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Abstract

Person images captured by public surveillance cameras often
have low resolutions (LR) in addition to uncontrolled pose
variations, background clutters and occlusions. This gives rise
to the resolution mismatch problem when matched against the
high resolution (HR) gallery images (typically available in
enrolment), which adversely affects the performance of per-
son re-identification (re-id) that aims to associate images of
the same person captured at different locations and differ-
ent time. Most existing re-id methods either ignore this prob-
lem or simply upscale LR images. In this work, we address
this problem by developing a novel approach called Super-
resolution and Identity joiNt learninG (SING) to simulta-
neously optimise image super-resolution and person re-id
matching. This approach is instantiated by designing a hybrid
deep Convolutional Neural Network for improving cross-
resolution re-id performance. We further introduce an adap-
tive fusion algorithm for accommodating multi-resolution LR
images. Extensive evaluations show the advantages of our
method over related state-of-the-art re-id and super-resolution
methods on cross-resolution re-id benchmarks.

Introduction
Person re-identification (re-id) is a task of matching iden-
tity classes in person bounding box images extracted from
non-overlapping camera views in open surveillance spaces
(Gong et al. 2014). Existing re-id methods typically fo-
cus on addressing the variations in illumination, occlusion,
and background clutter by designing feature representa-
tion (Liao et al. 2015; Matsukawa et al. 2016) or learning
matching distance metrics (Zheng, Gong, and Xiang 2013;
Wang et al. 2014; He, Chen, and Lai 2016; Zhang, Xi-
ang, and Gong 2016) or their combinations (Li et al. 2014;
Ahmed, Jones, and Marks 2015; Xiao et al. 2016; Li, Zhu,
and Gong 2017) under the assumption that all person im-
ages have similar and sufficiently high resolutions. However,
surveillance person images often have varying resolutions
due to variations in the person-camera distance and cam-
era deployment settings (Fig. 1). This gives rise to the reso-
lution mismatch problem. Specifically, human operators of-
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Figure 1: Illustration of person images with varying resolu-
tions in the open-space person re-identification task. Three
images of a person were captured by two camera views at
different locations of a shopping centre. The image captured
by camera B has a higher resolution than the other two from
camera A. Person re-id across different resolutions and dis-
joint camera views is challenging.

ten enrol high resolution (HR) images1 of target people into
the gallery set. As such, it is challenging to reliably match
low-resolution (LR) probe images against the HR gallery
images across both camera views and resolutions. This re-
quires to address the information amount discrepancy chal-
lenge in cross-resolution matching since LR images contain
much less information with discriminative appearance de-
tails largely lost in the image acquisition process. We call
this setting as Low-Resolution person re-identification.

While most existing methods ignore the resolution mis-
match problem and normalise all images to a single size,
a couple of works have recently been proposed to address
this LR re-id problem (Jing et al. 2015; Wang et al. 2016;
Li et al. 2015). However, these methods share a few com-

1Note that in visual surveillance, the definition quality of so-
called high resolution images is poorer than social media photos
taken by professional photographers. In this context, we define low
and high resolutions in a relative sense for surveillance quality im-
age data. By default, we refer “resolution” to the underlying reso-
lution (Wong et al. 2010) rather than the image spatial size (scale).
A given image can be arbitrarily resized, but with little change in
its underlying resolution (Fig. 2). Hence, the image spatial size is
not an accurate indicator of the underlying resolution.
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Figure 2: (a) Example images of varying underlying resolu-
tions, (b) normalised to the same spatial size without chang-
ing the underlying resolution.

mon weaknesses: (1) Instead of recovering the missing dis-
criminative appearance information, they perform cross-
resolution representation transformation in a pre-defined
feature space. This does not solve the information amount
discrepancy challenge. (2) They rely on hand-crafted vi-
sual features without exploring deep learning for mining the
complementary advantages of feature learning and matching
metric joint optimisation. Intuitively, image super-resolution
(SR) should offer an effective solution to mitigate the resolu-
tion mismatch problem due to its capability of synthesising
high frequency details (Dong et al. 2016). However, a direct
combination of SR and re-id may suffer from suboptimal
compatibility. Generic-purpose SR methods are designed to
improve image visual fidelity rather than the re-id match-
ing performance, with visual artefacts generated in the SR
reconstruction process negative to re-id matching.
Contributions. In this work, we solve the LR re-id prob-
lem by exploring image SR and person re-id techniques
in a novel unified formulation. We call the new formula-
tion Super-resolution and Identity joiNt learninG (SING).
Our SING is designed to improve the integration compati-
bility between SR and re-id by achieving identity sensitive
high frequency appearance enhancement, therefore address-
ing the information amount discrepancy problem in cross-
resolution re-id matching. To realise SING, we propose a
joint loss function on optimsing a hybrid Convolutional
Neural Network (CNN) architecture capable of bridging SR
and re-id model learning. In addition, given LR person im-
ages with different resolutions in practice, we further present
a multi-resolution adaptive fusion mechanism by aggregat-
ing a set of anchor SING CNN models (each optimised for a
reference resolution) in a probe specific manner. We exten-
sively performed comparative evaluations to show the supe-
riority of our SING approach over related state-of-the-art re-
id and image SR methods on four person re-id benchmarks
CAVIAR (Cheng et al. 2011), VIPeR (Gray and Tao 2008),
CUHK03 (Li et al. 2014), and SYSU (Chen et al. 2017a).

