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Abstract

To understand the real-world, it is essential to perceive in
all-day conditions including cases which are not suitable for
RGB sensors, especially at night. Beyond these limitations,
the innovation introduced here is a multispectral solution in
the form of depth estimation from a thermal sensor without an
additional depth sensor. Based on an analysis of multispectral
properties and the relevance to depth predictions, we propose
an efficient and novel multi-task framework called the Multi-
spectral Transfer Network (MTN) to estimate a depth image
from a single thermal image. By exploiting geometric priors
and chromaticity clues, our model can generate a pixel-wise
depth image in an unsupervised manner. Moreover, we pro-
pose a new type of multitask module called Interleaver as a
means of incorporating the chromaticity and fine details of
skip-connections into the depth estimation framework with-
out sharing feature layers. Lastly, we explain a novel techni-
cal means of stably training and covering large disparities and
extending thermal images to data-driven methods for all-day
conditions. In experiments, we demonstrate the better per-
formance and generalization of depth estimation through the
proposed multispectral stereo dataset, including various driv-
ing conditions.

Introduction

Depth estimation from a single RGB image is a fundamen-
tal problem in computer vision. Many industrial (Google,
Tesla etc.) and academic approaches (Geiger et al. 2013;
Cordts et al. 2016) have utilized the depth entailing com-
plementary sources of RGB images. In recent years, deep
learning-based approaches have advanced significantly for
single-image depth estimations. Because these data-driven
approaches require large amounts of RGB-D data, supple-
mentary depth sensors are typically used to capture the
ground truth accurately. In outdoor scenarios, a 3D laser
scanner is usually used to capture depth data. However, such
devices are limited in terms of the range and resolution and
usually fail when used with specular or transparent objects
such that depth measurements with them do not capture de-
tailed variations in the images. Moreover, due to the physi-
cal limitation of RGB sensors, these measurements have yet
to be broadly applied to various or less well-lit conditions,

Figure 1: The result of an accurate depth estimation using
a Multispectral Transfer Network (MTN) in both day (top)
and night (bottom) conditions. From left to right: in-
put thermal images, RGB stereo pairs, depths from RGB
stereo/Velodyne HDL-32E, and our results. The proposed
method can predict high-quality pixel-wise depths at night
compared to the depths from the RGB stereo/Velodyne.

such as nights or sunsets and sunrises. Hence, this led to the
question of how it would be possible to estimate dense and
accurate depth images all day.

We believe that the answer will rely on the use of al-
ternatives to RGB sensors. Among the promising options,
the thermal sensor has a strong advantage if used to cap-
ture images in the world, as this type is less affected by
light changes under highly lit and dark conditions. There-
fore, various thermal sensors have been increasingly used
in modern robotics and computer vision research on all-day
recognition. Recently, multispectral1 approaches (Hwang et
al. 2015; Choi et al. 2015; Jingjing et al. 2016; Treible et
al. 2017) have demonstrated some degree of correspondence
between RGB and thermal images as well as complemen-
tary information. Spectral images from both types of sen-
sors share global contexts such as silhouettes, boundaries,
and structures regardless of the loss of fine visual details in
the thermal images, even if their spectra are wholly different.
From these observations, we argue that thermal images can
be incorporated into RGB-based depth estimation methods.

There are two main challenges when estimating depths
from thermal images. The first is the scarcity of large-scale
multispectral datasets for depth estimations. Therefore, we
created a new multispectral stereo dataset which includes co-

1Denote thermal as Long Wavelength InfraRed (LWIR) and
multispectral as RGB and thermal spectrum.
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aligned multispectral pairs and 3D measurements. Another
issue is the different physical principles between the RGB
and thermal domains. Depth from RGB includes certain vi-
sual details which are infeasible to reconstruct from ther-
mal images. To alleviate this problem, our approach is based
on the unsupervised deep learning approaches (Garg et al.
2016; Godard, Aodha, and Brostow 2017; Zhou, Brown, and
Lowe 2017) using the L2 loss, though this is apt to produce
blurry images. Due to the assumption that pixels are drawn
using a single Gaussian distribution (Mathieu, Couprie, and
LeCun 2016), our model is trained to induce degraded un-
correlated details.

