward propaga-
tion of an AHL are firstly described. Then, we show that an
AHL can serve as the building block for network construc-
tion. Finally, some implementation details are specified.

Forward Pass

Consider a hidden layer of M neurons. It maps an input x ∈
R

D to the output y ∈ R
M , and can be formulated by

y = φ(W ∗ x+ b) ∈ R
M , (1)

where W ∈ R
M×D is the learnable weight matrix, b ∈ R

M

is the bias, and ∗ is the matrix multiplication operator. The
activation function φ is the rectified linear unit in this work.

Built on a hidden layer, an AHL illustrated in Figure 2(a)
is composed of N neuron groups and one selector. The neu-
ron groups are designed to account for the large variations
among training data by compiling different features, i.e.,

gn(x) = φ(Wn ∗ x+ bn) ∈ R
M , for n = 1, 2, ..., N, (2)

where Wn ∈ R
M×D and bn ∈ R

M are the weight matrix
and the bias of the nth neuron group gn. When jointly learn-
ing the neuron groups and the selector, the learnable param-
eters {Wn,bn} of each group gn will be optimized for data
falling into this group.

The selector adaptively selects an appropriate neuron
group for input x. It takes the input features, i.e. x, as the in-
put, and generates a vector α = [α1, ..., αN ]� ∈ R

N , where
αn can be interpreted as the degree of fitness of applying
neuron group gn to input x. The selector, which implements
softmax normalization as an approximation of selection, is
defined by

α = σ(Ws ∗ x+ bs) ∈ R
N , (3)

where Ws ∈ R
N×D and bs ∈ R

N are the parameters of the
selector. Softmax normalization operator σ is used, there-
fore αn ≥ 0 and

∑N
n=1 αn = 1. It is worth mentioning that

few neuron groups suffice for a deep network architecture,
since stacking AHLs has made the number of the forward
paths grow exponentially. The performance gain by setting
N larger 2 is minor in the empirical test. Thus, we set N to
2 in this work. The number of the learnable parameters be-
comes roughly doubled, because the number of the parame-
ters in the selector is far less than that in a neuron group and
is neglectable.

By jointly considering the N neuron groups and the selec-
tor, the output of x in the AHL is a weighted combination
of the group-specific responses followed by computing the
activation function, namely

y =

N∑

n=1

αngn(x) ∈ R
M . (4)

Backward Propagation

We show that an AHL consisting of multiple neuron groups
and an extra selector can be learned by stochastic gradient
descent. To this end, the gradient of the objective function �

with respect to the parameters, i.e., (∂�(x)∂Wn
, ∂�(x)

∂bn
) for the nth

neuron group and (∂�(x)∂Ws
, ∂�(x)

∂bs
) for the selector, is required.

The objective � for network learning is set to maximize the
multinomial logistic regression in this work.

The gradient for the nth neuron group is firstly consid-
ered. We have ∂�(x)

∂Wn
= ∂�(x)

∂y
∂y

∂o(x)
∂o(x)
∂Wn

by using the Chain

rule, where o(x) =
∑N

i=1 αigi(x). Terms ∂�(x)
∂y and ∂y

∂o(x)

can be derived by referring to the literature (Rumelhart, Hin-
ton, and Williams 1988) and Eq. (4), so we detail the deriva-
tion of ∂o(x)

∂Wn
as follows:

∂o(x)

∂Wn
=

∂
∑N

i=1 αigi(x)

∂Wn
(5)

= αn
∂gn(x)

∂Wn
(6)

The derivation from Eq. (5) to Eq. (6) is based on the product
rule. The term ∂gn(x)

∂Wn
in Eq. (6) can be computed according

to the definition of gn(x) in Eq. (2).
The process of derivation of ∂�(x)

∂Wn
is completed. The

derivation of ∂�(x)
∂bn

can be obtained similarly. It follows that

the gradient of the nth neuron group {∂�(x)
∂Wn

, ∂�(x)
∂bn

} is avail-
able. We repeat this procedure for each neuron group, and
update all the N neuron groups accordingly.

