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Abstract

Recognizing multiple labels of images is a fundamental but
challenging task in computer vision, and remarkable progress
has been attained by localizing semantic-aware image regions
and predicting their labels with deep convolutional neural
networks. The step of hypothesis regions (region proposals)
localization in these existing multi-label image recognition
pipelines, however, usually takes redundant computation cost,
e.g., generating hundreds of meaningless proposals with non-
discriminative information and extracting their features, and
the spatial contextual dependency modeling among the local-
ized regions are often ignored or over-simplified. To resolve
these issues, this paper proposes a recurrent attention reinforce-
ment learning framework to iteratively discover a sequence of
attentional and informative regions that are related to different
semantic objects and further predict label scores conditioned
on these regions. Besides, our method explicitly models long-
term dependencies among these attentional regions that help to
capture semantic label co-occurrence and thus facilitate multi-
label recognition. Extensive experiments and comparisons on
two large-scale benchmarks (i.e., PASCAL VOC and MS-
COCO) show that our model achieves superior performance
over existing state-of-the-art methods in both performance
and efficiency as well as explicitly identifying image-level
semantic labels to specific object regions.

Introduction
Image classification, as a foundational problem in computer
vision, is receiving increasing attention in the research com-
munity. Although marked progress is achieved in this topic
thanks to the great success of deep convolutional neural net-
works (CNNs) (Krizhevsky, Sutskever, and Hinton 2012;
He et al. 2016), existing approaches mainly focus on single-
label image classification that considers the situation where
an image would contain only one object. In contrast, multi-
label image recognition shows more practical significance,
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as the real-world image is normally annotated with multiple
labels and modeling rich semantic information is essential
for the task of high-level image understanding.

A straightforward method that extends CNNs to multi-
label image recognition is to fine tune the networks pre-
trained on single-label classification dataset (e.g., ImageNet
(Russakovsky et al. 2015)) and extract global representation
for multi-label recognition (Chatfield et al. 2014). Though be-
ing end-to-end trainable, classifiers trained on global image
representation may not generalize well to images contain-
ing multiple objects with different locations, scales, occlu-
sions, and categories. An alternative way (Yang et al. 2016;
Wei et al. 2016) is to introduce object proposals that are as-
sumed to contain all possible foreground objects in the image,
and aggregate features extracted from all these proposals to
incorporate local information for multi-label image recogni-
tion. Despite notable improvement compared to global repre-
sentation, these methods still have many flaws. First, these
methods need to extract hundreds of proposal to achieve a
high recall but feeding such a large number of proposals to
the CNN for classification is extremely time-consuming. Sec-
ond, an image usually contains only several objects, most
of the proposals either provide intensely coarse information
of an object or even refer to the same object. In this way,
redundant computation and sub-optimal performance are in-
evitable, especially in complex scenarios. Last but not least,
they usually oversimplify the contextual dependencies among
foreground objects and thus fail to capture label correlations
in images.

In this paper, inspired by the way that humans continu-
ally move fovea from one discriminative object to the next
when performing image labeling tasks, we propose an end-
to-end trainable recurrent attention reinforcement learning
framework to adaptively search the attentional and contex-
tual regions in term of classification. Specifically, our pro-
posed framework consists of a fully convolutional network
for extracting deep feature representation, and a recurrent
attention-aware module, implemented by an LSTM network,
to iteratively locate the class-related regions and predict
the label scores over these located regions. At each itera-
tion, it predicts the label scores for the current region and
searches an optimal location for the next iteration. Note that
by “remember” the information of the previous iterations,
the LSTM can naturally capture contextual dependencies
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among the attentional regions, which is also a key factor
that facilitates multi-label recognition (Zhang et al. 2016).
During training, we formulate it as a sequential decision-
making problem, and introduce reinforcement learning sim-
ilar to previous visual attention models (Mnih et al. 2014;
Ba, Mnih, and Kavukcuoglu 2014), where the action is search-
ing the attentional location of each glimpse and performing
classification on attentional regions, the state is the features
regarding the current regions as well as the information of
previous iteration, and the reward measures the classification
correctness. In this way, the proposed framework is trained
with merely image-level labels in an end-to-end fashion, re-
quiring no explicit object bounding boxes.

