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Abstract

In this paper, we reconsider the clustering problem for im-
age over-segmentation from a new perspective. We propose a
novel search algorithm named “active search” which explic-
itly considers neighboring continuity. Based on this search
method, we design a back-and-forth traversal strategy and
a “joint” assignment and update step to speed up the algo-
rithm. Compared to earlier works, such as Simple Linear It-
erative Clustering (SLIC) and its follow-ups, who use fixed
search regions and perform the assignment and the update
step separately, our novel scheme reduces the number of itera-
tions required for convergence, and also improves the bound-
ary sensitivity of the over-segmentation results. Extensive
evaluations on the Berkeley segmentation benchmark verify
that our method outperforms competing methods under var-
ious evaluation metrics. In particular, lowest time cost is re-
ported among existing methods (approximately 30 fps for a
481 × 321 image on a single CPU core). To facilitate the
development of over-segmentation, the code will be publicly
available.

1 Introduction

Superpixels, generated by image over-segmentation, take
the place of pixels to become the fundamental units in
various computer vision tasks, including image segmenta-
tion (Cheng et al. 2016), image classification (Wang et al.
2013b), 3D reconstruction (Hoiem, Efros, and Hebert 2005),
object tracking (Wang et al. 2011), etc. Such a technique
can greatly reduce computational complexity, avoid under-
segmentation, and reduce the influence caused by noise.
Therefore, how to generate superpixels with high efficiency
plays an important role in many vision and image processing
applications.

Generating superpixels has been an important research
issue, and a group of classical methods have been devel-
oped, including FH (Felzenszwalb and Huttenlocher 2004),
Mean Shift (Comaniciu and Meer 2002), Watershed (Vin-
cent and Soille 1991), etc. The lack of compactness and
the irregularity of superpixels restrict their applications, es-
pecially when contrast is poor or shadows are present. To
solve the above-mentioned problems, Shi and Malik pro-
posed Normalized Cuts (NC) (Shi and Malik 2000) that gen-
erated compact superpixels. However, this method does not
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adhere to image boundaries very well, and the complex-
ity is high. GraphCut (Boykov, Veksler, and Zabih 2001;
Veksler, Boykov, and Mehrani 2010) regarded the segmen-
tation problem as an energy optimization process. It solved
the compactness problem by using min-cut/max-flow algo-
rithms (Boykov and Kolmogorov 2004; Kolmogorov and
Zabin 2004), but their parameters are hard to control. Tur-
bopixel (Levinshtein et al. 2009) is another method that is
proposed to solve the compactness problem. However, the
inefficiency of the underlying level-set method (Osher and
Sethian 1988) restricts its applications. Bergh et al. (2012)
proposed an energy-driven algorithm SEEDS whose results
adhered to the boundaries well, but unfortunately it suffers
from irregularity and the number of superpixels is uncer-
tain. ERS (Liu et al. 2011), although it performs well on
the Berkeley segmentation benchmark, has a high computa-
tional cost that limits its practical use.

Achanta et al. (2012) proposed a linear clustering based
algorithm SLIC. It generates superpixels based on Lloyd’s
algorithm (Lloyd 1982) (also known as Voronoi iteration or
k-means). In the assignment step of SLIC, as a key point to
speed up the algorithm, each pixel p is associated with those
cluster seeds whose search regions overlap its location. Such
a strategy is also adopted by most subsequent works based
on SLIC. SLIC is widely used in various applications (Wang
et al. 2011) because of its high efficiency and good perfor-
mance. Inspired by SLIC, Wang et al. (2013a) implemented
an algorithm SSS that considered the structural informa-
tion within images. It uses the geodesic distance (Peyré et
al. 2010) computed by the geometric flows instead of the
simple Euclidean distance. However, efficiency is poor be-
cause of the bottleneck caused by the high computational
cost of measuring geodesic distances. Very recently, Liu et
al. proposed Manifold SLIC (2016) that generated content-
sensitive superpixels by computing Centroidal Voronoi Tes-
sellation (CVT) (Du, Faber, and Gunzburger 1999) in a
special feature space. Such an advanced technique makes
it much faster than SSS but still slower than SLIC ow-
ing to the cost of its mapping, splitting and merging pro-
cesses. From the aforementioned descriptions, we see that
the above-mentioned methods improve the results by either
using more complicated distance measurements or provid-
ing more suitable transformations of the feature space. How-
ever, the assignment and update steps within these methods
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are performed separately, leading to low convergence rate.
In this paper, we consider the over-segmentation problem