The gradient for updating the selector is also derived by
using the Chain rule, namely ∂�(x)

∂Ws
= ∂�(x)

∂y
∂y

∂o(x)
∂o(x)
∂Ws

. The

part ∂�(x)
∂y

∂y
∂o(x) has been obtained when the gradient for

the neuron groups was computed. With auxiliary variable

6936



s(x) = Ws ∗ x+ bs, we compute ∂o(x)
∂Ws

by

∂o(x)

∂Ws
=

∂
∑N

i=1 αigi(x)

∂Ws
=

N∑

i=1

∂αi

∂Ws
gi(x) (7)

=
N∑

i=1

∂αi

∂s(x)

∂s(x)

∂Ws
gi(x) (8)

=
N∑

i=1

∂αi

∂s(x)

∂(Ws ∗ x+ bs)

∂Ws
gi(x), (9)

where term ∂αi

∂s(x) in Eq. (9) is attainable by referring to
Eq. (3) while the rest can be computed straightforward. The
gradient of the bias ∂�(x)

∂bs
can be similarly derived. After we

get the gradient (∂�(x)∂Ws
, ∂�(x)

∂bs
), the selector is updated with

it.
We summarize the gradient derivation by showing the de-

pendence relationships among variables in Figure 2(a), in-
cluding input x, learnable parameters {Wn} and Ws, auxil-
iary variables s(x) and o(x), and output y. Since the gradi-
ent of all parameters in the AHL is available for an input x,
the network with the integration of the AHLs remains end-
to-end trainable and can be efficiently optimized by stochas-
tic gradient descent.
Discussion. In forward pass, the selector dynamically se-
lects a suitable neuron group for each training data. In back-
ward propagation, all neuron groups and the selector are op-
timized according to a joint objective. While each of the neu-
ron groups is optimized for the training data assigned to it,
the selector is derived to re-assign the training data to the
updated neuron groups. In this way, each sample would be
better taken into account by a specific neuron group.

An issue of learning the mixture of neuron groups is re-
garding the balancing of the clustered data sizes. We intro-
duce an entropy-based function, called selection balancing
regularizer (SBR), to regularize the training of the selector.
SBR penalizes the cases where the selector assigns most data
to a small subset of neuron groups. Consider each training
sample x in a batch. Its distribution α = [αn|1 ≤ n ≤ N ]
computed by the selector via Eq. (3) indicates the neuron
group to which it is assigned. Let p(n) denote the probabil-
ity that a data sample is assigned to the nth neuron group,
for n ∈ {1, 2, ..., N}. p(n) is estimated by summing αn

of every sample in the batch, and is normalized so that
{p(n)|1 ≤ n ≤ N} is a probability distribution. Then, the
SBR is defined by

−β

N∑

n=1

(pn + ε)log(pn + ε), (10)

where ε is a small positive constant used for robust en-
tropy computation. The SBR in Eq. (10) is added to the loss
function for learning the selector. Parameter β controls the
strength of this term. In this work, we set β to 1 in all the
experiments. Because the SBR is differentiable with respect
to all learnable parameters, the whole network is still end-
to-end trainable and can be optimized by stochastic gradient
descent.

Generalization

Recent studies of deep learning showed that the earlier hid-
den layers in deep models tend to extract low-level fea-
tures while the later layers tend to detect high-level con-
cepts (Zhou et al. 2015). The proposed AHL picks an ap-
propriate neuron group conditioned on the input. For further
generalization, the AHL can act as the building block to gen-
eralize multiple hidden layers of a DNNs model so that both
low-level and high-level features are adaptively selected to
enhance recognition.

In this work, we improve mobile gesture recognition with
multi-modal signals captured by mobile sensors. Hence,
the proposed AHLs are used in multi-modal deep learn-
ing network architectures, and adaptively fuse the multi-
modal signals. For evaluation on the IsoGD dataset, we con-
sider Zhu et al.’s network (Zhu et al. 2017), which is the
current state-of-the-art method for this dataset. An AHL
is added to the last layer of each modality-specific sub-
network, and one AHL is further constructed on the top
of the modality-specific sub-networks to capture the cross-
modal information. For evaluation on the dataset we col-
lected, AHLs are applied to the model in (Ngiam et al.
2011). Figure 2(b) shows the resultant network architecture,
where two modality-specific sub-networks are firstly con-
structed and one joint sub-network is then built on the top of
them.

Both architectures form directed acyclic graphs, so the
back-propagation algorithm is applicable for efficient gradi-
ent computation. With AHLs, not only intra-modal but also
cross-modal adaption is carried out. As shown in the experi-
ments, the adaptive flexibility for sample-specific feature se-
lection makes the most of complementary multi-modal fea-
tures, and greatly facilitates mobile gesture recognition.