We name the proposed method the Multispectral Trans-
fer Network (MTN). It can generate the RGB-based depth
from a single thermal image based on the spectral/geometric
relationships between multispectral domains. Technically,
we introduce three novel contributions for accurate depth
estimations. First, we introduce efficient multi-task learn-
ing for depth estimation using the concept of chromaticity,
which is well known as the main feature in various tasks re-
lated to depth. The proposed multi-task learning approach
can improve the performance without additional annotated
data or measurements (Eigen and Fergus 2015). Secondly,
compared to general skip-connections (Long, Shelhamer,
and Darrell 2015; Bell et al. 2016; Hariharan et al. 2015;
Farabet et al. 2016), we propose the Interleaver module
which simultaneously encodes the finer details of the lower
layers and chromaticity features onto skip-connected ac-
tivation. The proposed module supplements the standard
CNN architecture without directly sharing the feature lay-
ers for multi-task learning. Lastly, we provide several tech-
nical considerations as an adaptive scaled sigmoid to cover
large disparities during training and photometric correction
to handle thermal contrast variations at different times for
all-day depth estimation.

Related Work

Multispectral Vision

Multispectral vision has been proposed for robust recogni-
tion in all-day environments. With the promising thermal
sensors, Hwang et al. (Hwang et al. 2015) proposed a multi-
spectral benchmark using a beam splitter to capture optically
aligned multispectral image pairs. From this milestone work,
the multispectral approach was extended to various appli-
cations, such as place recognition (Choi et al. 2015), im-
age enhancement (Choi et al. 2016), visual odometry (Pou-
jol et al. 2016) and object detection (Jingjing et al. 2016)
for all-day recognition. However, most of these works only
focused on fusing multispectral pairs through image con-
catenation or stacking multiple DNN models. Compared
to the RGB-D domain (Gupta, Hoffman, and Malik 2016;
Hoffman, Gupta, and Darrell 2016), it is still an open
question as to how multispectral images can be properly
combined to obtain optimal synergy. Recently, there have
been several works related to colorization with RGB and
near-infrared (NIR) (Limmer and Lensch 2016; Patricia
L. Suarez and Vintimilla 2017) for multispectral transfer
learning.

In the paper, we attempt to bridge the gap between RGB
and thermal images, which have completely different spec-
trums. To do this, we propose an unsupervised multispectral
framework that transfers depth information from RGB pairs
to thermal input images for all-day recognition, as well as
a the large-scale multispectral stereo dataset for real-world
scenarios.

Learning-based depth estimation

Supervised data-driven methods which adapt a CNN to gen-
eral depth predictions (Liu et al. 2015; Ladicky, Shi, and
Pollefeys 2014), multi-scale predictions (Eigen, Puhrsch,
and Fergus 2014), multi-task learning (Eigen and Fergus
2015), CRFs (Li et al. 2015), and robust objective func-
tions (Laina et al. ) outperform conventional approaches.
While supervised methods can generate better results, the
preparations necessary to handle a large amount of ground
truth data are not trivial, especially in outdoor scenar-
ios. To overcome these limitations, unsupervised methods
have recently been presented. These typically use the ge-
ometric properties of a single image or rectified stereo
pairs (Xie, Girshick, and Farhadi 2016; Garg et al. 2016;
Steinbrucker and Pock 2009; Godard, Aodha, and Brostow
2017; Zhou, Brown, and Lowe 2017). In another approach,
Chen et al. (Chen et al. 2016) proposed a model that learns
to estimate metric depths using annotated relative depths,
Kuznietsov et al. (Kuznietsov, Stückler, and Leibe 2017)
proposed a semi-supervised approach using 3D measure-
ments as supervised and stereo pairs for unsupervised learn-
ing, and depth estimation through synthetically rendered im-
ages (Gaidon et al. 2016).

Our approach is based on unsupervised learning mod-
els (Godard, Aodha, and Brostow 2017; Zhou, Brown, and
Lowe 2017) which transfer RGB-based depth data to the
thermal image domain. For this purpose, we propose an ef-
ficient multi-task approach with a new module termed Inter-
leaver to obtain more accurate depth results. Lastly, we gen-
eralized a sigmoid function which stably scales up to large
disparities and introduce an augmentation method which
learns the necessary time-invariant features for robust all-
day depth prediction.