To the best of our knowledge, this is the first paper that
introduces recurrent attentional mechanism with deep re-
inforcement learning into generic multi-label image classi-
fication. Compared to the recent hypothesis-regions-based
multi-label recognition methods, our proposed method not
only enjoys better computational efficiency and higher classi-
fication accuracy, but also provides a semantic-aware object
discovery mechanism based on merely image-level labels.
Experimental results on two large-scale benchmarks (PAS-
CAL VOC and MS-COCO) demonstrate the superiority of
our proposed method against state-of-the-art algorithms. We
also conduct experiments to extensively evaluate and discuss
the contribution of the crucial components.

Related Work

We review the related works according to two main research
streams: multi-label image recognition and visual attention
networks.

Multi-label image recognition

Recent progress on single-label image classification is
made based on the deep convolutional neural networks
(CNNs)(Krizhevsky, Sutskever, and Hinton 2012; Simonyan
and Zisserman 2014; He et al. 2016) that learn powerful
visual representation via stacking multiple nonlinear trans-
formations. Several works have also adapted these single-
label classification networks to multi-label image recognition
(Sharif Razavian et al. 2014; Simonyan and Zisserman 2014;
Yang et al. 2016; Wei et al. 2016; Wang et al. 2016). For
example, Razavian et al. (Sharif Razavian et al. 2014) ex-
tract off-the-shelf features using Alex-Net pre-trained on the
ImageNet dataset and train an SVM classifier for each cat-
egory. Chatfield et al. (Chatfield et al. 2014) fine-tune the
network using the target multi-label dataset to learn more
domain-specific features, which helps to boost the classifica-
tion accuracy. Gong et al. (Gong et al. 2013) explore training
the CNN via various losses to tackle this problem and comes
to a conclusion that the weighted approximate ranking loss
can return the best performance. However, these methods
treat the labels in the image independently and fail to capture
semantic label co-occurrence. Instead, there are a series of
works resorting to graphical models to capture pairwise label
correlations, including Conditional Random Field (Gham-
rawi and McCallum 2005), Dependency Network (Guo and
Gu 2011), and co-occurrence matrix (Xue et al. 2011). Most

recently, Wang et al. (Wang et al. 2016) formulate a CNN-
RNN framework to jointly characterize the semantic label
dependency and the image-label relevance. Zhu et al. (Zhu et
al. 2017) further propose a Spatial Regularization Network
that generates class-related attention maps and captures both
spatial and semantic label dependencies via simple learnable
convolutions.

The works mentioned above mainly consider the global
representation of the whole image. However, a classifier
trained using the global representation may not be optimal for
multi-label image recognition, since they not only ignore the
relationship between semantic labels and local image regions
but also are vulnerable to the non-informative background.
To address this problem, recent works (Yang et al. 2016;
Wei et al. 2016) extract object proposals as the informative
regions and aggregate local features on these regions for
multi-label recognition. More concretely, Wei et al. (Wei et
al. 2016) propose a Hypotheses-CNN-Pooling framework,
which makes predictions on each proposal and then aggre-
gates all the predictions as the final output through category-
wise max-pooling. Yang et al. (Yang et al. 2016) formu-
lates the multi-label image recognition as a multi-class multi-
instance problem and incorporates feature as well as label
view information of the proposals for feature enhancement.
Newest work (Zhang et al. 2016) also utilizes CNN-based
proposals and simultaneously models label dependencies
among the proposals. Despite jointly training the proposals
and image classification, this method needs to additionally
train the proposal generation component with the annotation
of bounding boxes.

Visual attention networks

One drawback of the proposal-based methods is the neces-
sary for extracting object proposals, preventing the model
from end-to-end training (Wei et al. 2016; Yang et al. 2016)
or requiring extra annotations of the bounding boxes (Zhang
et al. 2016). Recently, visual attention networks have been
intensively proposed to automatically mine the relevant and
informative regions, which have benefited a broad range of
vision tasks, including image recognition (Mnih et al. 2014;
Ba, Mnih, and Kavukcuoglu 2014; Xiao et al. 2015), image
captioning (Xu et al. 2015) and visual question answer-
ing (Xiong, Merity, and Socher 2016). These works usually
design a recurrent neural network to iteratively search the
attentional regions, which can be formulated as a sequen-
tial decision-making problem. Reinforcement learning tech-
nique is commonly introduced to optimize the sequential
model with delayed reward. Specifically, (Mnih et al. 2014;
Ba, Mnih, and Kavukcuoglu 2014) propose a recurrent at-
tention model trained with reinforcement learning to attend
the most relevant regions of the input image and demonstrate
both accurate and efficient results on the digital classification
task. However, it may not generalize well to multi-label clas-
sification for generic images as they are far more complex,
and different objects undergo drastic changes in both scales
and shapes. In this paper, we introduce the recurrent attention
mechanism into generic multi-label image classification for
locating attentional and contextual regions regarding clas-
sification and demonstrate it can still improve multi-label