Implementation Details

This work is implemented based on the Theano library, and
is evaluated on two different datasets, i.e., the IsoGD dataset
and the dataset we collected. On the IsoGD dataset, we fol-
low the setting of the applied network (Zhu et al. 2017). The
number of neurons in each group is 512 for the AHL ap-
plied to the last layer of each modality-specific sub-network,
and it is 249 for AHL on the top of modality-specific sub-
networks. The batch size and weight decay are set to 13 and
0.00004, respectively. The base learning rate is initialized to
0.1 and dropped by a factor of 2 every 5 epochs. At most
100 epochs are conducted.

On the dataset we collected, the two modality-specific
sub-networks only connect to their respective signal modal-
ities. One is the visual signal extracted by the histogram of
oriented gradient (HOG), and the other is the motion signal
recorded by 3-axis accelerometers. The modality-specific
mid-level features are concatenated and act as the input to
the joint sub-network. Table 1 summarizes the sizes of the
five AHLs in the three sub-networks shown in Figure 2(b).
In optimization, the batch size and the weight decay are set
to 128 and 0.0001 respectively. The initial learning rate is
set to 0.1 and decreased by a factor of 2 every 10 epochs.
The learning procedure stops at the 100th epoch.
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layer # of neuron groups # of neurons in each group
HOG layer 1 2 64
HOG layer 2 2 128

accelerometer layer 1 2 64
accelerometer layer 2 2 128

joint layer 2 256

Table 1: The size of each adaptive hidden layer (AHL).

For network initialization, the parameters of the neuron
groups are initialized by using the method in (Ngiam et al.
2011), while the parameters of the selector are initialized by
using the method in (Glorot and Bengio 2010). In addition,
we use k-means clustering to partition the training data at
the first epoch for learning the neuron groups.

Experimental Results

The performance of the proposed adaptive hidden layer
(AHL) is evaluated in this section. We first describe the
datasets used for performance evaluation, which are IsoGD
dataset and the gesture dataset that we collected on mobile
devices. Then the quantitative results are reported and ana-
lyzed with the comparison of our approach to some baselines
and other competing approaches on both datasets. Finally,
the effect of stacking multiple AHLs and the analysis of how
the AHLs behavior with different degrees of data variations
are explored on the dataset we collected.

Dataset Description

IsoGD Dataset It is a large-scale collection of 47,933
RGB-D gesture videos of 249 classes performed by 21 in-
dividuals. Each video represents a gesture sample and con-
tains two types of modalities, i.e., the RGB data and depth
data. This dataset is divided into the training subset, valida-
tion subset, and testing subset respectively. Due to the lack
of the data labels in the testing subset, our approach and the
competing approaches are trained on the training subset and
evaluated on the validation subset.

Our Gesture Dataset It contains gestures of 14 common
categories as shown in Fgiure 3. Because the public datasets
for gesture recognition were collected in controlled envi-
ronments or lacked multi-modal information captured by
mobile sensors, we collected a new multi-modal gesture
dataset. Seven participants, six right-handers and one left-
hander, were recruited for dataset construction. The par-
ticipants wore smart watches and performed the gestures
in front of mobile devices. These gestures were recorded
with both the videos captured by the cameras of the smart
phones and the 3-axis acceleration (ACCE) captured by the
accelerometers of the smart watches.

Each participant performed each class of the gestures
three times. In addition to the variations yielded by users
(the seven participants), we simulated the real-world sit-
uations by introducing four types of environmental varia-
tions in dataset collection. Two types of variations related to
the visual modality are the lighting condition and the back-
ground. The other two types of variations related to the mo-
tion modality are the angle of the performing plane and the

approach accuracy
C3D (RGB only) 37.30%
C3D+ConvLSTM (RGB only) 43.88%
DEEP C3D+ConvLSTM (RGB only) 43.56%
ours (RGB only) 44.88%

C3D (Depth only) 40.50%
C3D+ConvLSTM (Depth only) 44.66%
DEEP C3D+ConvLSTM (Depth only) 47.99%
ours (Depth only) 48.96%

C3D (RGB+Depth) 49.20%
C3D+ConvLSTM (RGB+Depth) 51.02%
DEEP C3D+ConvLSTM (RGB+Depth) 51.40%
ours (RGB+Depth) 54.14%

Table 2: Recognition rates on the IsoGD dataset.

degree of wear tightness. Each type of variations has two
different states, such as clean background vs. cluttered back-
ground. Thus, there are totally 16 environmental settings
when the four types of variations are jointly involved. It fol-
lows that the dataset contains 4,704 (= 7 participants ×14
classes ×16 settings ×3 times) gestures. We randomly split
the gestures of a class into two equal-size groups, one for
training and one for testing, 10 times. The average perfor-
mance is measured with the 10 splits. The large variations
make this dataset quite challenging. Nevertheless, a problem
like this can serve as a good testbed to evaluate the proposed
approach for adaptive multi-modal learning.