from a new perspective. Each pixel in our algorithm is al-
lowed to actively search which superpixel it should belong
to, according to its neighboring pixels as shown in Figure 1.
In the meantime, the seeds of the superpixels can be adap-
tively changed during this process, which allows our assign-
ment and update steps to be performed jointly. This property
enables our approach to converge rapidly. To sum up, our
main advantages are:
• Our algorithm features good awareness of neighboring-

pixel continuity, and produces results with good boundary
sensitivity regardless of image complexity and contrast.

• Our algorithm performs the assignment step and the up-
date step in a joint manner, and has a high convergence
rate as well as the lowest time cost among all superpixel
segmentation approaches. Experiments show that our ap-
proach is able to converge in two scan loops, with better
performance measured under a variety of evaluation met-
rics on the Berkeley segmentation benchmark.

2 Preliminaries

Before introducing our approach that allows adaptive search
regions and joint assignment and update steps, we first
briefly recap the standard previous scheme with fixed search
regions and separate steps. A typical one is the SLIC algo-
rithm who improves Lloyd’s algorithm, reducing the time
complexity from O(KN) to O(N), where K is the number
of the superpixels and N is the number of pixels.

Let {Ii}Ni=1 be a color image, where Ii represents the cor-
responding variable of each pixel. Given a set of evenly dis-
tributed seeds {Sk}Kk=1, SLIC simplifies the Lloyd’s algo-
rithm to get the Centroidal Voronoi Tessellation (CVT) (Du,
Faber, and Gunzburger 1999) that will be introduced in Sec-
tion 3.4. In the assignment step, each pixel Ii is associated
with those cluster seeds whose search regions overlap its
location as shown in Figure 1(a). The area of a search re-
gion can be denoted by 2T × 2T , where T =

√
N/K.

Specifically, SLIC considers Ii to lie in a five dimensional
space that contains a three dimensional CIELAB color space
(li, ai, bi) and a two dimensional spatial space (xi, yi). SLIC
measures the distance between two points using a weighted
Euclidean distance, which can be computed by

D(Ii, Ij) =

√
d2c +

(
ds ∗m
Ns

)2

, (1)

where m is a variable that controls the weight of the spatial
term, and Ns = T . Variables ds and dc are respectively the
spatial and color distances, which can be expressed as

ds =
√
(xi − xj)2 + (yi − yj)2, (2)

and

dc =
√

(li − lj)2 + (ai − aj)2 + (bi − bj)2. (3)

In the update step, SLIC recomputes the center of each su-
perpixel and moves the seeds to these new centers. Then it
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(a) SLIC (b) Active search

Figure 1: (a) The search method used in SLIC. Each seed
only searches a limited region to reduce computation com-
plexity. (b) Our proposed active search. Each pixel is able to
decide its own label by searching its surroundings.

obtains the over-segmentation results by iteratively perform-
ing the assignment and update steps.

The follow-up works of SLIC also use a similar proce-
dure as SLIC. They improve the performance of SLIC us-
ing better distance measures or more suitable transforma-
tion function between color space and spatial space. How-
ever, in these algorithms, each search region is fixed in the
assignment step of a single loop, and the relationship among
neighboring pixels is largely ignored when allocating pixels
to superpixels. Separately performing the assignment step
and the update step also leads to a delayed feedback of pixel
label change.

3 The Proposed Approach

Since superpixels normally serve as the first step of other vi-
sion related applications, how to generate superpixels with
good boundaries and very fast speed is a crucial prob-
lem. Here, unlike previous algorithms (Achanta et al. 2012;
Liu et al. 2016), we consider this problem from a new aspect,
in which only the surrounding pixels are considered for de-
termining the label of the current pixel. Each pixel actively
selects which superpixel it should belong to in a back-and-
forth order to provide better estimation of over-segmentation
regions. Moreover, the assignment step and the update step
are performed jointly. Very few iterations are required for
our approach to reach convergence. An overview of our al-
gorithm can be found in Alg. 1.