Related Work
Person re-identification has attracted extensive research in
the past 10 years (Gray and Tao 2008; Zheng, Gong, and Xi-
ang 2013; Liao et al. 2015; Ahmed, Jones, and Marks 2015;
Zheng et al. 2015; Xiao et al. 2016; Zheng, Gong, and Xi-
ang 2016; Zhang, Xiang, and Gong 2016; Li, Zhu, and Gong

2017; Chen et al. 2017b) The dominant focus is on han-
dling the re-id challenges arising from uncontrolled varia-
tions in illumination, background clutter and human pose.
The resolution mismatch problem in LR re-id, however,
is under-studied, with only a few works (Li et al. 2015;
Jing et al. 2015; Wang et al. 2016) proposed. In (Li et
al. 2015), it is assumed that images of the same person
should be distributed similarly under different resolutions
and propose simultaneously optimising cross-resolution im-
age alignment and distance metric modelling in a joint learn-
ing framework. In (Jing et al. 2015), a semi-coupled low-
rank dictionary learning approach was proposed to uncover
the feature relationship between LR and HR images. In
(Wang et al. 2016), the characteristics of the scale-distance
function space is explored by varying the scale of LR im-
ages when matching with HR ones. These methods are lim-
ited due to the incapability of synthesising discriminative ap-
pearance information lost in image acquisition.

On the other hand, the related LR face recognition
methods have been developed in the literature (Wang and
Tang 2005; Hennings-Yeomans, Baker, and Kumar 2008;
Huang and He 2011). Their basic idea is to synthesise HR
faces by image super-resolution (SR) techniques with the
need of dense feature point alignment. While being fea-
sible for structure-constrained face images, it is difficult
to align person images due to the greater degree of un-
known variations in body parts, e.g., aligning a back view
LR person image with a side view HR person image against
other clutters. These SR-based LR face matching methods
are therefore not suitable for the LR re-id problem (Li et
al. 2015). In the mean time, generic-purpose SR methods
have achieved remarkable success in synthesising missing
appearance fidelity from LR input images thanks to the
powerful modelling capacity of deep learning algorithms
(Kim, Kwon Lee, and Mu Lee 2016; Dong et al. 2016;
Lai et al. 2017; Tai, Yang, and Liu 2017). They may generate
HR person images with higher visual quality, but remain in-
effectiveness for LR re-id as shown in our evaluations. This
is because they are designed for improving low-level pixel
values but not high-level identity discrimination when learn-
ing to reconstruct the HR images.

In contrast to all the existing methods above, the pro-
posed SING method is particularly designed to address the
LR re-id problem uniquely characterised by the capability
of synthesising HR images highly discriminative for cross-
resolution identity matching without the need for exhaustive
dense alignment across images. Our approach is built upon
the idea of dedicating image SR for discriminative re-id so
that the two processes are seamlessly integrated to maximise
their compatibility and complementary advantages. Unlike
existing LR re-id methods which depend on hand-crafted
features, the proposed SING realises a joint deep learn-
ing formulation capable of simultaneously achieving re-id
purposed image super-solving, discriminative re-id feature
learning, and optimal re-id matching model induction.

Jointly Learning Super-Resolution and Re-ID
We want to reliably match an Low Resolution (LR) probe
person image against a set of High Resolution (HR) gallery
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Figure 3: An overview of the proposed SING deep model for joint learning of image super-resolution and person identity
classification. The SING CNN consists of two parts: SR sub-network (d) and Re-ID sub-network (e). In model training, we
deploy three streams taking as input the LR image (a), synthetic LR image (b), and HR image (c), respectively. The middle
stream (b) acts as a bridge for joining image SR (d) and person re-id (e) learning tasks.