For compact representations of raw data, we extracted the
features from both the visual and motion modalities of the
gestures. For the visual modality, we uniformly sampled five
frames from each video, and computed the HOG features
of the five frames. The numbers of cells and orientations
and the block size are set to 15, 4, and 4 respectively. The
HOG features of the five frames are concatenated, yielding
a 1,200-dimensional feature vector. For the motion modality,
we kept the raw signal of the five sampled frames, and com-
puted the mean and the standard deviation for each temporal
window of size 3 along each axis. After further including
the magnitudes and the absolute differences, the resultant
feature vector is of dimension 53.

Performance Comparison

Our approach is compared to those of the following two cat-
egories for performance analysis:

Single-modal learning: Approaches of this categories
recognize gestures by using features generated from a sin-
gle modality. C3D+ConvLSTM (Zhu et al. 2017) is the
state-of-the-art method for the IsoGD dataset. It combines
3D-CNNs and convolutional LSTM to train two modality-
specific sub-networks. We applied the AHL to the last layer
of each of its sub-networks. To make a fair comparison
in terms of the number of learnable parameters, we also
established DEEP C3D+ConvLSTM which is the same as
C3D+ConvLSTM, except that the modality-specific sub-
network is learned with one additional conventional hidden
layer. The number of neurons of this additional hidden layer
is twice that of each group of the added AHL in our pro-
posed network. Hence, the learnable parameters of DEEP
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move-right (MR) move-left (ML) rotate-up (RU) rotate-down (RD) move-down-right (MDR) move-right-down (MRD) rotate-right (RR)

rotate-left (RL) fist (FS) fetch (FT) clock-wise (CW) counter-clock-wise (CCW) finger-up (FU) palm-up (PU)

Figure 3: The gesture dataset we collected. This figure shows one example from each of the fourteen gesture categories, includ-
ing the first frame, the motion direction, and the category and abbreviation.

C3D+ConvLSTM and our proposed network are nearly the
same. For our collected dataset, we learned the deep auto-
encoder (DAE) (Vincent et al. 2010) with three hidden lay-
ers and used the algorithm of stochastic gradient descent to
fine-tune the network. The resulting approaches are denoted
by DAE+HOG and DAE+ACCE respectively, when the visual
and motion modalities are considered individually. These
single-modal approaches act as the competing baselines to
evaluate the importance of using multi-modal features.

Multi-modal learning: Approaches of this category rec-
ognize gestures by using features of multiple modalities. On
IsoGD, two approaches C3D+ConvLSTM (RGB+Depth)
and DEEP C3D+ConvLSTM (RGB+Depth) are used.
Both approaches accomplish multi-modal learning by
late fusion. That is, the final prediction is obtained by
averaging the predictions of the modality-specific sub-
networks. On the dataset that we collected, the baseline,
DAE+conc. feat., is constructed by using DAE with
the concatenated visual and motion features as input. Ngiam
et al. (Ngiam et al. 2011) proposed a DAE-based architec-
ture for multi-modal learning, multi-modal DAE, where
modality-specific sub-networks are firstly built, and a joint
sub-network is then established on the top of the modality-
specific sub-networks. Approach multi-modal DAE is
a representative and powerful framework for multi-modal
learning. Although recent advances in multi-modal DAE
such as (Srivastava and Salakhutdinov 2012; Sohn, Shang,
and Lee 2014) have been made, they focused on text fea-
tures in form of sparse or binary vectors. Thus, these ap-
proaches are not applicable to our cases. As mentioned pre-
viously, the proposed AHL generalizes each hidden layer of
multi-modal DAE. Thus, the number of learnable pa-
rameters becomes double. For fair comparison, a variant
of multi-modal DAE is yielded by doubling the neuron
number of each layer.