6731



�����

�

�

�

��	
���

�����	������

�
�

���
�������
������

������������

�� ��

�����

�

� �����

�����

�
�

Figure 1: Overview of our proposed framework for multi-label image recognition. The input image is first fed to the VGG16
ConvNet and mapped to the feature maps fI . At each iteration t, k regions are yielded at the center location lt estimated from
the previous iteration and corresponding fixed-size features are also extracted. An LSTM unit takes these features as well as the
hidden state of the previous iteration as input to predict the scores for each region and searches the location for the next iteration.
All the predicted scores are fused using the category-wise max-pooling to obtain the final label distribution. The framework is
end-to-end trained using merely image-level labels using reinforcement learning techniques.

recognition in both accuracy and efficiency.

Proposed Method
Figure 1 illustrates an overview of the proposed method.
Given an input image I , it is first resized to W × H and
fed into the VGG16 ConvNet (Simonyan and Zisserman
2014). The ConvNet processes on the whole image with
multiple stacked convolutional layers to produce the feature
maps fI ∈ RC×W ′×H′

. Here, we use the feature maps from
the last convolutional layer (i.e., conv5 3). The core of our
proposed method is the recurrent attention-aware module
that locates the attentional regions and predicts the label
scores for these regions in an iterative manner. Finally, the
scores over all attentional regions are fused to get the final
label distribution. In the following context, we introduce this
module in detail.

At iteration t, the agent first receives a location lt computed
at the previous iteration and extracts regions based on lt.
Previous works (Mnih et al. 2014) simply extract square
patches centered at lt. However, general objects undergo
drastic changes in both shapes and scales, and thus directly
extracting squre patches can hardly cover all these objects.
Inspired by the anchor strategy proposed in (Ren et al. 2015),
we yield k regions Rt = {Rtr}kr=1 related to various scales
and aspect ratios centered at lt and then extract the features
for all these regions:

ftr = G(fI , Rtr), r = 1, 2, · · · , k, (1)
where G consists of a cropping operation that crops the region
Rtr on fI , followed by a bilinear interpolation that maps the

cropped feature maps to a fixed-size counterpart ftr. Previous
works (Mnih et al. 2014) crop the regions at original input
image and apply CNN for repeatedly extracting features for
each region, leading to a high computational burden. Instead,
we apply the operation on the feature maps fI to avoid re-
peating the convolutional processes that are computationally
intensive, significantly improving the efficiency during both
training and test stages. Once the features are extracted, the
recurrent attention-aware module, implemented by an LSTM
network (Hochreiter and Schmidhuber 1997), takes the hid-
den state of the previous iteration as well as the features of
currently located regions as input, predicts the classification
scores for each region and searches an optimal location for
the next iteration, formulated as:

{at1, at2, · · · , atk, lt+1} = Tπ(ft1, ft2, · · · , ftk, ht−1; θ)
(2)

where Tπ(·) represents the recurrent attention-aware module,
and θ denotes the network parameters. atr is the label score
vector with respect to the region Rtr. The initial region is
set as the whole image, so R0 has only one region, and it is
merely used to determine the location l1.
Category-wise max-pooling. The iterations are repeated
for T + 1 times, yielding T × k label score vectors, i.e.,
{atr|t = 1, 2, · · · , T ; r = 1, 2, · · · , k}, where atr =

{a0tr, a1tr, · · · , aC−1
tr } is the score vector of region Rtr

over C class labels. Following previous work (Wei et al.
2016), we utilize the category-wise max-pooling opera-
tion to fuse these score vectors and obtain the final result
a = {a0, a1, · · · , aC−1} via simply maximizing out the
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scores over regions for each category, formulated as:

ac = max(ac11, a
c
12, . . . , a

c
Tk), c = 0, 1, . . . , C − 1. (3)