Multispectral Stereo Dataset

Multispectral datasets (Hwang et al. 2015; Choi et al. 2015)
have recently been utilized in the computer vision and
robotics communities. However, most existing datasets fo-
cus on recognition tasks and are thus not suitable for data-
driven methods without refined depth ground truths. There-
fore, we introduced for the first time a large-scale multispec-
tral dataset for use in day and night conditions. Our mul-
tispectral stereo dataset provides a calibrated RGB stereo
pair, a co-aligned thermal image with left-view RGB stereo
images and 3D measurements, making the dataset com-
patible with various supervised and unsupervised meth-
ods. As shown in Fig. 3, compared to other multispec-
tral stereo datasets (Barrera, Lumbreras, and Sappa 2013;
Treible et al. 2017), we focus on real-world driving condi-
tions, such as those on campuses, residential areas, urban
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Single-task Network (STN) Lower sharing Multi-task Network (LsMTN) Deeper sharing Multi-task Network (DsMTN)

Encoder Decoder

Multispectral  Transfer Network (MTN)

Conv.
DeConv.

Interleaver
Shared Deconv.

Skip Connect.
Thermal Input

Disparity Output
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Global Pooling
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(a) Proposed Multispectral Transfer Network (MTN) (b) Individual components

(c) Baseline architectures: (from left to right) STN, LsMTN, and DsMTN

Figure 2: Proposed multispectral transfer model (a) and baseline models (c) for the comparison. Each module is denoted in (b)

areas, and suburbs in day and night-times. We also pro-
vide fully aligned RGB and thermal pairs using a beam-
splitter (Hwang et al. 2015) without clipped rectification
regions. More specifically, our dataset covers day [7am to
2pm], night [10pm to 2am], and high and under saturated
conditions. In total, we provide (#7383) stereo/thermal im-
ages for training (#4534) and testing (#2853) during the
daytime, while also testing (#1583) pairs at night. We split
the training/testing samples using GPS and time-logging
data without unnecessary duplication or consistency issues.
To achieve more accurate ground truth data, we used 3D
measurements and RGB stereo results (Žbontar and LeCun
2016) under daytime conditions. Due to the poor RGB visi-
bility at night, we provide new evaluation metrics for depth
images in less-lit conditions using only 3D measurements.

Approach

This section describes the architecture of MTN as shown
in Fig. 2-(a), including the details of the unsupervised frame-
work and the efficient multi-task learning strategy for MTN
with the new module Interleaver. It also discusses how the
time-invariant features are learned in a broader disparity
range.

Unsupervised Depth Estimation

Given a single thermal image IT , our goal is to learn a func-
tion that can predict the pixel-wise depth estimation d̂. Most
existing methods require a pair of images and the depth,
working in a supervised manner. However, it is not easy to
acquire the depth ground truth in an outdoor environment

due to sensor limitations. Because our goal is to generate
thermal-specific depth images, we designed the model based
on unsupervised depth estimation methods (Garg et al. 2016;
Godard, Aodha, and Brostow 2017). The basic conception
is that, given a calibrated pair of binocular RGB cameras ILR
and IRR , the model is trained to predict the disparity Dw that
would enable the warping of the right-view image IRR to re-
construct the left-view image ILR , as shown below.

ORGB
Rdist

=‖ ILR − IRR ⊗Dw(I
L
R) ‖2 (1)

This is the objective function for unsupervised methods,
where ⊗ denotes the warping IRR using estimated the dis-
parity Dw(I

L
R). With prior knowledge of the camera intrin-

sic/extrinsic parameters, we can predict the pixel-wise depth
using the camera focal length f and the baseline distance B

as follows: d̂R= f×B
Dw(ILR)

.
We extend this method to our multispectral transfer

framework for depth estimation from a single thermal im-
age. To train the multispectral transfer network, we instead
feed the thermal image ILT to the model to estimate the dis-
parity Dm

w to warp the right-view RGB image IRR to the left-
view RGB image ILR.

