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Abstract

Matching pedestrians across multiple camera views has at-
tracted lots of recent research attention due to its apparent
importance in surveillance and security applications. While
most existing works address this problem in a still-image
setting, we consider the more informative and challenging
video-based person re-identification problem, where a video
of a pedestrian as seen in one camera needs to be matched to
a gallery of videos captured by other non-overlapping cam-
eras. We employ a convolutional network to extract the ap-
pearance and motion features from raw video sequences, and
then feed them into a multi-rate recurrent network to exploit
the temporal correlations, and more importantly, to take into
account the fact that pedestrians, sometimes even the same
pedestrian, move in different speeds across different cam-
era views. The combined network is trained in an end-to-end
fashion, and we further propose an initialization strategy via
context reconstruction to largely improve the performance.
We conduct extensive experiments on the iLIDS-VID and
PRID-2011 datasets, and our experimental results confirm the
effectiveness and the generalization ability of our model.

Introduction

Human re-identification (re-id), that is, matching pedestrians
across multiple non-overlapping camera views (Farenzena et
al. 2010), has attracted much research attention in the com-
puter vision and machine learning communities due to its ap-
parent critical role in surveillance and security applications
such as people tracking and forensic search. Major chal-
lenges in person re-id include camera view changes, poor
lighting conditions, and severe background clutter and oc-
clusion; see some example illustrations in Figure 1. Various
methods have been proposed in recent years to address this
challenging problem, most of which concentrate on static-
image-based person re-id (Jing et al. 2015; Liao et al. 2015)
and can be divided into two groups: feature learning (Kvi-
atkovsky, Adam, and Rivlin 2013; Yang et al. 2014a; 2014b;
Zhang, Chen, and Saligrama 2014) and distance metric
learning (Liao et al. 2015; Liao and Li 2015; Su et al. 2015;
Varior et al. 2016b; Xiong et al. 2014).

Despite of the significant progress on still-image-based
person re-identification, such existing methods still fall short
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Figure 1: Person re-identification remains a challenging
problem due to background clutter and occlusion, camera-
view changes and lighting conditions.

of fully meeting the requirements of real-world applications,
due to the following reasons: First, most naturally a pedes-
trian is captured in a video rather than in a single still im-
age but still-image-based person re-id methods cannot ex-
ploit the rich temporal information related to a pedestrian’s
motion, such as his gait and perhaps even the way his cloth-
ing moves. Such information, if properly leveraged, can help
disambiguate difficult matchings (McLaughlin, del Rincén,
and Miller 2016). Second, there are significantly more and
diverse appearance cues in a video sequence than in a static
image, enabling us to extract more robust and discrimina-
tive appearance features. Third, video-based person re-id is
a continuous process hence can largely reduce the negative
effect due to occlusion and background clutter.

As a result, video-based person re-id has gained grow-
ing attention, and promising results on recent benchmark
datasets (Hirzer et al. 2011; Wang et al. 2014) have been
achieved. Existing methods in this setting can be divided
into the following categories: (1) Key shot/fragment repre-
sentation (Wang et al. 2014), which automatically selects the
most discriminative fragments from the flow energy profile.



However, in the matching process, since only one fragment
is selected to represent the video sequence, temporal in-
formation is largely discarded. (2) Feature fusion/encoding,
which encode frame-level feature vectors into a single vector
via bag-of-words, but fail to consider the spatial-temporal
information in video sequences. (3) Spatial-temporal ap-
pearance model (Liu et al. 2015), whose computation is
unfortunately too expensive to be applicable in real-world
applications. (4) Recurrent neural network based methods
(Haque, Alahi, and Fei-Fei 2016; McLaughlin, del Rincén,
and Miller 2016), which embed the inherent temporal hier-
archy in the form of short, middle and long-term memory.
Our work will largely follow the last category by combining
a convolution network with a multi-rate recurrent unit.

