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Abstract

The recent development of CNN-based image dehazing has
revealed the effectiveness of end-to-end modeling. However,
extending the idea to end-to-end video dehazing has not been
explored yet. In this paper, we propose an End-to-End Video
Dehazing Network (EVD-Net), to exploit the temporal con-
sistency between consecutive video frames. A thorough study
has been conducted over a number of structure options, to
identify the best temporal fusion strategy. Furthermore, we
build an End-to-End United Video Dehazing and Detection
Network (EVDD-Net), which concatenates and jointly trains
EVD-Net with a video object detection model. The resulting
augmented end-to-end pipeline has demonstrated much more
stable and accurate detection results in hazy video.

Introduction

The removal of haze from visual data captured in the wild
has been attracting tremendous research interests, due to
its profound application values in outdoor video surveil-
lance, traffic monitoring and autonomous driving, and so
on (Tan 2008). In principle, the generation of hazy visual
scene observations follows a known physical model (to be
detailed next), and the estimation of key physical parame-
ters, i.e., the atmospheric light magnitude and transmission
matrix, become the core step in solving haze removal as
an inverse problem (He, Sun, and Tang 2011; Fattal 2014;
Berman, Avidan, and others 2016). Recently, the prosper-
ity of convolutional neural networks (CNNs) (Krizhevsky,
Sutskever, and Hinton 2012) has led to many efforts paid
to CNN-based single image dehazing (Ren et al. 2016;
Cai et al. 2016; Li et al. 2017a). Among them, DehazeNet
(Cai et al. 2016) and MSCNN (Ren et al. 2016) focused on
predicting the most important parameter, transmission ma-
trix, from image inputs using CNNs, then generating clean
images by the physical model. Lately, AOD-Net (Li et al.
2017a) was the first model to introduce a light-weight end-to-
end dehazing convolutional neural network by re-formulating
the physical formula. However, there have been only a lim-
ited amount of efforts in exploring video dehazing, which
is the more realistic scenario, either by traditional statistical
approaches or by CNNs.

∗The work was done at Microsoft Research Asia.
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Figure 1: The AOD-Net architecture for single image dehaz-
ing (Li et al. 2017a; 2017b), which inspires EVD-Net.

This paper fills in the blank of CNN-based video dehazing
by an innovative integration of two important merits in one
unified model: (1) we inherit the spirit of training an end-to-
end model (Li et al. 2017a; Wang et al. 2016), that directly
regresses clean images from hazy inputs without any inter-
mediate step. That is proven to outperform the (sub-optimal)
results of multi-stage pipelines; (2) we embrace the video
setting by explicitly considering how to embed the temporal
coherence between neighboring video frames when restor-
ing the current frame. By an extensive architecture study,
we identify the most promising temporal fusion strategy,
which is both interpretable from a dehazing viewpoint and
well aligned with previous findings (Karpathy et al. 2014;
Kappeler et al. 2016). We call our proposed model End-to-
End Video Dehazing Network (EVD-Net).

Better yet, EVD-Net can be considered as pre-processing
for a subsequent high-level computer vision task, and we
can therefore jointly train the concatenated pipeline for the
optimized high-level task performance in the presence of
haze. Using video object detection as a task example, we
build the augmented End-to-End United Video Dehazing and
Detection Network (EVDD-Net), and achieve much more
stable and accurate detection results in hazy video.

Related Work

Previous single image haze removal algorithms focus on the
classical atmospheric scattering model:

I (x) = J (x) t (x) +A (1− t (x)) , (1)

where I (x) is observed hazy image, J (x) is the scene radi-
ance (“clean image”) to be recovered. There are two critical
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Figure 2: EVD-Net structure options with 5 consecutive frames as input: (a) I-level fusion, where five input frames are
concatenated before feeding the first layer; (b) K-level fusion, where five input frames are first processed separately in its
own column and then concatenated after the some layer during K estimation; (c) J-level fusion, where five output images are
concatenated.

parameters: A denotes the global atmospheric light, and t (x)
is the transmission matrix defined as:

t (x) = e−βd(x), (2)

where β is the scattering coefficient of the atmosphere, and
d (x) is the distance between the object and the camera. The
clean image can thus be obtained in the inverse way:

J(x) =
1

t(x)
I(x)−A

1

t(x)
+A. (3)

A number of methods (Tan 2008; Fattal 2008; He, Sun,
and Tang 2011; Meng et al. 2013; Zhu, Mai, and Shao
2015) take advantages of natural image statistics as pri-
ors, to predict A and t (x) separately from the hazy im-
age I (x). Due to the often inaccurate estimation of either
(or both), they tend to bring in many artifacts such as non-
smoothness, unnatural color tones or contrasts. Many CNN-
based methods (Cai et al. 2016; Ren et al. 2016) employ
CNN as a tool to regress t (x) from I (x). With A esti-
mated using some other empirical methods, they are then
able to estimate J(x) by (3). Notably, (Li et al. 2017a;
2017b) design the first completely end-to-end CNN dehazing
model based on re-formulating (1), which directly generates
J(x) from I(x) without any other intermediate step:

J (x) = K (x) I (x)−K (x) ,where

K (x) =

1
t(x) (I (x)−A) +A

I (x)− 1
.

(4)

Both 1
t(x) and A are integrated into the new variable K (x)1.

As shown in Figure 1, the AOD-Net architecture is composed
of two modules: a K-estimation module consisting of five
convolutional layers to estimate K (x) from I (x), followed
by a clean image generation module to estimate J (x) from
both K (x) and I (x) via (4). All those above-mentioned
methods are designed for single-image dehazing, without
taking into account the temporal dynamics in video.

When it comes to video dehazing, a majority of existing ap-
proaches count on post processing to correct temporal incon-
sistencies, after applying single image dehazing algorithms

1There was a constant bias b in (Li et al. 2017a; 2017b), which
is omitted here to simplify notations.
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Figure 3: EVDD-Net for united video dehazing and detection,
with a tree-like deep architecture. Note that the entire pipeline
will be jointly optimized for training.

frame-wise. (Kim et al. 2013) proposes to inject temporal
coherence into the cost function, with a clock filter for speed-
up. (Li et al. 2015) jointly estimates the scene depth and
recovers the clear latent images from a foggy video sequence.
(Chen, Do, and Wang 2016) presents an image-guided, depth-
edge-aware smoothing algorithm to refine the transmission
matrix, and uses Gradient Residual Minimization to recover
the haze-free images. (Cai, Xu, and Tao 2016) designs a
spatio-temporal optimization for real-time video dehazing.
But as our experiments will show, those relatively simple
and straightforward video dehazing approaches may not be
even able to outperform the sophisticated CNN-based single
image dehazing models. The observation reminds us that the
utility of temporal coherence must be coupled with more
advanced model structures (such as CNNs) for the further
boost of video dehazing performance.

Recent years have witnessed a growing interest in mod-
eling video using CNNs, for a wide range of tasks such as
super-resolution (SR) (Kappeler et al. 2016), deblurring (Su
et al. 2016), classification (Karpathy et al. 2014; Shen et al.
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2016), and style transfer (Chen et al. 2017). (Kappeler et al.
2016) investigates a variety of structure configurations for
video SR. Similar attempts are made by (Karpathy et al. 2014;
Shen et al. 2016), both digging into different connectivity
options for video classification. (Liu et al. 2017) proposes
a more flexible formulation by placing a spatial alignment
network between frames.(Su et al. 2016) introduces a CNN
trained end-to-end to learn accumulating information across
frames for video deblurring. For video style transfer, (Chen
et al. 2017) incorporates both short-term and long-term co-
herences and also indicates the superiority of multi-frame
methods over single-frame ones.

End-to-End Video Dehazing Network and Its

Unity with Video Detection
We choose the AOD-Net model (Li et al. 2017a; 2017b)
for single image dehazing as the starting point to develop
our deep video dehazing model, while recognizing that the
proposed methodology can be applied to extending other
deep image dehazing models to video, e.g., (Cai et al. 2016;
Ren et al. 2016). Our main problem lies in the strategy of
temporal fusion. As a well-justified fact in video process-
ing, jointly considering neighboring frames when predicting
the current frame will benefit many image restoration and
classification-type tasks (Liu and Sun 2014; Ma et al. 2015;
Kappeler et al. 2016). Specifically to the video dehazing case,
both object depth (which decides the transmission matrix T )
and the global atmospheric light A should be hardly or slowly
changed over a moderate number of consecutive frames, im-
plying the great promise of exploiting multi-frame coherence
for video dehazing.