Recurrent attention-aware module

The recurrent attention-aware module iteratively predicts
the label scores of the current regions and searches a most
relevant location for the next iteration, which can be regarded
as a sequential decision-making problem. At each iteration,
it takes action to predict the label scores for the attended
regions and searches an optimal location conditioned on the
current states. After the action, the state is updated by a new
hidden state and a newly attended location. The process is
repeated until a maximum iteration is reached. In the end, the
scores of all the located regions are fused to get the final label
distribution, and a delayed global reward, which is computed
based on this predicted result and the ground-truth labels,
is employed to guide the agent training. We elaborate the
involved states, actions and reward signal in the following.
State. The state st should provide sufficient information for
the agent to make decisions. Concretely, it should encode
the knowledge of the current environment and those of the
previous iterations. To this end, it comprises two parts: 1)
the features of the current regions (i.e., {ftr}kr=1), which
is instrumental to classification and provides rich contex-
tual information to help the agent to mine more comple-
mental and discriminative regions; 2) the hidden state of
the previous iteration ht−1, which encodes the information
of the past iterations and updates over time via the LSTM
module. Moreover, simultaneously considering the infor-
mation of the previous iterations can also help to capture
the contextual dependencies among all the glimpsed regions
and labels. In this way, by sequentially observing the states
st = {ft1, ft2, · · · , ftk, ht−1}, the agent is capable of per-
forming classification for the current regions and determining
the next optimal location.
Action. Given the state st, the agent takes two actions: 1)
performing classification on the current attentional regions;
2) searching an optimal location lt+1 over all possible loca-
tions {lt+1 = (x, y)|0 ≤ x ≤ W ′, 0 ≤ y ≤ H ′} on the
feature map fI . As shown in figure 1, a fully-connected layer
is utilized to map the extracted features ftr to the semantic
representation for each attended region. The LSTM unit takes
the semantic representation and the hidden state of the previ-
ous iteration as input, and produces a new hidden state htr.
Finally, the classification scores can be computed through a
small classification network, denoted as:

atr = fcls(htr; θcls), r = 1, 2, · · · , k, (4)

where the classification network fcls(·) is implemented by a
fully-connected layer, with θcls being its parameters. For the
localization action, all the hidden states are first averaged to
get a final hidden state, denoted as ht =

1
k

∑
r htr. Then the

agent builds a gaussian distribution P (lt+1|floc(ht; θloc), σ).
In this equation, floc(ht; θloc), the localization network out-
put, is set as the mean value of the distribution, and σ is its
standard deviation and is empirically set as 0.11. Similarly,
the localization network floc(·) is also implemented by a

fully-connected layer parameterized by θloc. At iteration t,
the agent selects the localization action lt+1 by randomly
drawing a location over the probability distribution.
Reward. After executing the actions at each iteration, the
agent updates the state and receives a reward signal. For
the task of multi-label image recognition, it is desired to
aggregate the predictions over all located regions for counting
the reward, since each region is expected to be associated
with one semantic label. Thus, we define a delayed reward
assignment mechanism based on the final aggregated result.
For a sample with n ground-truth labels, its label set is g =
{lg1 , l

g
2 , · · · , lgn}. We then sort the predicted scores and obtain

the predicted label set p = {lp1 , l
p
2 , · · · , lpn} with top-n scores.

The reward at iteration t is defined as:

rt =

{
|g∩p|
n t = T

0 t < T
(5)

where | · | is the cardinality of the set. We aim to maximize
the sum of the discounted rewards:

R =
T∑

t=1

γt−1rt (6)

where γ is the discount factor. We set γ as 1 in our exper-
iments, and the total reward is R = rT . In this work, we
utilize the reward to guide the agent to search the optimal
actions.

Optimization

At the training stage, in addition to defining the similar clas-
sification loss with (Yang et al. 2016), we take the delayed
reward assignment into account for optimizing the region
localization policy, leading to a hybrid objective function for
model training. In the experiments, the model is trained with
the hybrid loss in an end-to-end manner.

