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Abstract

As most recently proposed methods for human detection have
achieved a sufficiently high recall rate within a reasonable
number of proposals, in this paper, we mainly focus on how to
improve the precision rate of human detectors. In order to ad-
dress the two main challenges in precision improvement, i.e.,
i) hard background instances and ii) redundant partial pro-
posals, we propose the novel PoseHD framework, a top-down
pose-based approach on the basis of an arbitrary state-of-the-
art human detector. In our proposed PoseHD framework, we
first make use of human pose estimation (in a batch manner)
and present pose heatmap classification (by a convolutional
neural network) to eliminate hard negatives by extracting the
more detailed structural information; then, we utilize pose-
based proposal clustering and reranking modules, filtering
redundant partial proposals by comprehensively considering
both holistic and part information. The experimental results
on multiple pedestrian benchmark datasets validate that our
proposed PoseHD framework can generally improve the over-
all performance of recent state-of-the-art human detectors (by
2-4% in both mAP and MR metrics). Moreover, our PoseHD
framework can be easily extended to object detection with
large-scale object part annotations. Finally, in this paper, we
present extensive ablative analysis to compare our approach
with these traditional bottom-up pose-based models and high-
light the importance of our framework design decisions.

Introduction

Human detection, a long-standing task in computer vision,
has been extensively studied due to its wide applications
such as robotics, surveillance, and semantic understanding
of video footage. There have been a number of recently pro-
posed human detectors (Girshick et al. 2014; Girshick 2015;
Ren et al. 2015; Redmon and Farhadi 2017; Liu et al. 2016;
Zhang et al. 2016a), and most human detectors perform well
in terms of their recall rates. However, these approaches nor-
mally suffer from low precision rates.

The challenges of improving precision are two-fold. The
first is the hard background instances (hard negatives). Some
non-human instances (such as the pillar and the helmet in
Figure 1b) are identified as human because their overall ap-
pearance is human-like (containing some head-like and torso-
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(a) Positive instances (b) Hard negative instances

(c) Redundant partial proposals (in blue box)

Figure 1: Two typical challenges of human detection: i) hard
background instances (in Figure 1b), and ii) redundant partial
proposals (in Figure 1c). In Figure 1a and Figure 1b, images
in the first row are some example proposals, and those in the
second row are the heatmaps containing all human keypoints.
In Figure 1c, we include the human pose for each proposal.

like parts). It is impractical to collect all these examples as
training data. The second challenge is redundant partial pro-
posals (as illustrated in Figure 1c). These partial proposals are
produced mainly because of the occlusion examples (where
only part of the human body is visible) in the training data.
In order to correctly detect these examples, the models are
encouraged to also generate some partial proposals in their
predictions. These proposals are too difficult to be eliminated
by the non-maximum suppression (NMS).

In this paper, our core insight is to introduce pose informa-
tion to human detectors in a top-down way. We review the
mechanism of how we recognize a human: apart from overall
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appearance, we also employ more structural details of human
posture to confirm our judgment. The benefits of incorporat-
ing pose prior to human detectors are two-fold. First, we can
eliminate hard negatives by utilizing the structural informa-
tion provided by human pose to verify whether a proposal is
human. Second, the structural information gives measure of
how much the human instance is covered, thereby penalizing
the partial proposals.

Specifically, we extract the pose heatmaps for each pro-
posal by a batch estimation algorithm and perform classifica-
tion on these heatmaps to eliminate the hard negatives. Then,
we group the proposals of the same human instances together
by pose-based proposal clustering. We can then filter out
partial proposals by removing anomalies from each cluster.
Experimental results on multiple benchmarks validate that
our PoseHD framework is able to improve the performance
of human detectors.

Prior work has explored pose information in a bottom-up
manner, whereas we take a top-down approach. Specifically,
the previous bottom-up frameworks detect the human key-
points first, and then produce the proposals by grouping these
keypoints together; however, our top-down framework pre-
dicts the proposals directly, and then employs the human
keypoints to refine the prediction. The motivation for these
two frameworks is entirely different: the bottom-up frame-
work aims to improve the recall rates since the keypoints are
much easier to detect than the proposals, while our top-down
framework aims to improve the precision rates because the
human pose provides extra information to remove the false
positives. As recent human detectors achieve high recall rates,
we believe that the bottom-up method (precision rates) should
be studied more.