ORGBT
Rdist

=‖ ILR − IRR ⊗Dm
w (ILT) ‖2 (2)

The key insight is that multispectral images share global
context information such as the boundary of the scene and
the silhouettes of objects despite the loss of detail in ther-
mal (Hwang et al. 2015; Choi et al. 2015; Jingjing et al.
2016). To generate thermal-specific depth images, we used
the L2 loss to optimize the objective function. According
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Campus
train/test: 1281/839

Residential
train/test: 1067/561

Urban
train/test: 1165/845

Suburb
train/test: 1021/608

Figure 3: Examples of the proposed multispectral stereo
dataset. From top to bottom: an image taken on campus, in
a residential area, in an urban area, and in a suburb. From
left to right: the rectified RGB stereo pair, and the co-aligned
thermal image. On the right-bottom side of the thermal im-
age, we denote the number of training/testing frames for
each scenario.

to generative methods (Mathieu, Couprie, and LeCun 2016;
Yoo et al. 2016; Kingma and Welling 2014), pixels are actu-
ally drawn from a complex multi-modal distribution. How-
ever, the L2 loss induces the pixel intensity to the average
variable of multiple modes such that the trained model pro-
duces blurry predictions without complex details of the orig-
inal images. Therefore, we optimize the objective function
with the L2 loss in an unsupervised learning framework.

Multispectral Transfer Network

Efficient Multi-task Learning For more discriminative
feature learning, multi-task learning is generally used with
a deep neural network to model related tasks jointly in var-
ious computer vision and machine learning tasks (Ren et
al. 2015; Iizuka, Simo-Serra, and Ishikawa 2015; Eigen and
Fergus 2015; Kokkinos 2017). Although multi-task learn-
ing typically induces positive feedback between each task,
additional efforts are required to prepare subsequent tasks.
Moreover, the relevance and sharing between tasks can af-
fect the performance. In depth estimations, multi-task learn-
ing was applied simultaneously to estimate surface-normal
and segmentation labels (Eigen and Fergus 2015) in an in-
door dataset. The surface normal is difficult to obtain in
outdoor conditions, and manually labeling such that in-
volving scenarios is not feasible. For multi-task learning
to succeed, we define the problem such that it simultane-
ously predicts the depth and chromaticity of the aligned
left-view RGB image. The chromaticity has been used in
various works related to depth (Heo, Lee, and Lee 2016;

Figure 4: The configuration of Interleaver. Individual com-
ponents are indicated in Fig. 2. The proposed module is
composed of the global/up-pooling (red/yellow arrow), gat-
ing mechanism (blue box), and up-sampling unit (red box).

Park et al. 2011). As a unique property of the visible spec-
trum, it has been demonstrated that it is relevant to contex-
tual information (Iizuka, Simo-Serra, and Ishikawa 2015;
Zhang, Isola, and Efros 2016) to improve the depth qual-
ity. Moreover, we do not require additional works to obtain
the source. We propose an efficient multi-task method for
depth estimation which simultaneously estimates the depth
and chromaticity. In the ensuing experiments, we show that
the proposed multi-task based method can generate a more
accurate depth map than a model based on the learning of a
single task.

Proposed Architecture (Interleaver) An overview of the
proposed framework is illustrated in Fig. 2-(a). Our frame-
work is based on a general skip-connected network, and the
standard convolution and deconvolution are represented by
blocks of layers. A general extension to multi-task learning
is the sharing of feature layers in both tasks, with the split-
ting of the intermediate layer via a task-specific approach, as
shown in the two rightmost models in Fig. 2-(c). This inbuilt
sharing mechanism (sharing or split-architecture) is decided
after experimenting with splits at multiple layers and picking
the best one. Therefore, this approach relies on enumerating
multiple network architectures specific to the tasks, because
it is challenging to define the inter-relationship or depen-
dency between tasks. Therefore, we propose a novel multi-
task module called Interleaver to explore the best model
without having to train all of them. The goal of the inter-
leaver is to combine multi-task into a single network in a
way such that the tasks supervised how much sharing is
needed. Motivated by gating mechanism in recurrent neural
networks (RNNs), we model sharing of representations by
learning gated weights using convolution modules at each
skip-connected layers. As shown in Fig. 4, each Interleaver
takes a skip-connected feature xi

w×h and pools the feature
via global average pooling and then up-pools it to add to
the input feature map. This pooling mechanism has been
qualified to effectively enlarge the receptive field and im-
prove the generative results. This pooled feature passes the
gated convolution to learn the control flow of the chromatic-
ity information for the skip-connected features, after which
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(a) AM07, AM09, AM11, PM04, and AM02