Fusion Strategy for Video Dehazing: Three
Structure Options

Enlightened by the analysis from (Kappeler et al. 2016),
we investigate three different strategies to fuse consecutive
frames. For simplicity, we show the architecture for five input
frames as an example, namely the previous two (t− 2, t− 1),
current (t), and next two (t+ 1, t+ 2) frames, with the goal
to predict the clean version for the current frame t. Clearly,
any number of past and future frames can be accommodated.
As compared in Figure 2, three different types of fusion
structures are available for EVD-Net:
• I-Level Fusion: fusing at the input level. All five input

frames are concatenated along the first dimension before
the first convolutional layer is applied. It corresponds to
directly fusing image features at the pixel level, and then
running single-image dehazing model on the fused image.

• K-Level Fusion: fusing during the K-estimation. Specif-
ically, we will term the following structure as K-level
fusion, conv l (l = 1, 2, ... 5): each input frame will go
through the first l convolutional layers separately before
concatenation at the output of the l-th layer, l = 1, 2, ... 5. In
other words, the multi-frame information is fused towards
generating the key parameter K (i.e., t(x) and A) of the
current frame, based on the underlying assumption that
both object depths and global atmospheric light transmit
smoothly across neighboring frames.

• J-Level Fusion: fusing during the output level. It is equiv-
alent to feed each frame to its separate K-estimation mod-
ule, and the five K outputs are concatenated right before
the clean image generation module. It will not fuse until all
frame-wise predictions have been made, and corresponds
to fusing at the output level.

Training a video-based deep model is often more hassle. (Kap-
peler et al. 2016) proves that a well-trained single-column
deep model for images could provide a high-quality initializa-
tion for training a multi-column model for videos, by splitting
all convolutional weights before the fusion step. We follow
their strategy, training an AOD-Net first to initialize different
EVD-Net architectures in EVD-Net.

Unity Brings Power: Optimizing Dehazing and
Detection as An End-to-End Pipeline in Video

Beyond the video restoration purpose, dehazing, same as
many other low-level restoration and enhancement tech-
niques, is commonly employed as pre-processing, to im-
prove the performance of high-level computer vision tasks
in the presence of certain visual data degradations. A few
pioneering works in single-image cases (Wang et al. 2016;
Li et al. 2017a; 2017b) have demonstrated that formulat-
ing the low-level and high-level tasks(Ren et al. 2015;
Wang et al. 2012; 2017) as one unified (deep) pipeline and
optimizing it from end to end will convincingly boost the
performance. Up to our best knowledge, the methodology
has not been validated in video cases yet.

In outdoor surveillance or autonomous driving, object de-
tection from video (Kang et al. 2016; Tripathi et al. 2016;
Zhu et al. 2017) is widely desirable, whose performance is
known to heavily suffer from the existence of haze. For ex-
ample, autonomous vehicles rely on a light detection and
ranging (LIDAR) sensor to model the surrounding world,
and a video camera (and computer, mounted in the vehicle)
records, analyzes and interprets objects visually to create 3D
maps. However, haze can interfere with laser light from the
LIDAR sensor and fail subsequent algorithms.

In this paper, we investigate the brand-new joint optimiza-
tion pipeline of video dehazing and video object detection.
Beyond the dehazing part, the detection part has to take into
account temporal coherence as well, to reduce the flickering
detection results. With EVD-Net, we further design a video-
adapted version of Faster R-CNN (Ren et al. 2015) and verify
its effectiveness, while again recognizing the possibility of
plugging in other video detection models. For the first two
convolutional layers in the classical single-image Faster R-
CNN model, we split them into three parallel branches to
input the previous, current, and next frames, respectively2.
They are concatenated after the second convolutional layer,
and go through the remaining layers to predict object bound-
ing boxes for the current frame. We call it Multi-Frame Faster
R-CNN (MF-Faster R-CNN).