images. To that end, we propose a joint learning approach of
image Super-Resolution (SR) and person identity classifica-
tion in order to correlate the two learning tasks and max-
imise their compatibility and complementary advantages.
Approach Overview. Assume that X l = {(xl

i, y
l
i)}Ni=1 is

an LR person image set from one camera view and Xh =
{(xh

i , y
h
i )}Ni=1 an HR image set from another view, where

xl
i and xh

i denote LR and HR images of identity class yli
and yhi , respectively. We wish to learn (1) an image super-
resolution function Fsr(·) that can compensate effectively
re-id information for the LR image xl

i, and (2) an identity
discriminant feature extraction (FE) function Ffe(·) that can
be performed on both super-resolved Fsr(x

l
i) and realistic

xh
i HR images, with the objective that Ffe(Fsr(x

l
i)) is close

to Ffe(x
h
j ) in the feature space when they share the identity

label (i.e., yhj = yli) and vice verse. Formally, by learning
Fsr(·) and Ffe(·) through joint formulation, we aim to ob-
tain a re-id similarity matching metric:

S
(
Ffe(Fsr(x

l
i)), Ffe(x

h
j )
)

(1)

respecting that after a proper image SR enhancement, an LR
image captured in one camera view can be associated cor-
rectly with an HR image of the same person captured in an-
other camera view.
Super-Resolution Formulation. We compensate the de-
sired discriminative information missing in the LR images
through super-resolution. To facilitate SR model training,
we generate a synthetic LR version Xh2l = {(xh2l

i , yhi )}Ni=1

of Xh by down-sampling, where xh2l
i is the synthetic LR

image corresponding to HR image xh
i . The Xh2l allows

to optimise the following Mean Square Error (MSE) which
measures the quality of image super-resolution:

Lsr

(
{xh

i }Ni=1

)
=

1

N

N∑
i=1

‖Fsr(x
h2l
i )− xh

i ‖
2

F . (2)

Minimising the Lsr enforces the super-resolved image
Fsr(x

h2l
i ) of xh2l

i to close to the ground truth HR image
xh
i . High-resolution appearance information is critical for

obtaining reliable re-id features (Li et al. 2015). This op-
timisation (Eq. (2)) establishes the underlying relationship
between LR and HR images in the image pixel space, but
without a guarantee that the synthetic HR images are suit-
able for computing features discriminant for re-id matching.
Reasons are: (1) It is very challenging if possible to train a
perfect image SR model given that it is a non-convex and
difficult-to-optimise problem with complex correlations in-
volved among local and global pixels (Dong et al. 2016).
(2) Artefacts are probably generated, which may negatively
affect the subsequent re-id matching.

To address this limitation, we propose enforcing an iden-
tity constraint to guide the SR optimisation towards an im-
age enhancement solution optimal for identity discrimina-
tion. This design differs from the typical SR objective that
intrinsically seeks for a pixel-level mapping from LR in-
put images to HR groundtruth without a semantic top-down
learning guidance. Interestingly, by merging the re-id learn-
ing on xh

i and xl
i with this semantic constraint on xh2l

i , we
simultaneously accomplish the re-id learning task.
Re-ID Formulation. More specifically, we concurrently
optimise the classification of discriminative features w.r.t the
same person label on HR and synthetic LR images, along
with the cross-view LR images together. Formally, we for-
mulate re-id classification constraint in the context of differ-
ent images as:

Lreid

(
{(xl

i,x
h
i , y

l
i, y

h
i )}Ni=1

)
=

1

N

N∑
i=1

(
Ls

(
Fc(f

h
i ), y

h
i

)
+ Ls

(
Fc(f

h2l
i ), yhi

)
+ Ls

(
Fc(f

l
i ), y

l
i

))
, (3)

where (xl
i,x

h
i , y

l
i, y

h
i ) consists of an LR image from X l and

an HR image from Xh as well as their corresponding iden-

6969



tity labels. Fc(·) and Ls(·) represent a classification and loss
function, respectively. All f notations denote the re-id fea-
ture vectors obtained from the FE function as:

fh
i = Ffe(x

h
i ),f

h2l
i = Ffe

(
Fsr(x

h2l
i )

)
,

f l
i = Ffe

(
Fsr(x

l
i)
)
. (4)

As such, the SR Fsr(·) and FE Ffe(·) functions are jointly
constrained in the re-id optimisation.
Overall Formulation. After combining the SR and re-
id formulation designs as above, we formulate the overall
SING loss function as:

L
(
{(xl

i,x
h
i , y

l
i, y

h
i )}Ni=1

)
=

Lreid

(
{(xl

i,x
h
i , y

l
i, y

h
i )}Ni=1

)
+ αLsr

(
{xh

i }Ni=1

)
,

(5)

where the parameter α controls the balance between image
SR loss and re-id loss. Optimising the joint loss L allows
guiding the Fsr(·) to compensate semantically appearance
details of the LR images towards identity salient fidelity syn-
thesis and concurrently driving the Ffe(·) to extract accord-
ingly identity discriminative features in a harmonious man-
ner. Such a multi-task joint learning formulation is supposed
to suit the LR person re-id problem.
Remark. A key characteristic of the proposed SING formu-
lation (Eq. (5)) is the seamless joining of a restoration quan-
tisation SR loss (Eq. (2)) and a person re-id loss (Eq. (3)),
both subject to the same synthetic LR training image xh2l

i
(Fig. 3(b)) in the context of concurrent identity discriminant
supervision on all three types of training images. That is, the
synthetic LR image xh2l

i and its re-id feature fh2l
i together

bridge and correlate the image SR (Fig. 3(d)) and person
re-id (Fig. 3(e)) learning tasks. Without this connection, the
two loss functions Lsr and Lreid will be optimised indepen-
dently, rather than jointly and concurrently.

SING Instantiation
We choose to realise our SING formulation by deep CNN
models. This is because deep CNN model has the follow-
ing merits: (1) Good at learning discriminative representa-
tions from training data with successful demonstrations on
both image SR (Dong et al. 2016; Wang et al. 2015) and
person re-id (Li et al. 2014; Xiao et al. 2016); (2) Strong ca-
pability of learning non-convex tasks therefore suitable for
handling complex appearance variations from lighting, oc-
clusions and background clutters; (3) High flexibility of re-
formulating the network architecture with the possibility of
avoiding the optimisation algorithm modification. The pro-
posed SING CNN architecture is depicted in Fig. 3.
Network Architecture. Specifically, the SING CNN con-
sists of two sub-networks: (I) SR sub-network which aims to
compensate and recover the information loss in LR images,
i.e., realising Fsr(·). It has two parameter-sharing streams
taking as input xl

i (LR image) and xh2l
i (synthetic LR im-

age), respectively. Following the SRCNN in (Dong et al.
2016), our SR sub-network is constructed by two convolu-
tional (conv) layers followed by a ReLU non-linear layer
and a reconstruction conv layer. The MSE loss function Eq.

(2) is used for quantifying pixel level alignment degree be-
tween the groundtruth HR xh

i and the SR output of xh2l
i in

training. (II) Re-ID sub-network which aims to learn identity
discriminant features, i.e., realising Ffe(·), and also impose
re-id constraints, i.e., realising Fc(·). It has three parameter-
sharing streams taking as input the SR outputs of xh2l

i , LR
image xl

i, and HR image xh
i , respectively. In our implemen-

tation, we adopt the DGD network (Xiao et al. 2016). In each
stream, the penultimate fully connected (FC) layer outputs
the re-id feature, which is then fed into the last FC layer for
identity classification. The summation of all three stream’s
softmax losses (Eq. (3)) is used as the supervision signal
for jointly qualifying the identification of all inputs during
model training. In implementation, we upscale the LR im-
ages to an appropriate size (160×72 in our experiments) by
bicubic interpolation as (Dong et al. 2016).
SR and Re-ID Joint Deep Learning. We achieve an end-to-
end joint learning of image SR and person re-id in the pro-
posed CNN by the multi-purposed synthetic LR image xh2l

i

(Fig. 3(b)). Formally, xh2l
i and its re-id feature fh2l

i function
to join four losses: one SR loss on (xh2l

i , xh
i ) correlated with

three re-id losses on fh2l
i , f l

i and fh
i . It is this loss connec-

tion design that brings more re-id discrimination awareness
into the jointly optimised image SR model. We will evaluate
the effect of this new modelling in our experiments.
LR Re-ID Deployment. In LR re-id deployment, we ex-
tract the re-id features for both LR probe and HR gallery im-
ages and then use the generic L2 distance metric (Eq. (1)) for
re-id matching. For HR images, we directly apply the jointly
learned Re-ID sub-network to compute the re-id features.
For LR images, we apply SR sub-network to super-resolve
them before performing feature extraction as HR ones. We
resize both LR and HR images to the input scale before fea-
ture computation as required by the SING CNN model.

Multi-Resolution Adaptive Fusion
The SING CNN model formulated as above assumes that
all LR images have similar underlying resolutions. This
is due to that the SR sub-network is optimised to super-
resolve images by ratio m or around – the resolution ratio
between synthetic LR and HR images. Consequently, the
learned SING model may be suboptimal when LR-HR im-
age resolution ratio is far from ratio m as possible in prac-
tice since there exist multiple different resolutions in real-
world LR person images2. To address this problem, we pro-
pose to create ϕ anchor SING models {M1,M2, · · · ,Mϕ}
with each responsible for optimising a reference SR ratio in
{m1,m2, · · · ,mϕ} accordingly, and use them jointly to ac-
commodate various resolutions involved in LR re-id match-
ing. Each model Mi can be similarly learned as described
above by the corresponding synthetic LR images Xh2l gen-