3.1 Problem Setup

Given the desired number of superpixels K and an input im-
age I = {Ii}Ni=1, where N is the number of pixels, our goal
is to produce a series of disjoint small regions (or superpix-
els). Following most previous works (Achanta et al. 2012),
the original RGB color space is transformed to the CIELAB
color space (which has been proven useful). Thus, each pixel
Ii in an image I can be represented in a five dimensional
space,

Ii = (li, ai, bi, xi, yi). (4)

We first divide the original image into a regular grid contain-
ing K elements {Gk}Kk=1 with step length υ =

√
N/K as
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Algorithm 1 FLIC
Require: Image I with N pixels, the desired number of su-

perpixels K, the maximal iteration numbers itrmax and
the spatial distance weight m.

Ensure: K superpixels
Divide the original image into regular grids {Gk}Kk=1

with step length υ =
√
N/K.

Initialize labels {Lk}Kk=1 for pixels according to their
locations.

Move each seed to the lowest gradient position in 3×3
neighborhoods.

Initialize seeds {Sk}Kk=1.
Regard pixels sharing the same label as a superpixel ζ.
Initialize distance d(i) = ∞ for each pixel and itr = 0.
while itr < itrmax do

for each superpixel ζk do
Use back-and-forth scan to traverse superpixel ζk

to get the pixels processing sequence (§3.3).
for each pixel Ii in the sequence do

Set d(i) = D(Ii, SLi
) by Eqn. 1

for Ij in the four-neighborhood of Ii do
if Lj �= Li then

Compute D = D(Ii, SLj ). (Eqn. 1)
if D < d(i) then

d(i) = D; Li = Lj .
end if

end if
end for
if Li is changed to Lj then

Use Eqn. 10 to update ζLi
;

Use Eqn. 11 to update ζLj ;
Update the bounding box of ζLj (§3.4).

end if
end for

end for
itr++;

end while

in (Achanta et al. 2012), and the initial label for each pixel
Ii is assigned as:

Li = k, if Ii ∈ Gk. (5)

We initialize the seed Sk in Gk as the centroid. Therefore,
Sk can also be defined in the same five dimensional space

Sk = {lk, ak, bk, xk, yk}. (6)

3.2 Label Decision

In most natural images adjacent pixels tend to share the same
labels, i.e. neighboring pixels have natural continuity. Thus,
we propose an active search method that is able to lever-
age as much of this a priori information as possible. In our
method, unlike most previous works (Achanta et al. 2012;
Liu et al. 2016), the label of the current pixel is only de-
termined by its neighbors. We will compute the distances
between the current pixel and the seeds of its four or eight
adjacent pixels. Figure 1 provides a more intuitive illustra-

tion. Specifically, for a pixel Ii, our assignment principle is

Li = argmin
Lj

D(Ii, SLj ), Ij ∈ Ai, (7)

where Ai consists of Ii and its four neighboring pixels, SLj

is Ij’s corresponding superpixel seed. We use Eqn. 1 to mea-
sure the distance D(Ii, SLj ).

Since each pixel can only be assigned to a superpixel con-
taining at least one of its neighbors, the local pixel continu-
ity has a stronger effect in the proposed strategy, allowing
each pixel to actively assign itself to one of its surround-
ing closely connected superpixel regions. The advantages
of such a strategy are obvious. First, the nearby assignment
principle can avoid the occurrence of too many isolated re-
gions, indirectly preserving the desired number of superpix-
els. Second, such an assignment operation is not limited by
a fixed range in space, resulting in better boundary adher-
ence despite some irregular shapes of those superpixels with
very complicated content. Furthermore, in the assignment
process, the superpixel centers are also self-adaptively mod-
ified, leading to faster convergence. Detailed demonstration
and analysis can be found in Section 4.3. It is worth men-
tioning that the neighbors of the internal pixels in a super-
pixels normally share the same labels, so it is unnecessary to
process them any more. This fact allows us to process each
superpixel extremely quickly.