In summary, this paper has three major contributions:
1. We provide a new methodology for improving the human

detectors by introducing pose information in a top-down
manner.

2. We employ a novel combination of modules (pose esti-
mation and classification) to filter out the hard negatives
effectively.

3. We propose a novel technique (pose-based proposal clus-
tering and reranking) to identify and eliminate the partial
proposals.

Related Work

Our framework draws on recent work in human detection and
part-based models (both with and without part annotations).

Human Detection Several pioneering approaches (Dollár
et al. 2009; Dollar et al. 2014; Nam, Dollár, and Han 2014;
Benenson et al. 2014) have demonstrated the effectiveness
of the hand-crafted features, including the integrated chan-
nel feature (ICF). With the introduction of convolutional
neural networks (CNN) to object detection, many recent
human detectors (Benenson et al. 2014; Tian et al. 2015b;
Tian, Yonglong et al. 2015) are based on state-of-the-art
networks, such as R-CNN (Girshick et al. 2014). To our
knowledge, most state-of-the-art human detectors (Hosang
et al. 2015; Tian et al. 2015b; Tian, Yonglong et al. 2015;

Cai, Saberian, and Vasconcelos 2015) are hybrid models
that employ only hand-crafted features (Dollár et al. 2009;
Dollar et al. 2014) and deeply learned features (Krizhevsky,
Sutskever, and Hinton 2012; Simonyan and Zisserman 2015).
Our PoseHD framework, on the other hand, uses structural
pose information to enhance the state-of-the-art.

Part-Based Human Detectors without Part Annotations
One stream of part-based human detectors is the models
without part annotations. These models are trained only using
the annotations of human proposals, and among these models,
the deformable part model (DPM) (Felzenszwalb, McAllester,
and Ramanan 2008) is the most classic one: it captures a
fixed number of part templates by the HOG feature (Dalal
and Triggs 2005). Based on the DPM, a set of models with
different geometry structures (Song et al. 2013; Lin et al.
2015) are investigated by researchers, and some other DPM-
based models (Fidler et al. 2013; Song et al. 2011; Zhang et al.
2011; Mottaghi 2012; Khan et al. 2012) incorporate different
features from HOG. With the help of deep learning, several
higher level features are introduced to the human detectors to
further improve the performance (Ouyang and Wang 2012;
2013; Tian et al. 2015a; Luo et al. 2014).

In summary, these part-based models (without part anno-
tations) select latent human parts according to some energy
function defined by the features (such as HOG) and the rela-
tive position and scale of different part proposals. However,
without explicit part annotations, these models cannot make
use of semantic information about human parts. Also, since
there is no extra information provided to these models, it is
difficult to extract the implicit structure of human keypoints,
which is very important for eliminating the hard negatives
and partial proposals.

Part-Based Human Detectors with Part Annotations
Our PoseHD framework falls into this category, where the
models are trained with the annotations of human parts.
(Chen et al. 2014) demonstrates a typical pipeline for
these models: separately train the detectors for each part
and combine the parts together to obtain the human pro-
posals. Several researchers also build their human detec-
tors in this way (Mohan, Papageorgiou, and Poggio 2001;
Mikolajczyk, Schmid, and Zisserman 2004; Wu and Neva-
tia 2005; Enzweiler et al. 2010; Bourdev and Malik 2009;
Bourdev et al. 2010; Zhang et al. 2014). In particular, (Bour-
dev and Malik 2009) and (Bourdev et al. 2010) introduce the
concept of poselets (a novel definition of human parts), detect
poselets by sliding windows, employ the spatial context to
rescore the poselets, and cluster the poselets together to form
the human proposals. This methodology can be also applied
to human segmentation. In (Popa and Sminchisescu 2015),
they first predict some segmentation candidates, match them
with a set of mask priors, and finally fuse these priors together
to obtain the prediction.

In spite of sharing some similarities with the previous part-
based models, our top-down approach can generally achieve
a higher recall rate compared to these bottom-up frameworks.
Furthermore, our objective of introducing the human parts
is to improve the precision rates (reject the hard negatives
and partial proposals) by extracting the more detailed struc-
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Figure 2: The illustration of our PoseHD framework. Given the initial proposals from human detector, our PoseHD framework
makes use of the pose estimation and classification and pose-based proposal clustering and reranking modules to eliminate the
hard background instances and redundant partial proposal, respectively.

tural information rather than improving the recall rates by
addressing the problem of object occlusions.