2While HR images also have different resolutions, we focus on
handling the LR images in this work. This is because LR images
suffer more significant information loss and therefore the major
cause of degraded re-id matching performance. We assume HR im-
ages share a similar resolution for simplicity. However, the strategy
proposed here can be similarly applied to deal with HR images of
different underlying resolutions.
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erated by ratio mi down-sampling, along with LR and HR
training images. In our evaluations, we used three models
corresponding to down-sampling ratio { 1

2 ,
1
3 ,

1
4}. In deploy-

ment, given an LR probe image, we firstly compute ϕ dis-
tance vectors {Di}ϕi=1 between the probe image and all the
gallery images with each anchor SING model, where Di de-
notes the distance by Mi, i ∈ {1, 2, · · · , ϕ}. Then, we form
a multi-resolution fused distance vector as:

Dmra =

ϕ∑
i=1

wiDi, (6)

where {wi}ϕi=1 represent the weights of the corresponding
distances. To make Dmra resolution adaptive, we consider
the similarity in underlying resolution among the LR probe
image, all HR gallery images, and each SING model. We
quantify the resolution similarity between the LR probe and
HR gallery images as:

r =

√
Ap

Ãg

, (7)

where Ap denotes the spatial area (i.e., pixel number) of
the LR probe and Ãg the mean spatial area of all HR
gallery images. They are computed on the genuine resolu-
tion scales without resizing. We then combine the model
super-resolving ratio mi as:

wi = exp{−σ−2 · (r −mi)
2}, (8)

where σ is a scaling parameter estimated by cross validation.

Experiments
Datasets. We performed evaluations on three simulated and
one genuine LR person re-id datasets (Fig. 4). Instead of as-
suming a single underlying resolution for all LR images, we
consider Multiple Low Resolutions (MLR) as in real-world
situations. Therefore, we used different down-sampling rates
when simulating LR images by low-resolving HR ones.
(1) MLR-VIPeR was constructed from the VIPeR (Gray and
Tao 2008) dataset. VIPeR contains 632 person image pairs
captured by two cameras. Each image is of high resolution
128×48 in pixel. To make this dataset suitable for LR per-
son re-id evaluation, we down-sampled all images from one
camera view by a ratio randomly picked from { 1

2 ,
1
3 ,

1
4},

whilst remaining images of another view the same. This
results in a simulated Multiple Low Resolutions VIPeR
(MLR-VIPeR) dataset.
(2) MLR-SYSU is based on the SYSU dataset (Chen et al.
2017a). SYSU has totally 24,446 images of 502 people cap-
tured by two cameras. We randomly selected three images
per person per camera in our evaluations and created an LR
re-id dataset MLR-SYSU as for VIPeR.
(3) MLR-CUHK03 was built from the CUHK03 (Li et al.
2014) dataset. CUHK03 consists of five different pairs of
camera views, and has more than 14,000 images of 1,467
pedestrians. Following the settings in (Xiao et al. 2016),
both the manually cropped and automatically detected im-
ages were used in our evaluations. For each camera pair, we

(a) MLR-VIPeR (b) MLR-SYSU

(c) MLR-CUHK03 (d) CAVIAR

Figure 4: Examples of HR (1st row) and LR (2nd row) person
images from four datasets.

randomly selected one as LR probe image source by per-
forming similar multi-resolution down-sampling. This re-
sults in a simulated LR re-id dataset MLR-CUHK03.
(4) CAVIAR is a genuine LR person re-id dataset (Cheng et
al. 2011). It contains 1,220 images of 72 persons captured
from two camera views. Albeit in small scale, this dataset
is suitable for evaluating LR re-id because the resolution of
images from one camera (distant) is much lower than that
from the other (close). We discard 22 people who appeared
only in the close camera with HR images. For each of the
remaining 50 used in our experiments, there are 10 HR and
10 LR images, i.e., a total of 1,000 images. Unlike other
simulated datasets, LR images in CAVIAR involves multiple
realistic resolutions.

Table 1: Comparing state-of-the-art LR re-id methods (%).
The 1st/2nd best results are indicated in red/blue.