3.3 Traversal Order

The traversal order plays a very important role in our ap-
proach in that an appropriate scanning order may lead to
a visually better segmentation. As demonstrated in Section
3.2, the label of each pixel only depends on the seeds of its
surrounding pixels. This indicates that, in a superpixel, the
label of the current pixel is directly or indirectly related to
those pixels that have already been dealt with. To better take
advantage of this avalanche effect, we adopt a back-and-
forth traversal order as in PatchMatch (Barnes et al. 2009),
in which the pixels that are processed later will benefit from
the previously processed pixels. Figure 2 makes this process
clear. In the forward pass, the label decision of each pixel
considers the information from the top surrounding pixels of
the superpixel, and similarly, the backward pass will provide
the information from the bottom surrounding pixels of the
superpixel. With such a scanning order, all the surrounding
information can be taken into consideration, yielding better
segments.

Considering that an arbitrary superpixel might have an ir-
regular shape instead of a simple rectangle or square, we ac-
tually use a simplified strategy to traverse the whole super-
pixel. For any superpixel, we first find a minimum bounding
box within which all its pixels are enclosed, as shown in Fig-
ure 2. We then perform the scanning process for all the pixels
in the corresponding minimum bounding box and only deal
with those pixels that are within the superpixel.

3.4 Joint assignment and update step

A common phenomenon in existing methods, such as SLIC
(Achanta et al. 2012), is that the assignment step and the up-
date step are performed separately, leading to delayed feed-
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(a) A region and its bounding box (b) Forward scan order (c) Backward scan order (d) Bounding box after updating

Figure 2: Illustration of our scanning order for each superpixel. We use gray regions enclosed by blue lines to represent super-
pixels and use red dashed rectangles to denote their corresponding bounding boxes. As shown in (b) and (c), we first scan the
bounding box from left to right and top to bottom and then in the opposite direction. The shape of each superpixel might change,
and so we update the bounding box if this occurs, as in (d), and leave it unchanged if there are no changes to the superpixel
shape.

back from pixel label changes to superpixel seeds. An ob-
vious problem of such a strategy is that many (normally
more than five) iterations are required which becomes the
bottleneck of fast convergence. In our approach, based on
the assignment principle Eqn. 7, we design a “joint” assign-
ment and update strategy which operate these two steps at
a finer granularity. The approximately joint step is able to
adjust the superpixel seed center position on the fly, drasti-
cally reducing the number of iterations needed for conver-
gence. Since most clustering-based superpixel methods use
the Centroidal Voronoi Tessellation (CVT), we will briefly
introduce the CVT first and then describe our method.

Let S = {Sk}Kk=1 be the set of seeds in the image, where
K is the expected number of superpixels. The Voronoi cell
V(Sk) of a seed Sk is denoted by:

VSk
= {Ii ∈ I | d(Ii, Sk) ≤ d(Ii, Sj), ∀Sj ∈ S}, (8)

where d(Ii, Sk) is an arbitrary distance measure from pixel
Ii to the seed Sk. The Voronoi Diagram VD(S) is defined by

VD(S) = {VSk
�= φ | ∀Sk ∈ S}. (9)

A CVT is then defined as a Voronoi Diagram whose gener-
ator point of each Voronoi cell is also its center of mass. As
mentioned above, the traditional CVT is usually obtained by
heuristic algorithms, such as Lloyd’s algorithm, iteratively
performing updates after each assignment step until conver-
gence is reached.

In our approach, on account of our novel label decision
strategy as shown in Eqn. 7, we are able to jointly perform
the update step and the assignment step instead of separately.
More specifically, after pixel Ii is processed, if its label is
changed to, for instance, Lj , we immediately update the cur-
rent seed SLi

using the following equation:

SLi
=

SLi ∗ |ζLi | − Ii
|ζLi

| − 1
, (10)

where |ζLi | is the number of pixels in superpixel ζLi , and
update SLj using the following equation

SLj
=

SLj ∗
∣∣ζLj

∣∣+ Ii∣∣ζLj

∣∣+ 1
. (11)

The bounding box of ζLj
is also updated thereafter.