Pose-Based Human Detection System

Our PoseHD framework is illustrated in Figure 2. Given an
input image, we make use of an arbitrary human detector to
generate initial proposals. Then, we apply pose estimation
on these proposals (in a batch manner for efficiency) to pro-
duce a heatmap for each human keypoint. We perform binary
classification on these pose heatmaps to eliminate false posi-
tives from initial proposals. Finally, we cluster each proposal
based on keypoint location and rerank the proposals based on
pose features to filter out partial proposals. Note that although
we focus on human detection, each of our modules can be
applied generically in other object categories.

Initial Human Proposals

We use an off-the-shelf human detector (Ren et al. 2015; Liu
et al. 2016; Redmon and Farhadi 2017) for producing initial
proposals. We demonstrate more details of how to modify
these human detectors for our purposes in the EXPERIMENTS
section.

Most state-of-the-art human detectors can achieve a suffi-
ciently high recall rate within a reasonable number of propos-
als. For instance, on the PASCAL VOC 2007 (Everingham et
al. 2010) dataset, FRCNN (Ren et al. 2015) achieves a recall
rate of 97% within 100 proposals while SSD (Liu et al. 2016)
achieves 95% with only 40 proposals. This inspires us to put
our focus on improving the precision rate (eliminating false
positives from the initial proposals) in order to further boost
the overall performance of human detectors.

Hard Negative Elimination

We present a novel scheme to eliminate the hard background
instances using pose information.

Pose Estimator Given the image of a proposal as input, a
human pose estimator (Cao et al. 2017) outputs a set of pose
heatmaps {Hp}. In the pth pose heatmap, Hp(x, y) represents
the likelihood that (x, y) belongs to the pth keypoint. We refer
readers to (Cao et al. 2017) for more details. Note that we
can easily substitute other pose estimators in our PoseHD
framework.

True and False Positives Classification With the pose
heatmaps, it is then possible to verify whether a proposal is
a false positive by the structural information of human pose.
The pose heatmaps of most false positives are similar to the
examples in Figure 1b, satisfying one of the two patterns: i)
for most keypoints, the pose heatmap is “cold” (low confi-
dence) or ii) the relative position of keypoints violates the
structural constraints of a human. Due to these patterns, we
pose the elimination of false positives as a two-category (true
positives and false positives) classification problem. Techni-
cally, we stack the pose heatmaps together as a multi-channel
image and use the convolutional neural network to distin-
guish the false positives from true positives. More details
can be found in the EXPERIMENTS section. After training
the network, we eliminate the proposals that are classified as
false positives.

Pose-Based Proposal Clustering and Reranking

After eliminating the hard negatives via classification, our
goal is to filter out the partial proposals. For each ground-truth
human instance, there is likely at least one sufficiently accu-
rate (IoU ≥ 0.5) initial proposal, since our human detectors
achieve high recall rates. In order to select one best proposal
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for each human instance, we follow a two-step framework.
First, we determine which proposals correspond to the same
human instance (clustering). Then, for each set of proposals,
we select one optimal proposal with respect to some criterion
(ranking).

In order to cluster the proposals, we must define a distance
metric between pairs of proposals. With the human keypoints,
our motivation is to measure the distance by the similarity
between human poses of two proposals. We consider both
a box-based metric and a pose-based metric; however we
find both intuitively and empirically, the pose-based metric
outperforms the box-based metric. In Figure 3, we can see
that the pose-based distance can better distinguish between
two distinct human instances with very close bounding boxes
(by more semantic information of human instances).

Formally, let hi and wi denote the height and width of
the ith proposal, Hip denote the heatmap for the pth human
keypoint, (xip, yip) denote the location with maximum value
in Hip, and vip denote the maximum value. The pose-based
distance between the ath and bth proposal is defined as

distP(a, b) =

∑
p min(vap, vbp) · dist2(a, b, p)∑

p min(vap, vbp)
, (1)

where dist2(a, b, p) is the normalized euclidean distance be-
tween the pth keypoint of the ath and bth proposal:

dist2(a, b, p) =

√(
xap − xbp

ha + hb

)2

+

(
yap − ybp
wa + wb

)2

. (2)

In Equation 1, the coefficients min(vap, vbp) are used to
ensure that dist2(a, b, p) is taken into account if and only if
the pth keypoint appears in both proposals, and the denomina-
tor

∑
p min(vap, vbp) normalizes the distance by the number

of keypoints that appear in both proposals. In Equation 2, the
denominators ha + hb and wa + wb are used to normalize
for the size of the proposal in each dimension.