CAVIAR r=1 r=5 r=10 r=20
JUDEA 22.0 60.1 80.8 98.1
SLD2L 18.4 44.8 61.2 83.6

SDF 14.3 37.5 62.5 95.2
SING 33.5 72.7 89.0 98.6

MLR-CUHK03 r=1 r=5 r=10 r=20
JUDEA 26.2 58.0 73.4 87.0
SLD2L - - - -

SDF 22.2 48.0 64.0 80.0
SING 67.7 90.7 94.7 97.4

MLR-SYSU r=1 r=5 r=10 r=20
JUDEA 18.3 41.9 54.5 68.0
SLD2L 20.3 34.8 43.4 55.4

SDF 13.3 26.7 42.9 66.7
SING 50.7 75.4 83.1 88.1

MLR-VIPeR r=1 r=5 r=10 r=20
JUDEA 26.0 55.1 69.2 82.3
SLD2L 20.3 44.0 62.0 78.2

SDF 9.52 38.1 52.4 68.0
SING 33.5 57.0 66.5 76.6

Evaluation Protocol. We adopted the standard single-shot
re-id setting in our experiments. All datasets except MLR-
CUHK03 were randomly divided into two halves, one for
training and one for testing. That is, there are p = 25, 316
and 251 persons in the testing set of CAVIAR, MLR-VIPeR
and MLR-SYSU, respectively. Following (Xiao et al. 2016),
we utilised the benchmarking 1,367/100 training/test iden-
tity split. On the testing data, we constructed the probe set
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Table 2: Comparing combinations of image super-resolution and person re-id schemes (%).
Super-Resolution Re-ID CAVIAR MLR-CUHK03 MLR-SYSU MLR-VIPeR

Method Method r=1 r=5 r=10 r=20 r=1 r=5 r=10 r=20 r=1 r=5 r=10 r=20 r=1 r=5 r=10 r=20

Bilinear XQDA 22.7 61.4 81.9 98.8 45.5 78.0 87.8 93.7 39.3 67.4 77.2 85.6 37.6 65.7 78.5 89.7
Bicubic XQDA 24.3 63.4 83.1 99.2 45.1 78.1 87.7 93.3 40.0 66.9 77.2 85.5 37.8 66.0 78.9 89.3
SRCNN XQDA 24.8 64.3 84.0 99.1 44.7 77.8 87.5 93.1 40.3 67.3 77.4 85.6 36.5 65.1 78.9 89.8

Bilinear NFST 23.3 60.5 82.2 99.0 48.0 47.9 46.2 49.0 41.6 69.0 79.5 87.7 39.7 68.4 81.0 90.4
Bicubic NFST 24.5 61.1 82.1 99.2 47.9 74.8 83.6 92.8 42.4 69.3 80.5 88.0 39.2 67.9 80.3 90.7
SRCNN NFST 25.0 61.2 82.9 99.2 49.0 74.8 85.0 92.1 43.2 69.6 80.3 88.0 38.6 67.1 79.5 90.1

Bilinear DGD 25.3 61.0 82.6 98.4 58.5 86.0 92.2 96.0 39.6 66.4 74.8 82.5 23.1 45.9 56.6 67.7
Bicubic DGD 27.4 63.4 83.0 98.5 62.5 88.7 93.7 96.5 41.5 67.4 76.9 84.7 25.0 51.3 59.2 69.3
SRCNN DGD 28.4 66.3 85.9 98.5 63.8 89.3 93.9 96.8 42.6 68.2 77.1 85.5 25.3 48.4 57.3 66.5

SING 33.5 72.7 89.0 98.6 67.7 90.7 94.7 97.4 50.7 75.4 83.1 88.1 33.5 57.0 66.5 76.6

with all LR images per person, and the gallery set with one
randomly selected HR image per person. We repeated 10
times of the above random data split. For performance evalu-
ation, we used the average Cumulative Match Characteristic
(CMC) to measure the LR re-id matching performance.
Implementation of SING. We initialised the SR and Re-
ID sub-networks by SRCNN (Dong et al. 2016) pre-trained
on ImageNet-1K and DGD (Xiao et al. 2016) pre-trained
on the training data of Market-1501 (Zheng et al. 2015), re-
spectively. The scaling parameter σ in Eq. (8) was set by
cross validation on the validation set. We set the balance co-
efficient α = 1 (Eq. (5)) which assumes equal importance
between image SR and re-id feature learning.

Comparing State-of-the-Art LR Re-ID Methods
We compared the proposed SING method with three exist-
ing state-of-the-art LR re-id methods: (1) JUDEA (Li et al.
2015) – a cross-scale discriminative distance metric learn-
ing model, (2) SLD2L (Jing et al. 2015) – a feature trans-
formation or alignment model, (3) SDF (Wang et al. 2016)
– a scale-distance function learning model. For both base-
lines, we used the codes provided by the authors. It is evi-
dent from Table 1 that the SING method outperforms both
competitors in most cases, for example, surpassing the best
alternative JUDEA by 11.5%, 41.5%, 32.4%, 7.5% at rank-
1 on CAVIAR, MLR-CUHK03, MLR-SYSU, and MLR-
VIPeR respectively. The performance margins of SING over
the SLD2L and SDF models are larger still3. This indi-
cates the advantages of the proposed SING model in han-
dling both simulated and genuine LR re-id. The performance
superiority is mainly due to: (1) The capability of jointly
super-resolving person images and learning re-id discrimi-
nant features, which allows to maximise their mutual corre-
lation. Compared to cross-resolution alignment based com-
petitor, our model is able to synthesise high-frequency miss-
ing in LR images by re-id discriminative super-resolution
and therefore extract richer representation. This not only di-
rectly mitigates the information amount discrepancy prob-
lem but also fills the hard-to-bridge matching gap between
different resolutions with appearance pattern divergence in-
volved. (2) The deep learning advantages in modelling non-
convex SR and re-id optimisation by learning from multi-
sourced image data in a unified model.