(b) , , original, , and 

Figure 5: Example images captured at different times (top)
and our photometric correction results (bottom). The orig-
inal image can be augmented by certain parameters (γn).
Our result can reasonably represent images captured at dif-
ferent times, because these parameters are estimated by a
data-driven approach from training samples.

it passes the upsampling layer to serve as the feature xi
2w×2h

to the corresponding to following layers. Through the pro-
posed module, we can obtain a better representation model
for learning to capture finer details from lower convolutional
layers with local receptive fields and contextual information
from the chromaticity. Moreover, the proposed multi-task
architecture can minimize the effort needed to design opti-
mal networks and reduce the adverse effects of previous ap-
proaches. During the training process, we optimize the same
strategy as the general multi-task learning.

Adaptive Activation For a fully differentiable model, we
replaced the linearized warped model (Garg et al. 2016)
with a bilinear interpolation sampler (Jaderberg et al. 2015).
The main difference from earlier work (Godard, Aodha, and
Brostow 2017) is the penultimate activation, which scales
the estimated disparity. Godard et al. (Godard, Aodha, and
Brostow 2017) used a fixed-scale sigmoid function to con-
trol the maximum disparity level. However, the maximum
disparity level can vary depending on the sensor configura-
tion and dataset used. Accordingly, finding the optimal scale
is not a trivial problem without the ground truth. Moreover,
the bilinear sampler module would be unstable if used to in-
crease the scale of the sigmoid in the initial steps, and its
derivative cannot generally handle cases in which the cur-
rent focus is outside of the region of the pixel space. There-
fore, we propose an adaptive scaled sigmoid function (Sass)
which iteratively increases the scale of the sigmoid for stable
convergence while covering a large-scale maximum dispar-
ity range.

Sass(x) =
β

1 + ex
,

{
β = β0, if epoch = 1

β = β + α, otherwise
(3)

As we increase the initial variable β0 by α in certain epochs,
our model can undertake learning with large-scale dispar-
ities without interruptions during training. The entire net-
work configuration is illustrated in the website.

Photometric Correction Even if thermal sensors are ro-
bust to illumination changes, there are changes in the ther-
mal contrast ratio relative to the amount of heating energy

over time. More specifically, this variation can occur dur-
ing both day and night, during different seasons, and at sun-
set and sunrise, implying that this is an important issue in
thermal-based applications. Moreover, we can only use mul-
tispectral pairs taken in daytime conditions due to the poor
visibility of RGB sensors at night. To alleviate these issues,
we propose a data-driven photometric correction Pcor(x) =
λxγ method. The basic concept is that we estimate the pa-
rameters from various contrast ratio images. To do this, we
collect temporally ordered images during the time range of
7am to 2am (Fig. 5-(a)) and then convert the training images
into corrected images using pre-defined correction param-
eters (γ, λ). We then compare the similarity of the intensity
and gradient histogram-based features between the corrected
images and the temporally ordered images to vote on each
parameter. With our photometric correction method (Fig. 5-
(b)), we can augment the realistic contrast variation of the
thermal images at different times. This method is simple to
implement, but it is crucial to learn the time-invariant fea-
tures for all-day depth predictions. In our experiments, we
show that our proposed photometric correction approach can
greatly affect the quality of the depth image, particularly at
night.

Training Loss

We formulate a multi-task objective function that incorpo-
rates the reconstruction of disparities, the chromaticity, and
the smoothness prior to the disparity.

EMTN = ORGBT
Rdisp

+ λsOSdisp
+ λcORchrom

(4)

ORGBT
Rdisp

encourages the reconstructing of warped images to
corresponding pairs to learn disparities from multispectral
correspondences. Because the disparity discontinuity gener-
ally corresponds to the edge of the image I , we use simple
l1 regularization on the gradient of the disparity D, similar
to (Godard, Aodha, and Brostow 2017) for smoothness pri-
ors.

OSdisp
= |�Dx| e−‖�Ix‖ + |�Dy| e−‖�Iy‖. (5)

For the chromaticity estimation ORchrom
, we tested several

color codings to extract the chromaticity from RGB images
and finally used the YCbCr color coordinates shown below,

ORchrom
=

2∑
i=1

‖ CL
i −XL

i ‖2, (6)

where CL
i and XL

i denote the ground truth and the predic-
tion of each CbCr channel respectively.