Formally, the agent needs to learn a policy
π((at, lt+1)|St; θ), which predicts a distribution over
actions for the current iteration based on the sequence
of past observations and actions taken by the agent, i.e.,
St = R0, l1, R1, a1, l2, · · · , Rt. To this end, we define the
objective function to maximize the expectation of the reward,
expressed as:

J (θ) = EP (ST ;θ)[R]. (7)
where P (ST ; θ) is the distribution over all possible interac-
tion sequences, and it is dependent on the policy. Inspired by
the work (Mnih et al. 2014), we leverage the REINFORCE
algorithm (Williams 1992) from the reinforcement learn-
ing community to estimate the gradient for backpropagation.
Specifically, it utilizes sample approximation to compute the
gradients, formulated as:

∇J (θ) =
T∑

t=1

EP (ST ;θ)[∇θ log π((at, lt+1)|St; θ)R]

≈ 1

M

M∑
i=1

T∑
t=1

[∇θ log π((a
i
t, l

i
t+1)|Si

t ; θ)R
i]

(8)

where i = 1, 2, · · · ,M denotes the index of the M episodes.
However, the gradient estimated using Equation (8) is of high
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variance, and consequently, the training process is difficult
to converge. To solve this problem, we further employ the
variance reduction strategy proposed in (Mnih et al. 2014) to
obtain an unbiased low-variance gradient estimation.

The policy is learnt using the delayed reward signal, as
the “best” action at each iteration is unavailable. In the con-
text of multi-label recognition, the ground-truth labels for
each sample exist. Thus, we further define a loss function
following (Wei et al. 2016; Yang et al. 2016) as the extra
supervision. Suppose there are N training samples, and each
sample xi has its label vector yi = {y0i , y1i , . . . , yC−1

i }.
yci (c = 0, 1, . . . , C − 1) is assigned as 1 if the sample
is annotated with the class label c, and 0 otherwise. The
ground-truth probability vector of the i-th sample is defined
as p̂i = yi/||yi||1, and the classification loss function is thus
formulated as:

Lcls =
1

N

N∑
i=1

C−1∑
c=0

(pci − p̂ci )
2. (9)

where pi is the predicted probability vector and can be com-
puted via:

pci =
exp(aci )∑C−1

c′=0 exp(a
c′
i )

c = 0, 1, . . . , C − 1. (10)

Experiments

In this section, we present extensive experimental results and
comparisons that demonstrate the superiority of the proposed
method. We also conduct experiments to carefully evaluate
and discuss the contribution of the crucial components.

Experiment setting

Implementation details During training, all the images
are resized to N ×N , and randomly cropped with a size of
(N − 64) × (N − 64), followed by a randomly horizontal
flipping, for data augmentation. In our experiments, we train
two models with N = 512 and N = 640, respectively. For
the anchor strategy, we set 3 region scales with area 80× 80,
160×160, 320×320 for N = 512 and 100×100, 200×200,
400× 400 for N = 640, and 3 aspect ratios of 2:1, 1:1, 1:2
for both scales. Thus, k is set as 9. Both of the models are
optimized using the Adam solver with a batch size of 16,
an initial learning rate of 0.00001, momentums of 0.9 and
0.999. During testing, we follow (Krizhevsky, Sutskever, and
Hinton 2012) to perform ten-view evaluation across the two
scales. Specifically, we first resize the input image to N ×N
(N = 512, 640), and extract five patches (i.e., the four corner
patches and the center patch) with a size of (N − 64) ×
(N − 64), as well as their horizontally flipped counterparts.
In the experiments, instead of repeatedly extracting features
for each patch, we feed the N × N image to the VGG16
ConvNet and crop the features on the conv5 3 features maps
accordingly for each patch. In this way, the computational
complexity is remarkably reduced. The model predicts a label
score vector for each view, and the final result is computed
as the average predictions over the ten views.