It is noteworthy to mention that the above updates only
contain very simple arithmetic operations and hence can be
performed very efficiently. Such an immediate update will
help later pixels make a better choice during assignment,
leading to better convergence. Figure 6 shows the conver-
gence speed of our approach.

4 Experiments

Our method is implemented in C++ and runs on a PC
with an Intel Core i7-4790K CPU with 4.0GHz, 32GB
RAM, and 64 bit operating system. We compare our
method with many previous and current state-of-the-art
works, including FH (Felzenszwalb and Huttenlocher 2004),
SLIC (Achanta et al. 2012), Manifold SLIC (Liu et al. 2016),
SEEDS (Van den Bergh et al. 2012), and ERS (Liu et al.
2011) on the BSDS500 benchmark, using the evaluation
methods proposed in (Arbelaez et al. 2011; Stutz, Hermans,
and Leibe 2014). Note that the source codes used in evalu-
ation of the above works may be of different versions, and
we find this leads to performance difference from the orig-
inal reports when a different implementation of evaluation
code is applied. To give a fair comparison, we uniformly
use publicly available source code (Arbelaez et al. 2011;
Stutz, Hermans, and Leibe 2014) for all the methods. As
in previous research in the literature (Liu et al. 2016;
Wang et al. 2013a), we evaluate all algorithms on 200 ran-
domly selected images of resolution 481 × 321 from the
Berkeley dataset.

4.1 Parameters

In our approach, three parameters need to be set. The first
one is the number of superpixels K. One of the common ad-
vantages of clustering-based algorithms is that the expected
number of superpixels can be directly obtained by setting
the clustering parameter K. The second one is the spatial
distance weight m. Parameter m has a large effect on the
smoothness and compactness of superpixels. We shall show
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(c) ASA trade-off
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Figure 3: Comparisons between existing state-of-the-art methods and our approach (FLIC) on the BSDS500 benchmark. In (b)-
(d), K is fixed to 200 to demonstrate our best trade-off between performance and efficiency between competing methods. As
can be seen, our strategy significantly outperforms methods that have similar time cost in boundary recall. At least competitive
results are also achieved compared to slower methods (e.g. the state-of-the-art method ERS (Liu et al. 2011)) according to all
the evaluation metrics, but at an order of magnitude faster speed.
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Figure 4: Part of sensitivity analysis under the standard eval-
uation metrics and time cost.

that our performance will increase as m decreases. However,
a small m can also lead to the irregularity of superpixels. To
achieve a good trade-off between compactness and perfor-
mance, in the following experiments, we set m = 5 as de-
fault. The last parameter is the number of iterations itr. Here
we set itr = 2 in default to get the balance between time
cost and performance. What should be stressed out here is
that to compare with other methods in a fair way, for each
method we optimize its parameters to maximize the recall
value computed on the BSDS500 benchmark.

4.2 Comparison with Existing Methods

Our approach outperforms previous methods that have sim-
ilar computational efficiency , and achieve at least compara-
ble results compared to slower algorithms with an order of
magnitude faster speed. Details are discussed below.

Boundary Recall (BR). Boundary recall is a measure-
ment which denotes the adherence to the boundaries. It com-
putes what fraction of the ground truth edges falls within ε-
pixel length from at least one superpixel boundary. The BR
(Achanta et al. 2012) can be computed by

BRG(S) =
∑

p∈ξG Π(minq∈ξS ‖p− q‖ < ε)

|ξG | , (12)

where ξS and ξG respectively denote the union set of super-
pixel boundaries and the union set of ground truth bound-
aries. The indicator function Π checks if the nearest pixel
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Figure 5: (a) The BR-m curves, where m is the spatial dis-
tance weight in Eqn. 1. Our overall performance is far better
than SLIC for all the tested m. (b) The BR-Iteration curves.
Our method converges within 2 iterations, which is much
faster than SLIC.

is within ε distance. Here we follow (Achanta et al. 2012;
Liu et al. 2016) and set ε = 2 in our experiment. The bound-
ary recall curves of different methods are plotted in Figure
3(a). One can easily observe that our FLIC method outper-
forms all other methods.