Experiments

Implementation Details

The network is implemented in MatConvnet (Vedaldi and
Lenc 2015), and takes 20 hours to train using a single
NVIDIA TITAN X GPU on 4.5 thousand pairs for 40
epochs. During the training process, we set the weights of
the objective terms as λs = 0.01 and λc = 0.01 and use
SGD for optimization with a momentum(0.9)/weight de-
cay(0.0005) from scratch within a learning rate of 10−5.
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Figure 6: Qualitative results from the day scenario. (From left to right) thermal image, the co-aligned RGB image, depth images
and several results (STN, LsMTN, DsMTN, MTN-P, DIW, and MTN). The left-bottom frame of the results is a binary error
map which represents the error over three pixels of disparity. Our method outperforms when representing global scenes and
objects such as cars, trucks, and those in nature.

According to the normalized coordinate of the bilinear sam-
pler (Jaderberg et al. 2015), we set an adaptive scaled sig-
moid function which initially sets β0 = 0.3, with an increase
by α = 0.01 every two epochs. During the training pro-
cess, we found that the proposed function can encourage sta-
ble convergence to cover a large range of disparity. Instead
of ReLU, we used ELU, similar to (Godard, Aodha, and
Brostow 2017) and batch normalization (Ioffe and Szegedy
2015). For every iteration, we conduct photometric correc-
tion and data augmentation. The correction parameters are
pre-computed by the proposed method as γ=[0.5, 0.75, 1.25,
1.5] and λ = 1, and we randomly cropped the center region
in the margin of [64, 96].

Evaluation

Baselines We evaluate our approach on the proposed mul-
tispectral stereo benchmarks. To do this, we designed the
unsupervised baseline methods shown in Fig. 2-(c). Note
that essentially all baselines share the same architecture with
skip-connections. First, we set our full model as (MTN).
The single transfer network (STN) is trained by only depth
estimation tasks in the leftmost model shown in Fig. 2-(c) to
verify the effect of the chromaticity-based multi-task learn-
ing. To prove the superiority of Interleaver, we provide two
general multi-task models which directly share the feature
layer. According to the amount of feature sharing, one is
termed Low-shared MTN (LsMTN) and the other is referred
to as Deep-shared MTN (DsMTN), as shown in the center
and rightmost models in Fig. 2-(c). Lastly, we set the model
without photometric correction, as (MTN-P).

Our aim is to demonstrate multispectral transfer learning

via depth prediction so as to compare the outcome with those
of other depth prediction methods based on the thermal im-
age input. We select various approaches for the compari-
son, including a supervised method by Eigen et al. (Eigen,
Puhrsch, and Fergus 2014) and an ordinal-based depth es-
timation method (Chen et al. 2016), denoted as Eigen and
DIW respectively. Although our framework is not suit-
able for these types of methods, we compare MTN to the
cornerstone models to verify that our generated depth of-
fers better quality than general methods. Lastly, we con-
ducted an experiment using RGB images as inputs with the
compared methods (STN-RGB, Eigen-RGB, DIW-RGB).
Through these additional baselines, we demonstrate that our
depth result from a single thermal image has reasonable
quality compared to the depth results from a single RGB
image. It also offers the advantage of being able to estimate
the depth at night.

Evaluation Metrics In day scenarios, we evaluate the ac-
curacy of the proposed method for depth predictions using
conventional metrics from earlier work (Eigen, Puhrsch, and
Fergus 2014). These metrics measure the error in terms of
both the physical distance from the ground truth and the ac-
curacy levels within certain threshold depth ranges. In night
scenarios, due to the poor visibility of RGB images, we can-
not measure the performance using these metrics. Moreover,
the simple comparison of 3D laser measurements does not
represent reasonable performance because these points can-
not cover the entire image, and depths from far distances,
reflective objects, and boundaries are not accurate, causing
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Table 1: Quantitative results in day scenarios.
Distance Metric Accuracy Metric

RMS
log

RMS
Absolute
relative

Square
relative

Accuracies

δ < 1.251
Accuracies

δ < 1.252
Accuracies

δ < 1.253

1∼80m 1∼50m 1∼80m 1∼50m 1∼80m 1∼50m 1∼80m 1∼50m 1∼80m 1∼50m 1∼80m 1∼50m 1∼80m 1∼50m