Evaluation metrics We first employ the average preci-
sion (AP) for each category, and the mean average precision
(mAP) over all categories to evaluate all the methods. We
also follow (Gong et al. 2013; Wang et al. 2016) to compute
the precision and recall for the predicted labels. For each
image, we assign top k highest-ranked labels to the image,
and compare with the ground-truth labels. The precision is
the fraction of the number of the correctly predicted labels
in relation to the number of predicted labels; The recall is
the fraction of the number of the correctly predicted labels
in relation to the number of ground-truth labels. In the exper-
iments, we compute the overall precision, recall, F1 (OP ,
OR, OF1) and per-class precision, recall, F1 (CP , CR,
CF1) for comparison, which can be computed as:

OP =

∑
i N

c
i∑

i N
p
i

,

OR =

∑
i N

c
i∑

i N
g
i

,

OF1 =
2×OP ×OR

OP +OR
,

CP =
1

C

∑
i

N c
i

Np
i

CR =
1

C

∑
i

N c
i

Ng
i

CF1 =
2× CP × CR

CP + CR

(11)

where C is the number of labels, N c
i is the number of images

that are correctly predicted for the i-th label, Np
i is the num-

ber of predicted images for the i-th label, Ng
i is the number

of ground truth images for the i-th label.

Comparison with state-of-the-art methods

To prove the effectiveness of the proposed method, we con-
duct comprehensive experiments on two widely used bench-
marks: Pascal VOC 2007 (VOC07) (Everingham et al. 2010)
and Microsoft COCO (MS-COCO) (Lin et al. 2014).

Performance on the VOC07 dataset The VOC07 dataset
contains 9,963 images of 20 object categories, and it is di-
vided into trainval and test sets. It is the most widely used
benchmark for multi-label image recognition, and most com-
peting methods have reported their results on this dataset.
We compare our model against the following state-of-the-
art methods: FeV+LV (Yang et al. 2016), HCP (Wei et al.
2016), CNN-RNN (Wang et al. 2016), RLSD (Zhang et al.
2016), VeryDeep (Simonyan and Zisserman 2014) and CNN-
SVM (Sharif Razavian et al. 2014). Note that we report the
results of FeV+LV and HCP using VGG-16 ConvNet for fair
comparisons. Following the competitors, we train our model
on the trainval set and evaluate the performance on the test
set.

The comparison results are summarized in Table 1. As
shown, the previous best-performing methods are HCP and
FeV+LV, both of which extract hundreds of object proposals,
and then aggregate the features of these object proposals for
multi-label recognition. They achieve mAPs of 90.9% and
90.6%, respectively. Different from these two methods, our
model learns an optimal policy to locate a sequence of dis-
criminative regions, while simultaneously trains classifiers to
perform classification on these attended regions. In this way,
our model can better explore the relations between semantic
labels and attentional regions, leading to the performance
improvement. Specifically, our model achieves a mAP of
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Methods aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP
CNN-SVM 88.5 81.0 83.5 82.0 42.0 72.5 85.3 81.6 59.9 58.5 66.5 77.8 81.8 78.8 90.2 54.8 71.1 62.6 87.2 71.8 73.9
CNN-RNN 96.7 83.1 94.2 92.8 61.2 82.1 89.1 94.2 64.2 83.6 70.0 92.4 91.7 84.2 93.7 59.8 93.2 75.3 99.7 78.6 84.0
VeryDeep 98.9 95.0 96.8 95.4 69.7 90.4 93.5 96.0 74.2 86.6 87.8 96.0 96.3 93.1 97.2 70.0 92.1 80.3 98.1 87.0 89.7

RLSD 96.4 92.7 93.8 94.1 71.2 92.5 94.2 95.7 74.3 90.0 74.2 95.4 96.2 92.1 97.9 66.9 93.5 73.7 97.5 87.6 88.5
HCP 98.6 97.1 98.0 95.6 75.3 94.7 95.8 97.3 73.1 90.2 80.0 97.3 96.1 94.9 96.3 78.3 94.7 76.2 97.9 91.5 90.9

FeV+LV 97.9 97.0 96.6 94.6 73.6 93.9 96.5 95.5 73.7 90.3 82.8 95.4 97.7 95.9 98.6 77.6 88.7 78.0 98.3 89.0 90.6
Ours (512) 98.6 96.9 96.3 94.8 74.1 91.9 96.3 97.1 76.9 91.4 86.2 96.6 96.4 93.1 98.0 79.8 91.7 83.1 98.3 88.6 91.3
Ours (640) 97.9 97.1 96.9 95.3 75.3 91.8 96.5 96.7 76.8 91.0 85.6 95.7 96.0 93.5 98.2 81.0 92.7 80.6 98.2 89.0 91.3

Ours 98.6 97.1 97.1 95.5 75.6 92.8 96.8 97.3 78.3 92.2 87.6 96.9 96.5 93.6 98.5 81.6 93.1 83.2 98.5 89.3 92.0

Table 1: Comparison results of AP and mAP in % of our model and the previous state of the art methods on the VOC07 dataset.
The best results and second best results are highlighted in red and blue, respectively. Best viewed in color.