Undersegment Error (UE). The undersegment error re-
flects the extent that superpixels do not exactly overlap the
ground truth segmentation. Similar to BR, UE can also re-
flect the boundary adherence. The difference is that UE uses
segmentation regions instead of boundaries in the measure-
ment. Mathematically, the UE (Neubert and Protzel 2012)
can be computed by

UEG(S) =
∑

G∈�G (
∑

S:S∩G �=φ min(Sin, Sout))

N
, (13)

where �S is the union set of superpixels, �G is the union set
of the segments of the ground truth, Sin denotes the over-
lapping of the superpixel S and the ground truth segment G,
and Sout denotes the rest of the superpixel S. As shown in
Figure 3(b), our results are nearly the same as those of the
best approach ERS (Liu et al. 2011) and run significantly
faster.

Achievable Segmentation Accuracy (ASA). ASA gives
the highest accuracy achievable for object segmentation that
utilizes superpixels as units. Similar to UE, ASA utilizes
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Figure 6: Comparison of the convergence rate between joint
and separate assignment and update steps.

100 200 300 400
BR Time BR Time BR Time BR Time

4-N 78.6 34 85.9 35 89.1 36 91.8 38
8-N 80.5 54 87.4 56 90.5 59 92.7 61

Table 1: Boundary recall and time cost comparisons between
4-neighborhood and 8-neighborhood with different super-
pixel counts: 100, 200, 300, 400.

segments instead of the boundaries, which can be computed
by (Liu et al. 2011)

ASAG(S) =
∑

k maxi |Sk ∩Gi|∑
i Gi

, (14)

where Sk represents the superpixel and Gi represents the
ground truth segment. A better superpixel segmentation will
have a larger ASA value. As shown in Figure 3(c), com-
pared to the ERS (Liu et al. 2011), the performance of our
approach is competitive and our method achieves the best
trade-off between the performance and time cost.

Time Cost (TC). Similar to SLIC, our method also
achieves an O(N) time complexity. We know that compu-
tation efficiency is one of the most important points for us-
ing superpixels as elementary units. Many approaches are
limited by their speed, such as SSS (Wang et al. 2013a)
and ERS (Liu et al. 2011). As shown in Figure 3, the aver-
age time cost of FLIC with two iterations when processing
an image is 0.035s, while the time costs of ERS, Manifold
SLIC, SLIC, and FH are 0.625, 0.281s, 0.072s, and 0.047s,
respectively. It is obvious that FLIC has the lowest time cost
among all methods and it runs nearly 20 times faster than
ERS with comparable result quality.

Visual Results and Analysis. In Figure 7, we show sev-
eral superpixel segmentation results using different algo-
rithms. As can be seen, our approach is more sensitive to
image boundaries, especially when there is poor contrast be-
tween the foreground and background. Compared to SLIC
method, our approach adheres to boundaries very well and
runs twice as fast. Compared to ERS method, our resulting
superpixels are much more regular and the mean execution

time of our approach is 20 times shorter.
All the above facts and Figure 3 reflect that our approach

achieves an excellent compromise among adherence, com-
pactness, and time cost.

4.3 Algorithm Analysis

Efficacy of the back-and-forth Traverse Order. As shown
in Figure 2, we adopt a back-and-forth traverse order to scan
the whole region enclosed by a bounding box for each super-
pixel. Actually, a couple of forward scans can also perform
very well for our method. We provide a comparison between
two strategies: using pure forward scan order for four itera-
tions versus using the proposed back-and-forth scan order
twice (which is also four iterations). Figure 4 shows quan-
titative comparisons between these two strategies. The blue
line represents the results using normal forward scan order
while the red line stands for the results using our method. It
can be seen that the red curve significantly outperforms the
blue one and achieves competitive time cost compared to the
blue curve. This fact reflects that our back-and-forth scan or-
der considers more information about the regions outside the
bounding box, leading to more reliable boundaries.