STN 10.418 7.7737 0.2137 0.2000 0.1616 0.1531 2.7168 2.2767 0.7759 0.8060 0.9349 0.9337 0.9784 0.9776
LsMTN 9.5155 6.6967 0.1981 0.1801 0.1422 0.1325 2.1029 1.6322 0.8053 0.8358 0.9472 0.9492 0.9835 0.9842
DsMTN 9.3808 6.3671 0.2016 0.1761 0.1390 0.1259 1.9780 1.4394 0.7966 0.8407 0.9469 0.9544 0.9828 0.9855
MTN-P 10.5755 7.0058 0.2236 0.1951 0.1573 0.1413 2.4506 1.7251 0.7540 0.8040 0.9314 0.9440 0.9787 0.9827

MTN(Ours) 8.7387 6.0786 0.1933 0.1714 0.1307 0.1207 1.7394 1.3119 0.8124 0.8451 0.9508 0.9557 0.9842 0.9868

STN-RGB 10.3758 7.5876 0.2326 0.2094 0.1657 0.1570 2.5682 2.0618 0.7395 0.7772 0.9276 0.9378 0.9769 0.9806
Eigen-RGB 12.9946 10.1792 0.2513 0.2386 0.2105 0.1992 4.6046 4.0629 0.7095 0.7551 0.8985 0.8965 0.9649 0.9612

Eigen-T 12.9632 10.266 0.2505 0.2384 0.2090 0.1976 4.6110 4.0835 0.7126 0.7561 0.8980 0.8947 0.9656 0.9618
DIW-RGB 9.3927 6.4993 0.2029 0.1934 0.1660 0.1644 2.3764 1.8030 0.7743 0.7956 0.9485 0.9482 0.9840 0.9842

DIW-T 10.4869 6.4427 0.2105 0.1967 0.1754 0.1697 3.0885 1.7543 0.7585 0.7825 0.9413 0.9454 0.9828 0.9851

*Note that distance metrics are that lower variable is better, and accuracy metrics are that higher is better.

erroneous evaluations. Therefore, we propose a new met-
ric, f (Eq. (7)), which considers the ordinal information of
the estimated depth � on projected LiDAR points instead
of distance metrics. Because the simple ordinal comparison
has some degree of ambiguity given the erroneous points,
we introduce a penalty for ordinal pairs in £, which has dis-
tance error exceeding a certain threshold (ξ(m)), similar to
accuracy metrics (Eigen, Puhrsch, and Fergus 2014).

M = {(di, dj) | di, dj ∈ D, i �= j}
L = {(di, dj) | (di − dgti ) < ξ, (di, dj) ∈ M}
f =

1

|M|
∑

(di,dj)∈L

C(di, dj)

C(di, dj) =

{
1, if sign(di − dj) = sign(dgti − dgtj )

0, otherwise

(7)

Results Table. 1 shows our results in relation to the base-
lines and the state-of-the-art methods of multispectral stereo
benchmarks. We conducted the experiments in two aspects
[1 to 50 meters, 1 to 80 meters] to cover all evaluations of the
previous single-view depth estimation. For most metrics, our
proposed method clearly performs the best. In both ranges,
the chromaticity multi-task model (the series of MTN) out-
performs the single-task method. Moreover, our proposed
Interleaver module (MTN) predicts the more accurate depth
than the feature-sharing models (LsMTN, DsMTN). The
deep-shared model (DsMTN) can improve the quality of
depth than that of the low-shared model (LsMTN). The most
noticeable point is that MTN allows all connections between
layers. The Interleaver encouraged models to be automat-
ically tuned by learning the gated weights between tasks
in every connections. Totally, our full model (MTN) can
improve the performance of (STN) by more than around
22% and 16% in terms of RMSE in 50 and 80 meters re-
spectively. Furthermore, we can see that the performance of
MTN-P is worst in most measurements as similar to the sin-
gle task baseline (STN). Therefore, we conclude that our
photometric correction is very important for handling the

Table 2: Quantitative results in night scenarios.
Ordinal Accuracy Metric

ξ = 10 ξ = 20 ξ = 30

STN 0.3233 0.6237 0.7317
LsMTN 0.3405 0.6855 0.7753
DsMTN 0.3745 0.6820 0.7797
MTN-P 0.3096 0.6225 0.7397
MTN 0.4666 0.7026 0.7757