Table 2 reports the recognition rates of our approach
and the competing methods on the IsoGD dataset. Al-

though the methods, C3D+ConvLSTM (RGB+Depth)
and DEEP C3D+ConvLSTM (RGB+Depth), can effec-
tively improve the accuracy by fusing the evidence com-
puted with individual modalities, it still leaves space for
improvement since equal-weight fusion is not adequate to
account for data-specific, intra- and inter-modal variations.
The proposed approach carries out adaptive feature selec-
tion for each input. It turns out that our approach not only
improves single-modal learning accuracy, i.e., 44.88% for
RGB and 48.96% for Depth, but also achieves the superior
recognition rate of 54.14% for RGB+Depth to the state-of-
the method C3D+ConvLSTM (RGB+Depth).

Table 3 reports the recognition rates of our approach and
the competing methods on the collected gesture dataset.
Methods DAE+HOG and DAE+ACCE give the recognition
rates of 81.52% and 76.24%, respectively. The results indi-
cate that none of the visual features and the motion features
dominates the other. The baseline DAE+conc. feat.
fuses the multi-modal information by feature concatena-
tion. It results in a higher accuracy of 82.34%. The ap-
proach multi-modal DAE achieves much better ac-
curacy of 86.48%. It implements modality-specific sub-
networks to avoid the problems caused by the divergence
among modalities. Meanwhile, it leverages both the intra-
modality and inter-modality correlations captured by dif-
ferent sub-networks to enhance the performance. The num-
bers of neurons in multi-modal DAE are tuned and set
to those reported in Table 1. Hence, its double-sized vari-
ant does not increase the accuracy. It indicates that simply
adding more learnable parameters does not help.

The proposed approach enables adaptive multi-modal
learning by creating exponentially many forward paths
for feature extraction. It achieves the recognition rate of
90.57%, and gives a significant performance gain of 4.09%
(= 90.57% − 86.48%) over the best competing approach
multi-modal DAE. Note that the performance gain does
not come from the increase of the network size in AHL,
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Figure 4: (a) The category-wise comparison between our approach and the competing method multi-modal DAE. (b) The
error rates of our approach with different numbers of AHLs. (c) The performances of our approach and the competing method
multi-modal DAE on data with different degrees of environmental variations.

approach accuracy
DAE + HOG 81.52%
DAE + ACCE 76.24%
DAE + conc. feat. 82.34%
multi-modal DAE 86.48%
double-sized multi-modal DAE 86.02%
ours 90.57%

Table 3: Recognition rates on the dataset we collected.

since our approach is also superior to the double-sized vari-
ant of multi-modal DAE, where the number of the learn-
able parameters is similar to that in our approach. The
quantitative results confirm that our approach can make the
most of the complementary multi-modal information, and
remarkably outperform all competing methods.

To gain insight into the average accuracy, we report
the category-wise recognition rates of our approach and
multi-modal DAE in Figure 4(a). It is interesting to
observe that the category-wise performance gains of our
approach are quite diverse, namely from 12.94% in cat-
egory rotate-down (RD) to −1.95% in category move-
down-right (MDR). In general, both the visual and motion
features are crucial for most of the 14 categories. Thus,
multi-modal DAE learns a fixed set of multi-modal fea-
tures to characterize most data. The two categories where
our approach gives the most gains are RD and FT. The dis-
criminative features in the two categories are quite differ-
ent to those in the other categories. While the motion fea-
tures are discriminative for category RD due to its distinc-
tive moving pattern, the visual features are effective for cat-
egory FT owing to the consistent hand shape. Our approach
carries out adaptive multi-modal learning, and selects proper
features for each gesture. Thus, it is considerably and consis-
tently superior to multi-modal DAE in most categories.

The training and testing costs of AHL are about N times
higher than those of a hidden layer, where N is the number
of neuron groups. Nevertheless, stacking multiple AHLs re-
sults in exponentially many forward paths. Thus, on IsoGD,
we stack just three AHLs with N = 2 on Zhu et al.’s net-
work (Zhu et al. 2017) with only 10.1% and 15.8% extra
computational costs in training and testing, respectively.

Network Generalization

Passing a data sample through a series of AHLs in a net-
work enables the adaptive selection of both low-level and
high-level features. We analyze the effect of stacking mul-
tiple AHLs to generalize the given network shown in Fig-
ure 2(b), which consists of two parallel modality-specific
sub-networks. Therefore, we consider it a three-layer net-
work. The proposed AHLs are applied to its last k hidden
layers. By varying the value of k from 1 to 3, the error rates
of the resultant networks are reported in Figure 4(b). For the
ease of comparison, Figure 4(b) also plots the error rate of
multi-modal DAE, which can be considered the special
case when the value of k is set to 0.