The Role of the Spatial Distance Weight. As shown in
Figure 5(a), unlike SLIC (Achanta et al. 2012), the BR curve
with respect to the spatial distance weight m is monotoni-
cally decreasing in our approach. The reason for this phe-
nomenon is that in our method local region continuity is
mostly ensured by the active search algorithm, and color
boundaries are less well preserved for larger m. On the other
hand, small m will result in less regular superpixels, so we
choose m = 5 for our comparison with previous works. It
is noteworthy to mention that superpixels are normally con-
sidered as the first step of most vision tasks and these vi-
sion tasks often favor those superpixel methods with good
boundaries. Therefore, users can select a reasonable value
for m according to their specific conditions. In any case, our
overall performance is significantly better for all m values.

Convergence Rate. FLIC significantly accelerates the
evolution so that we only need a few iterations before con-
vergence. We compare the performance curves with differ-
ent iterations on the Berkeley benchmark. It can be easily
found in Figure 5(b) that our algorithm quickly converges
within only two iterations and more iterations only bring
marginal benefits to the results. Numerically, the boundary
recall of the superpixels with only one iteration is 0.835
when K is set to 200. The value after two iterations is 0.859
and after three iterations it is 0.860 when generating the
same number of superpixels. The undersegment error val-
ues are 0.115, 0.108, and 0.107, respectively. The achievable
segmentation accuracy values are 0.941, 0.945, and 0.946,
respectively. As can be seen in Figure 5(b), our algorithm not
only converges much faster than SLIC (which requires ten
iterations to converge), but also obtains better performance.

The Role of the Joint Assignment and Update. Our al-
gorithm jointly performs the assignment and update steps.
In Figure 6, we show the convergence rates of both our
joint approach and that of separately performing assignment
and update steps. One can observe that our joint approach
converges very quickly and only two iterations are needed,
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Figure 7: Visual comparison of superpixel segmentation results using different existing algorithm with 100 superpixels and
m = 10. Our approach adheres to boundaries very well and at the same time produces compact superpixels.

Figure 8: Images segmented by our proposed approach with m = 20 and the number of superpixels set to 1000, 400, and 200,
respectively. The resulting superpixels adhere to region boundaries very well.

Figure 9: Images segmented by our proposed approach with m = 10, 20, and 30, respectively. When m tends to be a smaller
value, the superpixels adhere well to boundaries. When m becomes larger, the superpixels become more compact.

while the separate approach needs another two iterations to
reach the same BR value. This phenomenon demonstrates
that our joint approach is efficient and without any negative
effect on our final results.

Effect on the Size of Neighborhoods. As mentioned in
Section 3, in our implementation, the label of the current
pixel relies on its four neighborhood pixels. Actually, using
eight neighborhood pixels is also reasonable as more neigh-
bors will definitely provide more useful information. In Ta-
ble 1, we briefly compare the results for these two cases. A
natural observation is that using larger neighborhoods leads
to an increase in performance but at the cost of reducing run-
ning speed. With regard to real applications, users can select
either case to suit their own preferences.

Qualitative Results. In Figure 8 we show some segmen-
tation results produced by our approach with m = 20 and
the number of superpixels set to 1000, 400, and 200, respec-

tively. It is seen that, over the range of K value, the edges of
the resulting superpixels are always very close to the bound-
aries. This phenomenon is especially obvious in the first im-
age and the third image. We also show some segmentation
results with different values of m in Figure 9. When m tends
to smaller values, for example 10, the shapes of the resulting
superpixels become less regular. When m is larger, for ex-
ample 30, the resulting superpixels become more compact.

5 Conclusions

In this paper we present a novel algorithm using active
search, which is able to improve the performance and sig-
nificantly reduce the time cost for using superpixels to over-
segment an image. Taking advantage of local continuity, our
algorithm provides results with good boundary sensitivity
even for complex and low contrast image. Moreover, it is
able to converge in only two iterations, achieving the low-
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est time cost compared to previous methods while obtain-
ing performance comparable to the state-of-the-art method
ERS with 1/20th of its running time. We have used various
evaluation metrics on the Berkeley segmentation benchmark
dataset to demonstrate the high efficiency and high perfor-
mance of our approach.
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