3SLD2L fails to run on MLR-CUHK03 due to out of memory
on a modern workstation with 256 GB memory.

Figure 5: Qualitative examples of super-resolved person
images. The groundtruth HR images are indicated by red
bounding boxes.

Comparing Super-Resolution + Re-ID Scheme
We further evaluated the LR person re-id performance
by deploying a straightforward combination of the super-
resolution and person re-id scheme. While conventional re-
id methods assume HR images, we utilise state-of-the-art SR
models when LR images are given to meet their requirement.
We used the same training images as the proposed SING
to fine-tune the SR models. The proposed multi-resolution
adaptive fusion algorithm was applied to all the compared
methods in a fair comparison principle.
The conventional Re-ID methods considered in our evalua-
tions are: (1) XQDA (Liao et al. 2015): A supervised Ma-
halanobis metric learning method, (2) NFST (Zhang, Xiang,
and Gong 2016): A null subspace learning method, (3) DGD
(Xiao et al. 2016): A widely used deep CNN re-id model. We
utilised the contemporary LOMO hand-crafted feature (Liao
et al. 2015) for the XQDA and NFST methods.
Image SR methods we selected for evaluation include two
standard algorithms and one state-of-the-art: (1) Bilinear: A
popular linear interpolation based SR model which is effec-
tive to handle generic image scaling; (2) Bicubic: Another
widely used image SR method which is an extension of cu-
bic interpolation; (3) SRCNN (Dong et al. 2016): An exist-
ing state-of-the-art deep CNN based SR model.
Evaluating Overall Performance. Table 2 shows that
the proposed SING outperformed all SR+Re-ID methods
on all datasets except MLR-VIPeR. When compared with
SR+DGD, the SING is consistently superior on all datasets
even on MLR-VIPeR. Specifically, the rank-1 matching gain
over all competitors by the SING can reach 5.1%(33.5-
28.4), 3.9%(67.7-63.8), and 7.5%(50.7-43.2) on CAVIAR,
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MLR-CUHK03 and MLR-SYSU, respectively. On MLR-
VIPeR, the best performers are hand-crafted feature LOMO
based models XQDA and NFST. This is reasonable consid-
ering that the MLR-VIPeR training data is sparse (632 im-
ages from 316 person classes). Nevertheless, our SING sur-
passed the deep alternative SRCNN+DGD by 8.2%(33.5-
25.3) rank-1, which validates the benefits of joint learning
SR and Re-ID in the proposed approach.
Effect of Image SR. We examine the effect of only per-
forming image SR for conventional re-id methods on LR re-
id matching performance. It is found in Table 2 that an in-
dependent preprocessing of super-resolving LR person im-
ages can only bring marginal benefits. For example, when
using the DGD re-id model, as compared to Bilinear, SR-
CNN yields merely 3.1%(28.4-25.3) / 5.3%(63.8-58.5) /
3.0%(42.6-39.6) / 2.2%(25.3-23.1) additional rank-1 rates
on CAVIAR / MLR-CUHK03 / MLR-SYSU / MLR-VIPeR,
respectively. The positive effect of SR for XQDA and NFST
is even more limited. In comparison, the performance advan-
tages of the SING over SRCNN+DGD can be observed on
all datasets, achieved by learning the two models jointly with
a single multi-task loss optimisation in an end-to-end man-
ner. This suggests that directly applying existing SR models
cannot solve the LR re-id problem, although they can pro-
duce visually favourable HR images (Fig. 5).
Qualitative Evaluation. We compared the super-resolved
person images produced by Bilinear, Bicubic, SRCNN and
our SING. Two examples are shown in Fig. 5. We have the
following observations: (1) Super-resolved images by Bilin-
ear and Bicubic are more blurry than those by SRCNN and
SING. (2) More edge/contour elements and better texture
patterns are recovered by SING. (3) The colour distributions
of resolved images by SING are most similar to the ground
truth. This visually indicates the advantages of SING over
SR+Re-ID methods – due to the capability of recovering
missing appearance details whilst ensuring high re-id dis-
crimination. Note that the PSNR scores for the top/bottom
images in Fig. 5 are 19.04/21.25 by bilinear, 19.24/21.60
by bicubic, 19.86/22.72 by SRCNN, 17.95/18.97 by ours.
Among them, our method achieves lower PSNR in contrast
to the re-id performance comparison. This confirms that the
PSNR is not a high-level perceptual quality measurement,
but a low-level pixel-wise metric.