After we compute the pose-based distance between each
pair of proposals, we perform the agglomerative hierarchical
clustering (Larsen and Aone 1999) to cluster the propos-
als. We iteratively merge clusters until each pair of clusters
exceeds a distance threshold D (a domain-specific hyper-
parameter). By properly setting the distance threshold D,
we ensure that most clusters correspond to a unique human
instance in the image.

Let Ck denote the kth cluster. In order to determine the
representative proposal rk within the kth cluster Ck, we select
the one with the largest overlapping rate with the ground-truth
human instances (denote as o(·)) among all proposals p in
this cluster Ck:

rk = arg max
p∈Ck

o(p) ⇐⇒ ∀p ∈ Ck : o(rk) ≥ o(p). (3)

Following this intuition, we pose the selection of represen-
tative proposals as a ranking problem (Joachims 2002). The
setup is to design a feature vector f(p) for each proposal p
and to learn a weight vector θ such that the representative
proposal rk is expected to rank higher than all the other pro-
posals p with respect to the ranking criterion R(p) = θTf(p):

∀p ∈ Ck : R(rk) = θTf(rk) ≥ θTf(p) = R(p). (4)

(a) Proposals (b) Box-based view (c) Pose-based view

Figure 3: Clustering of proposals from box-based and pose-
based perspective. From the box-based view (in Figure 3b),
the proposal in black will clearly be assigned to the proposal
in red since the black box is fully contained in the red box,
while from the pose-based view (in Figure 3c), it will then be
assigned to the proposal in blue, because its posture is highly
overlapped with the blue one.

Another approach is to use linear regression to learn a
weight vector θ such that θTf(p) ≈ o(p). However, empir-
ically, we find that learning the exact value of o(p) is ex-
tremely hard, which, we conjecture, is because of the high
variance of f(p) and the highly non-linear relationship be-
tween o(p) and f(p). Since we are more concerned with
maintaining the relative order of proposals, rather than pre-
cisely estimating the overlapping rate of each individual pro-
posal, the ranking solution is more suited to our purposes
than linear regression.

In this paper, we employ a four-dimensional feature for
the ith proposal, capturing both holistic and part information.
The feature vector is composed of the following quantities:

• Confidence score given by the human detector.

• Normalized area size of the proposal: hiwi/h
M
k w

M
k . Here,

hi and wi are the height and width of the proposal, while
hM
k and wM

k (where i ∈ Ck) are the median height and
median width of the proposals in the same cluster.

• Overall pose energy of the proposal:
∑

p vip. This value is
essentially a soft count of the keypoints that have appeared
in the proposal.

• Overlapping rate with the average pose of the cluster. Since
the proposals in the same cluster always correspond to the
same human instance, the average pose will then have
fewer uncertainties, and it can roughly infer the region of
human proposal. The average pose is computed by the
pixel-wise average of heatmaps on the kth cluster (where
i ∈ Ck), which is

Hk
p (x, y) =

1

|Ck|
∑
j∈Ck

Hjp(x− xj , y − yj), (5)

where (xj , yj) denotes the top-left corner of the jth pro-
posal. We extract the keypoints on Hk to form the average
pose. Finally, the overlapping rate is computed by the in-
tersection over union (IoU) between the ith proposal and
the bounding box of average pose of the kth cluster.
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For training the proposal reranking algorithm, we make
use of the LambdaMART (Wu et al. 2010) implementation
in RankLib, which solves the ranking problem by forests
of boosted decision trees. After learning the weight vector
θ, we select the representative proposal for each cluster by
R(p) = θTf(p), and remove all non-representative proposals
in order to eliminate the partial proposals.

Discussion The non-maximum suppression (NMS) can be
seen as a non-semantic version of our two-step approach: it
utilizes an IoU-based distance for clustering in the first step,
and in the second step, it employs the area size as the ranking
criterion. In this sense, our framework is more general than
the NMS algorithm and allows us to incorporate semantic
information (human pose). Furthermore, several bottom-up
models (Bourdev and Malik 2009; Bourdev et al. 2010) also
employ clustering in their frameworks, but the motivation is
entirely different: these bottom-up models use the clustering
to group keypoints together to form the proposals, while
our top-down framework employs the clustering to group
proposals together to remove partial proposals.