92.0%, suppressing all the previous state-of-the-art methods
by a sizable margin. It is noteworthy that the performance
with one single scale of 512 or 640 also performs better than
existing methods, further demonstrating the superiority of
our model.

Methods C-P C-R C-F1 O-P O-R O-F1
WARP 59.3 52.5 55.7 59.8 61.4 60.7

CNN-RNN 66.0 55.6 60.4 69.2 66.4 67.8
RLSD 67.6 57.2 62.0 70.1 63.4 66.5

Ours (512) 77.5 56.8 65.6 83.0 61.2 70.5
Ours (640) 77.9 56.3 65.4 83.5 61.0 70.5

Ours 78.8 57.2 66.2 84.0 61.6 71.1

Table 2: Comparison results of our model and the previous
state of the art methods on the MS-COCO dataset. The best
and second best results are highlighted in red and blue, re-
spectively. Best viewed in color.

Performance on the MS-COCO dataset The MS-COCO
dataset is originally built for object detection and has also
been used for multi-label recognition recently. It is a larger
and more challenging dataset, which comprises a training
set of 82,081 images and a validation set of 40,137 images
from 80 object categories. We compare our model with three
state-of-the-art methods, i.e., CNN-RNN (Wang et al. 2016),
RLSD (Zhang et al. 2016) and WARP (Gong et al. 2013), on
this dataset. Our method and all the competitors are trained
on the train set and evaluated on the validation set since the
ground truth labels of the test set are unavailable. Follow-
ing (Wang et al. 2016), when computing the precision recall
metrics, we select the top 3 labels for each image. We also
filter out the labels with probabilities lower than a pre-defined
threshold (0.1 in our experiments), so the label number of
some images would be less than 3.

The comparison results of the overall precision, recall, F1,
per-class precision, recall, F1 are reported in Table 2. Our
model significantly outperforms previous methods. Specifi-
cally, it achieves a per-class F1 score of 66.2%, an overall F1
score of 71.1%, beating the previous best method by 4.2%
and 3.3%, respectively. Similarly, the performance using sin-
gle scale is still higher than those of other methods.

Ablation Study

In this subsection, we perform ablative studies to carefully
evaluate and discuss the contribution of the critical compo-
nents of our proposed model.

Effectiveness of the attentional regions The key compo-
nent of our method is the recurrent attention-aware module
that automatically locates the discriminative regions. In this
part, we further implement two baseline methods to verify
the effectiveness of the attentional regions. The first method
replaces the locations attended by our model with randomly
selected locations, and it also utilizes 9 anchors for each lo-
cation. The second method utilizes the representative object
proposals as the informative regions to replace the attended
regions for classification. This method first employs Edge-
Box (Zitnick and Dollár 2014) to extract proposals and adopts
non-maximum suppression with a threshold of 0.7 on them
based on their objectness scores to exclude the seriously
overlapped proposals. The proposals with the top 5 scores
are selected. Table 3 presents the comparison results. Our
attentional model evidently outperforms these two baseline
methods.

Method mAP (%)
random 89.0
proposal 88.6
attention 90.2

Table 3: Comparison of mAP in % of our model with atten-
tional regions, proposals, and random regions on the VOC07
dataset. The results are evaluated using single-view with the
scale of 512× 512.

Significance of adopting the LSTM To demonstrate the
significance of adopting the LSTM, we have conducted two
experiments and reported the results in Table 4. First, we use
the LSTM to locate the regions while removing the classifi-
cation branch and independently classifying the regions by
designing a network, obtaining a lower mAP of 90.0%. We
further remove the LSTM and also predict the locations in-
dependently, obtaining an even lower mAP of 89.6%. These
results show the contextual dependencies among the atten-
tional regions captured by the LSTM is crucial for improving
the region localization accuracy as well as the multi-label
classification accuracy.