Table 3: Effect of jointly super-resolving and classifying
synthetic LR images (%).

Models
CAVIAR MLR-CUHK03 MLR-SYSU MLR-VIPeR

r=1 r=1 r=1 r=1
SING(No Synthetic LR) 25.8 57.1 38.7 23.1

SING 33.5 67.7 50.7 33.5

Further Analysis of SING
Effect of Synthetic LR Images in SING. We evaluated the
contribution of joint super-resolving the synthetic LR im-
ages by the MSE loss (Eq. (2)), in conjunction with classi-
fying the resolved image (Eq. (3)). To this end, we evaluate
a stripped-down SING without the stream of the synthetic
LR images (see the “green” arrows in Fig. 3). As such, the
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Figure 6: Effect of balancing image SR and person Re-ID
loss.

Table 4: Effect of scale adaptive low-resolution fusion (%).
Models

CAVIAR MLR-CUHK03 MLR-SYSU MLR-VIPeR
r=1 r=1 r=1 r=1

M 1
2

29.5 63.1 44.0 28.5
M 1

3
27.2 62.6 45.1 30.7

M 1
4

27.4 61.6 44.6 30.1
M 1

2
+M 1

3
31.1 66.8 48.6 31.3

M 1
2

+M 1
4

31.9 64.7 48.6 32.0
M 1

3
+M 1

4
29.9 63.6 49.5 32.6

M 1
2

+M 1
3

+M 1
4

33.5 67.7 50.7 33.5

MSE SR loss is removed due to no LR-HR training image
pairs available. Table 3 shows that inferior LR re-id perfor-
mance will be generated without this joint learning stream.
For example, the rank-1 rate drops from 33.5% to 25.8% on
CAVIAR, from 67.7% to 57.1% on MLR-CUHK03, from
50.7% to 38.7% on MLR-SYSU, from 33.5% to 23.1% on
MLR-VIPeR, respectively. This drop suggests the positive
impact of the proposed joint learning approach in guiding
the image SR model towards generating HR images with re-
id discriminative visual information.
Effect of Multi-Resolution Adaptive Fusion. We
evaluated the LR re-id performance of 6 combination
schemes from 3 different resolution-specific SING models
{M 1

2
,M 1

3
,M 1

4
}. Table 4 shows that fusing more resolu-

tions leads to better results with the best overall performance
yielded by fusing all three resolution-specific SING mod-
els. More broadly, this finding is consistent in spirit with
the classical pyramid matching kernel (Grauman and Dar-
rell 2005; Lazebnik, Schmid, and Ponce 2006) with the dif-
ference that our multi-resolution fusion is uniquely on mod-
elling multiple resolutions rather than multiple spatial de-
compositions of a single resolution.
Effect of SR and Re-ID Loss Balancing. We evaluated the
balancing effect between image SR and person re-id loss by
varying the trade-off parameter α in Eqn. (5) (α = 1 in all
other experiments). We conducted this analysis on the gen-
uine LR dataset CAVIAR and the simulated MLR-VIPeR.
Figure 6 shows that: (1) When setting α = 0, the rank-1
performances drop from 33.5% to 26.6%, 33.5% to 25.0%
on CAVIAR and MLR-VIPeR, respectively. This is because
SR reconstruction is totally ignored and thus there is no in-
teraction between SR and re-id. (2) When setting a large α,
e.g., > 1, the image SR reconstruction loss will dominate
the joint learning. This adversely affects discriminant fea-
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ture extraction. This evaluation implies that both SR and re-
id modelling can be similarly important for LR re-id.

Conclusion
In this work, we present for the first time an image SR
and person re-id joint formulation SING for tackling the
under-studied LR re-id matching problem. We realise this
approach by designing a hybrid deep CNN architecture for
not only achieving highly non-convex SR and re-id func-
tions but also enjoying an end-to-end joint optimisation in
order to maximise complementary advantages, i.e., the ded-
ication of image SR for LR re-id matching. Moreover, we in-
troduce an adaptive fusion algorithm for handling the largely
ignored multi-resolution problem. By extensive comparative
evaluations on both simulated and genuine LR person re-id
datasets, we have shown the superiority of our SING ap-
proach over a wide variety of state-of-the-art re-id and SR
methods. We also provide in-depth component examinations
and analysis for giving insights on the SING model design.
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