Finally, uniting EVD-Net and MF-Faster R-CNN in one
gives rise to EVDD-Net, which naturally displays an inter-
esting locally-connected, tree-like structure and is subject
to further (and crucial) joint optimization. Figure 3 plots an

2The window size 3 here is by default, but could be adjusted.
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Figure 4: Challenging natural consecutive frames results compared with the state-of-art methods.

instance of EVDD-Net, with a low-level temporal window
size of 5 frames, and a high-level temporal window size of
3 frames, leading to the overall temporal window size of 7
frames. We first feed 7 consecutive frames (indexed at 1, 2,
..., 7) into the EVDD-Net part. By predicting on 5-frame

groups with a stride size of 1, three dehazed results corre-
sponding to the frames 3, 4, 5 will be generated. They are
then fed into the MF-Faster R-CNN part to fuse the detection
results of frame 4. Essentially, the tree-like structure comes
from the two-step utilization of temporal coherence between
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Table 1: PSNR/SSIM Comparisons of Various Structures.

Methods PSNR SSIM
I-level fusion, 3 frames 20.5551 0.8515
I-level fusion, 5 frames 20.6095 0.8529

K-level fusion, conv1, 3 frames 20.6105 0.9076
K-level fusion, conv1, 5 frames 20.8240 0.9107
K-level fusion, conv2, 3 frames 20.6998 0.9028
K-level fusion, conv2, 5 frames 20.9908 0.9087
K-level fusion, conv2, 7 frames 20.7901 0.9049
K-level fusion, conv2, 9 frames 20.7355 0.9042
K-level fusion, conv3, 3 frames 20.9187 0.9078
K-level fusion, conv3, 5 frames 20.7780 0.9051
K-level fusion, conv4, 3 frames 20.7468 0.9038
K-level fusion, conv4, 5 frames 20.6756 0.9027

K-level fusion, conv5(K), 3 frames 20.6546 0.8999
K-level fusion, conv5(K), 5 frames 20.7942 0.9046

J-level fusion, 3 frames 20.4116 0.8812
J-level fusion, 5 frames 20.3675 0.8791

Table 2: PSNR/SSIM Comparisons of Various Approaches.

Methods PSNR SSIM
ATM (Sulami et al. 2014) 11.4190 0.6534
BCCR (Meng et al. 2013) 13.4206 0.7068

NLD (Berman, Avidan, and others 2016) 13.9059 0.6456
FVR (Tarel and Hautiere 2009) 16.2945 0.7799
DCP (He, Sun, and Tang 2011) 16.4499 0.8188

DehazeNet (Cai et al. 2016) 17.9332 0.7963
CAP (Zhu, Mai, and Shao 2015) 20.4097 0.8848

MSCNN (Ren et al. 2016) 20.4839 0.8690
AOD-Net (Li et al. 2017a) 20.6828 0.8549

STMRF (Cai, Xu, and Tao 2016) 18.9956 0.8707
EVD-Net 20.9908 0.9087

neighboring frames, in both low level and high level. We are
confident that such a tree-like structure will be of extensive
reference values to more future deep pipelines that seek to
jointly optimize low-level and high-level tasks.

Experiment Results on Video Dehazing

Datasets and Implementation We created a synthetic
hazy video dataset based on (1), using 18 videos selected
from the TUM RGB-D Dataset (Sturm et al. 2012), which
captures varied visual scenes. The depth information is re-
fined by the filling algorithm in (Silberman et al. 2012). We
then split it into a training set, consisting of 5 videos with
100,000 frames, and a non-overlapping testing set called Test-
Set V1, consisting of the rest 13 relatively short video clips
with a total of 403 frames.

When training EVD-Net, the momentum and the decay
parameters are set to 0.9 and 0.0001, respectively, with a
batch size of 8. We adopt the Mean Square Error (MSE)
loss, which has been shown in (Li et al. 2017a; 2017b) that
it is well aligned with SSIM and visual quality. Thanks to
the light-weight structure, EVD-Net takes only 8 epochs
(100,000 iterations) to converge.