Batch Estimation Algorithm for Acceleration

Even though (Cao et al. 2017) runs in real-time, the time
overhead of calling the pose estimator for all initial proposals
is still prohibitive. However, we leverage the fact that the
human pose estimator is agnostic to the number of human
instances and can therefore generate heatmaps for multiple
proposals simultaneously. We propose the following batch
pose estimation algorithm to reduce the number of calls to
pose estimator. First, we group the proposals with IoU ≥ γ
together by greedy merging. Then, we call the pose estimator
on the tightest bounding box that encompasses all proposals
in each group. Finally, the pose of each proposal is cropped
out according to the area covered by the original proposal.

Our method reduces the number of calls to human pose esti-
mator from once per proposal to once per group. We can also
trade off between time and accuracy by increasing/decreasing
γ. If γ is set to be 0, we call the pose estimator once for the
entire image and crop the pose heatmaps for all proposals
simultaneously. Although this is fast, the resulting poses are
inaccurate since the recall rate of (Cao et al. 2017) is rela-
tively low (see the ABLATION STUDY section). On the other
hand, if γ is set to be +∞, we revert to our original algorithm,
calling to the pose estimator once per proposal.

Experiments

Datasets

The performance of PoseHD is evaluated across three pedes-
trian benchmark datasets: INRIA (Dalal and Triggs 2005),
ETH (Ess, Leibe, and Van Gool 2007) and PASCAL VOC
2007 (Everingham et al. 2010). Note that for the PASCAL
VOC 2007 dataset, we only use the data from human category
during training and testing.

Evaluation Metrics

The IoU threshold used to determine the true positives is
set to be 0.5, and the evaluation metrics we used are mean

Average Precision (mAP) (Everingham et al. 2010) and log-
average Miss Rate on False Positive Per Image in [10−2, 1]
(MR) (Zhang et al. 2016b). These two metrics characterize
the detection performance from two slightly different aspects,
and their values might not be totally correlated.

Experiment Settings

In this section, we describe some experimental settings and
details about generating data and training models.

Human Proposals with High Recall Rate We perform
our experiments based on FRCNN (Ren et al. 2015), SSD
(Liu et al. 2016) and YOLOv2 (Redmon and Farhadi 2017).
In these human detectors, confidence score thresholding and
non-maximum suppression (NMS) are normally used to re-
duce the number of output proposals; however, reducing the
number of output proposals diminishes the recall rate. There-
fore, we remove these two steps from our human detector, and
instead, we generate a more reasonable number of proposals
by selecting the top-k proposals (with respect to the confi-
dence scores) without thresholding. Empirically, we found
that k = 100 is a good setting for these baselines to produce
proposals with high recall rate.

Hard Negative Elimination We make use of the trained
real-time multi-person pose estimator (Cao et al. 2017) to
produce the pose heatmaps, and in the batch estimation algo-
rithm, we use a different IoU threshold γ on each dataset to
ensure a constant number of calls to the pose estimator.

For the classification network, we use a slightly modified
version of AlexNet (Krizhevsky, Sutskever, and Hinton 2012).
We change the number of input channels of the first convo-
lutional layer from 3 (RGB channels) to 18 (the number of
human keypoints) and resize the pose heatmaps to 224×224
in order to fit the input size of AlexNet.

Because the proposals from human detectors are usually
limited in size and biased to one category (most proposals are
false positives), we augment the dataset by generating some
examples based on the annotations: a large number of pro-
posals are sampled around the ground-truth human instances,
and then each proposal is labeled as true or false positive if
its overlapping rate (with ground-truth human instances) is
large or small respectively. During training, we horizontally
flip each proposal to double the size of our dataset.

We use TensorFlow (Abadi et al. 2016) and Nvidia Titan
X GPU to train the classification network. We initialize the
weights randomly from scratch, and the optimization is car-
ried out using Adam (Kingma and Ba 2015) with β1 = 0.9
and β2 = 0.999. We use a fixed learning rate of γ = 10−3

and mini-batch size of 128.