Effectiveness of multiple regions with variable scales and
aspect ratios As general objects vary dramatically in scale
and aspect ratio, we extract 9 regions with 3 scales and 3 as-
pect ratios, at each iteration. We first visualize some examples
of the located regions at each iteration in Figure 2. As shown,
different regions can indeed find objects with different scales
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method mAP (%)
Ours-A 89.6
Ours-B 90.0
Ours-C 91.3

Table 4: Comparison of mAP in % of using different methods
for localization and classification. We report the results using
LSTM for both classification and localization (Ours-C), using
LSTM for localization but not for classification (Ours-B), and
not using LSTM (Ours-A). The results are evaluated using
ten-view with the scale of 512× 512.

and aspect ratios. For example, the first image in Figure 2
contains a man and a boat, which vary significantly in scale
and aspect ratio. However, both of them can be well located.
Concretely, the region with the largest scale and ratio of 2:1
well locates the boat at iteration 4, while the region with the
middle scale and ratio of 1:2 can catch the man at iteration 5.
The located regions of the second image also exhibit similar
results.

step 1 step 2 step 3 step 4 step 5

Figure 2: Visualization of the located regions at each iteration.
The attentional regions can well locate most semantic objects
in the images.

To clearly validate its advantage, we further conduct an
experiment that extracts one single region at each location and
re-trains the model for comparison. Specifically, we utilize
the input image scale of 512 × 512, and for each predicted
location, one region with the size of 224× 224 is extracted.
The comparison results are depicted in Table 5. It shows
that using multiple regions at each iteration leads to better
classification performance.

Method mAP (%)
multiple regions 91.3

single region 90.9

Table 5: Comparison of mAP in % of our model that extract
multiple and single regions at each iteration on the VOC07
dataset. The results are evaluated using ten-view with the
scale of 512× 512.

Analysis of increasing the recursive iteration In this part,
we explore the effect of using different recursive iterations
T . To this, we train our model with different iterations, i.e.,
T = 1, 5, 10, and report the experimental results in Table 6.
When the iteration increases from 1 to 5, the performance has
a notable improvement since the located regions may cover

more discriminative objects. However, when further increas-
ing the iteration number, the performance does not improve.
One possible reason is that when the iteration is greater than
5, the agent has almost mined out all discriminative regions,
and locating more regions make litter sense or even bring
noise and redundant computation. Thus, in our experiments,
the iteration number is set as 5 to better balance the efficiency
and effectiveness.

T mAP (%)
1 90.9
5 91.3

10 91.3

Table 6: Comparison of mAP in % of our model using dif-
ferent recursive iterations on the VOC07 dataset. The results
are evaluated using ten-view with the scale of 512× 512.

Efficiency analysis

Efficiency is another important metric for the real-world
systems. In this part, we analyze the execution time of our
model and the previous state-of-the-art methods. We test our
model on a desktop with a single NVIDIA GeForce GTX
TITAN-X GPU. It takes about 150ms for ten-view evaluation
for scale 512 and about 200 ms for scale 640. Thus, the
execution time of our method is about 350ms per image.
However, recent proposal-based methods, e.g., HCP (Wei et
al. 2016) and FeV+LV (Yang et al. 2016), need to compute
the proposals and repeat processing hundreds of proposals
using the deep CNNs, rendering them extremely inefficient.
As shown in (Wei et al. 2016), these methods may take about
10s to process an image on a similar GPU environment, about
30× slower than ours.

Conclusion

In this paper, we propose a recurrent attention reinforcement
learning framework that is capable of automatically locating
the attentional and informative regions regarding classifica-
tion, and predicts the label scores over all attentional regions.
We formulate the region localization process as a sequen-
tial decision-making problem and resort to reinforcement
learning technique to optimize the proposed framework with
merely image-level labels in an end-to-end manner. Com-
pared to the previous proposal-based methods, our method
can better explore the interaction between semantic labels and
attentional regions, while explicitly capturing the contextual
dependencies among these regions. Extensive experimental
results and evaluations on two large-scale and challenging
benchmarks, i.e., Pascal VOC and MicroSoft COCO, well
demonstrate the superiority of our proposed method on both
accuracy and efficiency.
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