Fusion Structure Comparison We first compare the per-
formances of three fusion strategies in EVD-Net with dif-
ferent configuration parameters on TestSet V1. As shown
in Table 1, the performance of K-level fusion is far supe-
rior to I-level fusion and J-level fusion in both PSNR and
SSIM, albeit the number of network parameters in J-level
fusion is much more than the other two. Moreover, among all
configurations of K-level fusion, when using 3 input frames,
K-level fusion, conv 3 performs the best. While using 5 in-
put frames the performance further increases and reaches
an overall peak at K-level fusion, conv 2, and is chosen
as the default configuration of EVD-Net. When testing more
frames such as 7 or 9, we observe the performance gets sat-
urated and sometimes hurt, since the relevance of far-away
frames to the current frame will decay fast.

Quantitative Comparison We compare EVD-Net on Test-
Set V1 with a variety of state-of-the-art single image dehaz-
ing methods, including: Automatic Atmospheric Light Recov-
ery (ATM) (Sulami et al. 2014), Boundary Constrained Con-
text Regularization (BCCR) (Meng et al. 2013), Fast Visibil-
ity Restoration (FVR) (Tarel and Hautiere 2009), Non-local
Image Dehazing (NLD) (Berman, Avidan, and others 2016;
Berman, Treibitz, and Avidan 2017), Dark-Channel Prior
(DCP) (He, Sun, and Tang 2011), MSCNN (Ren et al.
2016), DehazeNet (Cai et al. 2016), Color Attenuation Prior
(CAP) (Zhu, Mai, and Shao 2015), and AOD-Net (Li et al.
2017a). We also compare with a recently proposed video
dehazing approach: Real-time Dehazing Based on Spatio-
temporal MRF (STMRF) (Cai, Xu, and Tao 2016). Table
2 demonstrates the very promising performance margin of
EVD-Net over others, in terms of both PSNR and SSIM.
Compared to the second best approach of AOD-Net, EVD-
Net gains an advantage of over 0.3 dB in PSNR and 0.05
in SSIM, showing the benefits of temporal coherence. Com-
pared to the video-based STMRF (which is not CNN-based),
we notice a remarkable performance gap of 2 dB in PSNR
and 0.04 in SSIM.

Qualitative Visual Quality Comparision Figure 4 shows
the comparison results on five consecutive frames for a num-
ber of image and video dehazing approaches, over a real-
world hazy video (with no clean ground-truth). The test video
is taken from a city road when the PM 2.5 is 223, constitut-
ing a challenging heavy haze scenario. Without the aid of
temporal coherence, single image dehazing approaches tend
to produce temporal inconsistencies and jaggy artifacts. The
DCP and NLD results are especially visually unpleasing.
CAP and MSCNN, as well as STMRF, fail to fully remove
haze, e.g., in some building areas (please amplify to view
details), while DehazeNet tends to darken the global light.
AOD-Net produces reasonably good results, but sometimes
cannot ensure the temporal consistencies of illumination and
color tones. EVD-Net gives rise to the most visually pleasing,
detail-preserving and temporally consistent dehazed results
among all.

Figure 5 shows a comparison example on synthetic data,
where three consecutive frames are selected from TestSet
V1. By comparing to the ground-truth, it can be seen that
EVD-Net again preserves both details and color tones best.
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(a) Inputs (b) MSCNN (c) DehazeNet (d) STMRF (e) EVD-Net (f) Groundtruth

Figure 5: Synthetic consecutive frames results compared with the state-of-art methods and Groundtruth frames.

Table 3: Average Precision(AP) of each categories and Mean Average Precision (MAP) on TestSet V2.
Metrics Original Faster R-CNN Re-trained Faster R-CNN EVD+Faster R-CNN JAOD-Faster R-CNN EVDD-Net

Car AP 0.810 0.807 0.811 0.808 0.803
Bicycle AP 0.531 0.703 0.603 0.707 0.802

MAP 0.671 0.755 0.707 0.758 0.802

Experiment Results on Video Detection

Datasets and Implementation While training EVDD-Net,
the lack of hazy video datasets with object detection labels
has again driven us to create our own synthetic training set.
We synthesize hazy videos with various haze levels for a sub-
set of ILSVRC2015 VID dataset (Russakovsky et al. 2015)
based on the atmospheric scattering model in (1) and es-
timated depth using the method in (Liu et al. 2016). The
EVDD-Net is trained using 4,499 frames from 48 hazy videos
for a two-category object detection problem (car, bike), and
tested on 1,634 frames from another 10 hazy videos (Test-
Set V2). Several real-world hazy videos are also used for
evaluation.