STN-RGB 0.2508 0.3284 0.3592
Eigen-RGB 0.1728 0.2442 0.3064

Eigen-T 0.2033 0.6178 0.7516
DIW-RGB 0.1404 0.3176 0.3805

DIW-T 0.3744 0.7459 0.8401

thermal image invariant property. Compared to other su-
pervised methods, all our baselines outperform Eigen and
our efficient multi-task approach mostly shows the better
performance than DIW. When evaluating 50 meters, DIW
shows good results in most of the metrics. However, since
the relative depth has an ambiguity in the longer range, the
depth accuracy became worse. Our MTN is still robust to
the longer range compared to other methods. In qualitative
results (Fig. 6), other predictions may appear more plausible
and seem to smoother. However, these things are not always
consistent with ground truth depth maps. According to error
maps, our predictions for global and local scene boundaries
and depth consistency levels are more accurate. In Table. 2,
we compare the proposed method to the same baselines at
night with the proposed metric in at [10, 20, and 30] meters.
We find that the average accuracy is lower than the results of
day scenarios due to the different conditions of the scenes.
Regardless of this fact, our results clearly demonstrate the
benefit of using thermal images compared to RGB-based
baselines during night conditions, as the accuracy is greater
by threefold in the tightest threshold. For most metrics and
setups, MTN performs best with similar tendencies, indicat-
ing that our efficient learning and Interleaver can provide
meaningful training cues to depth estimations. DIW shows
the better results at [20,30] meters because that method is
robust to relative depth relationships. However, the accuracy
of the metric depths is not higher than that of the proposed
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Figure 7: Qualitative results in the night scenario. From
left to right: input thermal image, result of STN, result of
MTN-P, result of DIW, result of the proposed MTN. Our
method achieves better qualitative results at night despite
being trained during day conditions. Compared to MTN-
P, photometric correction is not a trivial function to resolve
thermal time-variant properties.

method. As shown in Fig. 7, the results from MTN-P have
some artifacts in the frame due to thermal contrast ratio is-
sues. However, we note that adjusting the photometric cor-
rection method can train the model to be robust, providing
it with the ability to estimate accurate depth images in such
challenging scenarios.

Discussion

Our answer to the question in the introduction of how can we
estimate dense and accurate depth images all day is to use
a multispectral transfer approach for depth estimations from
a single thermal image. The proposed multi-task approach
with chromaticity can improve the performance, and the
Interleaver module encourages better representations with
less adverse effects of feature-sharing methods. As shown
in Fig. 8, our predicted depth shows a good quality in day
and night conditions. In the comparison with RGB-based
models, we demonstrated that the depth of a single thermal
image has realistic and reasonable quality and that our model
has generalization ability sufficient to estimate the depth in
various conditions.

Due to the different properties of multispectral domains,
the chromaticity is not wholly plausible when used for re-
construction, and objects and boundaries strongly repre-
sented by chromaticity can be well reproduced. Compared
to feature-sharing multitask learning, our model can learn
selection and attention to control the relevant and useful fea-
tures from this result using the proposed Interleaver module.

While photometric correction can regularize the variation
of the thermal contrast ratios to some extent, there remain
several issues to resolve before thermal image variants can
be covered. However, we think that our correction method
offers simple but effective guidance for dealing with one of
the main issues when the applying thermal images to data-
driven methods.

Figure 8: Examples of 3D reconstruction from thermal im-
ages at day (left) and night (right).

Conclusion

In this paper, we proposed the first multispectral transfer
framework for depth estimation from a single thermal im-
age. Our main concern is the generation of depth beyond
day conditions using illumination-invariant thermal images.
To realize this goal, we created a large-scale multispectral
stereo dataset in various driving regions. Based on knowl-
edge of the multispectral relationships, we designed an ef-
ficient multi-task learning framework using chromaticity
without additional annotated data or data acquisition. For ac-
curate predictions, we proposed Interleaver to encourage an
efficient but accurate multitask learning using chromaticity
features. Lastly, we explained the adaptive scaled sigmoid
for stable convergence while covering a large disparity level,
with photometric correction for thermal images to resolve
the thermal variant problems for day and night depth pre-
dictions. To verify our contributions, we conducted exper-
iments involving various cases compared to self-designed
baselines, the results of previous works, and multi-modality
approaches.
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