Pose-Based Proposal Clustering and Reranking For the
proposal clustering, we set a different distance threshold D
for each human detector and each dataset. In our experiments,
we only use part of the features in LambdaMART since we
are only scoring the 1/0 loss on the representative proposals,
rather than scoring the ranked results by an IR-style metric.
Similar to the training of classification network, we also aug-
ment the dataset with some generated examples: we produce
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INRIA ETH PASCAL VOC 2007

Model mAP MR mAP MR mAP MR

FRCNN (Ren et al. 2015) 88.8 12.1 66.0 62.7 75.8 30.8
Pose-FRCNN 90.3 8.9 69.8 58.1 78.8 27.8
Improvement 1.5 3.2 3.8 4.6 3.0 3.0

SSD (Liu et al. 2016) 82.0 14.6 67.8 56.1 76.7 30.0
Pose-SSD 86.1 10.9 69.6 52.5 80.7 25.9

Improvement 4.1 3.7 1.8 3.6 4.0 4.1

YOLOv2 (Redmon and Farhadi 2017) 88.9 12.0 59.5 70.6 79.1 27.4
Pose-YOLOv2 90.4 8.9 61.5 67.4 80.3 25.1
Improvement 1.5 3.1 2.0 3.2 1.2 2.3

Average improvement 2.4 3.3 2.6 3.8 2.7 3.1

Table 1: Human detection performance on three benchmark datasets (Dalal and Triggs 2005; Ess, Leibe, and Van Gool 2007;
Everingham et al. 2010). In this table, rows in gray contain results by applying the PoseHD on top of the corresponding baseline.

a cluster of proposals by sampling several bounding boxes
near one ground-truth human instance.

Results

We present the performance on multiple pedestrian bench-
mark datasets in Table 1, where all baseline detectors fol-
low their default settings in their original papers. Our pro-
posed PoseHD framework improves on these strong baselines
across several datasets, and in average, we observe a 2-4%
performance gain in both mAP and MR metrics.

As observed in Table 1, our PoseHD framework is fairly
effective for human detectors which can produce proposals
with high recall rate (such as FRCNN and SSD), while the
improvements achieved on these with lower recall (such as
YOLO) are relatively smaller. We conjecture that this might
be because YOLO mainly suffers from the localization of
bounding boxes and gives fewer predictions of background
instances than the other two approaches (a similar conclusion
has been drawn by (Redmon et al. 2016)).

Discussion

As some current detectors aim at real-time performance, we
briefly analysis the tradeoff between the 2-4% performance
gain and the computational overhead of PoseHD framework.
Because the inference time of AlexNet is small enough to
be omitted, the extra computation mainly falls in detecting
human pose for each initial proposal, which by batch esti-
mation algorithm, requires constant times of human pose
estimation. Since (Cao et al. 2017) can be run at real-time,
and all predictions can be run in parallel, the time overhead is
relatively minor. In addition, because optimizing pose estima-
tion is an active area of research, we expect that the overhead
of running pose estimation in our framework will be small
enough for real-time human detection in the near future.

Our PoseHD framework can be extended to object detec-
tion if provided with a large-scale object dataset with part
annotations, since the concept of human keypoints is a subset
of object parts. However, the number of part annotations for
most object categories (e.g. in the PASCAL-Part dataset) is
still very limited, and therefore, we intend to include this in
future research.

Ablation Study

In order to highlight the importance of our design decisions
in the PoseHD framework, we present the results of several
ablation analysis. We provide a quantitative comparison be-
tween the top-down and bottom-up frameworks to distinguish
our approach from these traditional pose-based models. All
experiments in this section are conducted based on the IN-
RIA (Dalal and Triggs 2005) dataset with SSD as the baseline
human detector.

Effectiveness of Building Blocks

Our PoseHD framework has two building blocks: i) hard
negative elimination (HNE), and ii) pose-based proposal clus-
tering and reranking (PPCR). They are proposed to eliminate
hard negatives and partial proposals, respectively.

We conduct ablation analysis by removing these two mod-
ules from the PoseHD framework, and present the results in
Table 2. Note that, after removing the PPCR from PoseHD,
we apply the NMS algorithm with IoU threshold 0.5 instead
for fair comparison.

From Table 2, both HNE and PPCR are indispensable for
our PoseHD framework, each of which gives a roughly 2%
boost in mAP, and their effects are orthogonal to each other.