Some observations can be found in the figure. First, when
the joint layer (the last layer) of the network is replaced by
an AHL, the error rate is greatly decreased from 13.52%
to 11.75%. It points out that adaptive multi-modal feature
selection is crucial for mobile gesture recognition. Sec-
ond, when the modality-specific layers are also replaced
by AHLs, the error rate is further reduced from 11.75% to
9.43%. It demonstrates that adaptive feature selection within
individual modalities is helpful in dealing with the large data
variations. Third, the monotonically decreasing error rates
confirm that the features extracted by different AHLs are
complementary. Therefore, stacking multiple AHLs allows
dynamically selecting both intra-modal and inter-modal fea-
tures, and results in an extra performance boost.

Effect of Data Variations

We address the issue of large data variations by adaptive
multi-modal learning. Therefore, it is worthy to analyze how
the proposed approach behaviors on data with different de-
grees of variations. Recall that the collected gesture dataset
involves four types of environmental variations, including
the lighting condition, the background, the gesture perform-
ing plane and the degree of wear tightness. Each variation
type has two different states. A larger number of variation
types leads to a higher degree of data variations.

We adjust the number of variation types to control the
degrees of data variations. Suppose the number is set to
m. Namely, m out of the four variation types are con-
sidered while each of the rest is fixed to one of its two
states. There are totally C4

m × 24−m such configurations,
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datsetset approach accurancy

IsoGD
C3D+ConvLSTM 51.02%
Ours (without SBRs) 51.87%
Ours (with SBRs) 54.14%

Our
collected
dataset

multi-modal DAE 86.48%
Ours (without SBRs) 90.06%
Ours (with SBRs) 90.57%

Table 4: The effects of using the proposed AHL and SBRs
on the IsoGD dataset and our collected gesture dataset.

each of which corresponds to one particular data subset.
We evaluate the average performance of our approach and
multi-modal DAE on these configurations. By varying
the value of m from 1 to 4, the error rates of the two ap-
proaches are shown in Figure 4(c). It is clear that the more
the types of environmental variations, the larger the error
rates of both approaches, but the performance gain of our ap-
proach over multi-modal DAE becomes more evident.
The results show that adaptive multi-modal learning enabled
by our approach is crucial in mobile applications where large
variations are frequently present.

Ablation Study

To evaluate the effects of using the proposed AHL and the
SBRs, we conduct the ablation study via removing SBRs
and replacing AHLs with conventional hidden layers on the
IsoGD dataset and our collected gesture dataset. Note that
both the training and testing settings of each ablation ex-
periment are kept exactly the same for fair comparison. We
report the results when multi-modal data are used, as illus-
trated in Table 4.

Our observations are given as follows: 1) Apparent per-
formance gains can be obtained with the aid of SBRs on
both the IsoGD dataset and our collected dataset. 2) The
effect of adding SBRs is dataset-dependent. While the per-
formance of our approach on the IsoGD dataset drops re-
markably when SBRs are removed, we can still achieve a
significant performance gain by merely using AHL on our
collected dataset. Our explanation is that the IsoGD datset
has only visual modalities recorded by cameras and depth
sensors. Thus, data of different visual modalities are sen-
sitive to the same factors, and the selector tends to assign
most data to a small subset of neuron groups due to random
initialization. By adding SBRs, we penalize the unbalanced
data distribution in terms of α, which helps to regularize the
training process.

The gesture dataset that we collected and the source
codes of the proposed AHL will be available at
http://cvlab.citi.sinica.edu.tw/ProjectWeb/AHL/.

Conclusions

We have presented a new network layer, called the adaptive
hidden layer (AHL), which is composed of multiple neuron
groups and an extra selector. The former compiles different
features to better characterize data of high variations, while
the latter dynamically picks a plausible group for each input.
We leverage the proposed AHL to enable adaptive multi-

modal learning in DNNs, and illustrate it on mobile gesture
recognition. The experimental results on two datasets show
that by stacking multiple AHLs, our approach significantly
outperforms all competing methods, and reaches the state-
of-the-art performance. In the future, we will apply AHLs
to generalize other network layers, such as the convolutional
layers of CNNs for visual data processing and the internal
layers of RNNs or LSTM for structured data prediction.
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