The training of EVDD-Net evidently benefits from high-
quality initialization: a trained EVD-Net, plus a MF-Faster
RCNN model initialized by splitting the first two convolu-
tional layers similar to the way in (Kappeler et al. 2016).
While (Li et al. 2017b) found that directly end-to-end train-
ing of two parts could lead to sufficiently good results, we
observe that the video-based pipeline involves much more
parameters and are thus more difficult to train end to end.
Besides the initialization, we also find a two-step training
strategy for EVDD-Net: we first tune only the fully-connected
layers in the high-level detection part of EVD-Net for 90,000
iterations, and then tune the entire concatenated pipeline for
another 10,000 iterations.

Comparison Baselines EVDD-Net is compared against
a few baselines: i) the original Faster R-CNN (Ren et al.
2015), which is single image-based and trained on haze-free
images; ii) Re-trained Faster R-CNN, which is obtained by
retraining the original Faster R-CNN on a hazy image dataset;
iii) EVD + Faster R-CNN, which is a simple concatenation

of separately trained EVD-Net and original Faster R-CNN
models; iv) JAOD-Faster R-CNN, which is the state-of-the-art
single-image joint dehazing and detection pipeline proposed
in (Li et al. 2017b).

Results and Analysis Table 3 presents the Mean Average
Precision (MAP) of all five approaches, which is our main
evaluation criterion. We also display the category-wise aver-
age precision for references. Comparing the first two columns
verify that the object detection algorithms trained on conven-
tional visual data do not generalize well on hazy data. Di-
rectly placing EVD-Net in front of MF-Faster R-CNN fails
to outperform Retrained Faster-RCNN, although it surpasses
the original Faster-RCNN with a margin. We notice that it
coincides with some earlier observations in other degrada-
tion contexts (Wang et al. 2016), that a naive concatenation
of low-level and high-level models often cannot sufficiently
boost the high-level task performance, as the low-level model
will simultaneously bring in recognizable details and arti-
facts. The performance of JAOD-Faster R-CNN is promising,
and slightly outperforms Retrained Faster-RCNN. However,
its results often show temporally flickering and inconsistent
detections. EVDD-Net achieves a significantly boosted MAP
over other baselines. EVDD-Net is another successful exam-
ple of “closing the loop” of low-level and high-level tasks,
based on the well-verified assumption that the degraded im-
age, if correctly restored, will also have a good identifiability.

Figure 6 shows a group of consecutive frames and ob-
ject detection results for each approach, from a real-world
hazy video sequence. EVDD-Net is able to produce both the
most accurate and temporally consistent detection results. In
this specific scene, EVDD-Net is the only approach that can
correctly detect all four cars throughout the four displayed
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(a) Original Faster R-CNN (b) Retrained Faster R-CNN (c) EVD+Faster R-CNN (d) JAOD-Faster R-CNN (e) EVDD-Net

Figure 6: Comparisons of detection results on real-world hazy video sample frames. Note that for the third, fourth and fifth
columns, the results are visualized on top of the (intermediate) dehazing results.

frames, especially the rightmost car that is hardly recogniz-
able even for human eyes. That is owing to the temporal reg-
ularizations in both low-level and high-level parts of EVDD-
Net. More video results can be found in the YouTube3.

Conclusion

This paper proposes EVD-Net, the first CNN-based, fully end-
to-end video dehazing model, and thoroughly investigates the
fusion strategies. Furthermore, EVD-Net is concatenated and
jointly trained with a video object detection model, to consti-
tute an end-to-end pipeline called EVDD-Net, for detecting
objects in hazy video. Both EVD-Net and EVDD-Net are
extensively evaluated on synthetic and real-world datasets, to
verifyt the dramatic superiority in both dehazing quality and
detection accuracy. Our future work aims to strengthen the
video detection part of EVDD-Net.
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