Moreover, the PPCR alone can be seen as an extension
of the NMS algorithm. From this table, the NMS algorithm
achieves a reduction from 100 to 6 proposals while the PPCR
gives a reduction from 100 to 3 (with roughly the same recall
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Model Proposal Number Recall Rate mAP

Pose-SSD 2.9 / image 98.0% 86.1

without HNE 3.0 / image 99.3% 83.6
without PPCR 5.6 / image 98.1% 84.4

Original SSD 6.0 / image 99.8% 82.0

Table 2: Ablation analysis of building blocks of the PoseHD
framework. In this table, HNE represents Hard Negative
Elimination and PPCR represents Pose-Based Proposal Clus-
tering and Reranking.

Model mAP

Pose-SSD 86.1
without confidence score by human detector 84.4

without normalized area size of proposal 85.6
without overall pose energy of proposal 84.7

without overlapping rate with average pose 83.5

Original SSD 82.0
Oracle Pose-SSD 86.8

Table 3: Ablation analysis of different features for proposal
reranking. In this table, Oracle Pose-SSD represents the mod-
ified Pose-SSD system (with the knowledge of overlapping
rate during proposal reranking).

rate). In the supplementary material, we also showcase some
examples that compare the predictions of NMS and PPCR.
In these examples, the PPCR generally removes most partial
proposals from initial prediction, while in some other cases
(the last example in the second row), the partial proposals
are not entirely removed mainly because our keypoint-based
distance metric is not resilient to inaccurate pose predictions.
However, with the further research on human pose estimator,
we believe that this issue will be gradually addressed.

Effectiveness of Different Features

During the proposal reranking, we compute four features to
train the ranking function. To highlight their effectiveness,
we conduct ablative analysis by removing each feature from
the framework. In order to show the potential of designing
features, we also construct the Oracle PoseHD framework,
which directly uses the overlapping rate as ranking function.

Table 3 suggests that overlapping rate with average pose
and confidence score by human detector are the most impor-
tant classes of features since they provide a sense of how a
proposal looks like human from both holistic and part view.
Also, the Oracle Pose-SSD achieves a 1% gain compared to
the original Pose-SSD, which means that there is still much
room for feature design.

Model Recall Rate mAP MR

Pose-FRCNN 98.1% 90.3 8.9

Pose-YOLOv2 98.0% 90.4 8.9

Pose-SSD 98.0% 86.1 10.9

(Cao et al. 2017) 92.5% 83.5 32.0

Table 4: Comparison between the top-down and bottom-up
frameworks. In this table, (Cao et al. 2017) represents the
bottom-up human detectors adapted from Cao et al..

Comparison with Bottom-Up Models

Our PoseHD framework is designed in a top-down manner
while most related work (Bourdev et al. 2010; Enzweiler et al.
2010; Chen et al. 2014) falls into the bottom-up framework
(two types of frameworks are explained in INTRODUCTION).
Since most bottom-up models do not even use deep learning,
it is impractical to plug them in the state-of-the-art systems.
On the other hand, it is unfair to compare with their original
results (most of them only achieve roughly 50 in mAP on the
PASCAL VOC dataset).

To quantitatively compare these two kinds of frameworks,
we adapt the (Cao et al. 2017) into a bottom-up human detec-
tor. In detail, we compute bounding box of keypoints for each
human pose, and train a linear regressor to finetune the bound-
ing boxes (since the bounding box of keypoints is typically
slightly different from the human proposal). This system can
be seen as an upgraded version of previous bottom-up models
since in (Cao et al. 2017), they first detect human keypoints,
and then group them into different human poses.

From Table 4, the PoseHD systems significantly outper-
form the modified (Cao et al. 2017) in both mAP and MR
metrics, which is because the modified (Cao et al. 2017) has a
comparatively low recall rate. This result gives us a sense that
top-down framework is more appealing when the recall rate
is already high enough, and we believe these two frameworks
will indeed complement each other in precision and recall
improvement.

Conclusion

In this paper, we summarized two main challenges of current
human detectors: hard background instances and redundant
partial proposals, and we proposed a novel PoseHD frame-
work, a top-down pose-based approach with several effective
techniques. Our PoseHD framework is generic enough to be
plugged into any existing human detector, and the experimen-
tal results on several benchmarks suggest that it is able to
boost the overall performance of many human detectors. We
also presented analytical and quantitive comparisons between
bottom-up pose-based models and our top-down framework.

There are multiple aspects in our current framework that
we intend to include in our future work: i) improving the
localization of proposals with pose information and ii) ex-
tending our framework to object detection. We believe that
our methodology will help advance the state-of-the-art in
object detection.
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