Thus, the fundamental challenge in video-based pedes-
trian re-id is on how to effectively encode hence exploit the
spatial-temporal information contained in a video sequence
(Chang et al. 2017). Our work is based on a crucial novel ob-
servation: Different pedestrians, or sometimes even the same
pedestrian, move in various speeds across non-overlapping
camera views. This fact, to the best of our knowledge, has
not been explicitly taken into account in existing works but
intuitively can be very helpful for person re-id. To this end,
we propose a novel siamese multi-rate gated recurrent net-
work for video-based pedestrian re-id, which enables infor-
mation sharing between different encoding rates and which
collaboratively learns a multi-resolution representation that
is robust to the motion rates of pedestrians. We train the en-
tire network in an end-to-end fashion, and we initialize the
network via context reconstruction—a strategy we found to
work very well empirically.

Contributions. We summarize our contributions to video-

based pedestrian re-identification as follows:

e Methodologically, we propose to leverage on a multi-
rate recurrent network to extract a multi-resolution fea-
ture representation that is robust to the motion rates of
pedestrians. Combined with a convolutional network, our
model can very effectively exploit the spatial-temporal in-
formation in the video inputs.

e Procedurally, we propose to initialize our network via
context reconstruction, in order to facilitate training and
avoid poor local minima. Our empirical results confirm
the effectiveness of this initialization strategy.

e Experimentally, we evaluate the performance of the pro-
posed model on the iLIDS-VID and PRID 2011 datasets.
Our results compare favorably against existing state-of-
the-art alternatives, sometimes with a large margin.

Related Work

In this section, we briefly review two branches of works that
are related to ours: (1) person re-identification, (2) recurrent
neural networks.

Peson Re-Identification

Existing works on person re-id focus on discriminative fea-
ture learning (Kviatkovsky, Adam, and Rivlin 2013; Yang
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et al. 2014a; 2014b; Zhang, Chen, and Saligrama 2014) and
distance metric learning (Liao et al. 2015; Liao and Li 2015;
Su et al. 2015; Varior et al. 2016b; Xiong et al. 2014).
Discriminative features that are invariant to camera view
changes, lighting conditions, background clutter and occlu-
sion play a vital role in boosting the performance of per-
son re-id. However, traditional features alone are usually not
sufficient to distinguish a person from similar ones, and one
possibility is to combine a few features together to generate
a more informative representation (Ma, Su, and Jurie 2012)
or to select the most informative feature to represent a pedes-
trian (Farenzena et al. 2010).

When video sequences are used for person re-id, several
new challenges arise. For instance, video sequences may
have different length and/or frame-rates, and training an ac-
curate appearance model with unknown partial or full occlu-
sions within the video sequences is extremely difficult (Liu
etal. 2017; You et al. 2016; Zhu et al. 2016). To address such
issues, pioneering works explore space-time information to
build spatial-temporal representations, resulting in more ex-
pressive features such as 3D HOG (Kliser, Marszalek, and
Schmid 2008) and 3D SIFT. Other works have tried to build
more discriminative representations. For example, Wang et
al.(Wang et al. 2014) present a novel approach to automat-
ically select the most discriminative video fragments from
noisy image sequences of pedestrians, whie simultaneously
learn a video ranking model for pedestrian re-id.

When highly discriminative features are available, numer-
ous metric learning and ranking algorithms have been pro-
posed to address the pedestrian re-id problem. For example,
Zheng et al.(Zheng, Gong, and Xiang 2013) formulated per-
son re-id as a relative distance comparison problem.

Recurrent Neural Networks

Recurrent Neural Network (RNN) is capable of captur-
ing the context information in sequence date by maintain-
ing some internal states. RNNs, particularly Long Short-
Term Memory (LSTM) (Ng et al. 2015), have achieved re-
markable success in natural language processing, machine
translation (Karpathy and Li 2015; Sutskever, Vinyals, and
Le 2014), and computer vision (McLaughlin, del Rincén,
and Miller 2016; Varior, Haloi, and Wang 2016; Varior
et al. 2016a; Yan et al. 2016). The fundamental idea be-
hind RNN/LSTM is that through connections with previ-
ous states the network is able to “memorize” information
from past inputs and thereby capture the contextual depen-
dency in sequence data. Yan et al.(Yan et al. 2016) propose
a novel recurrent feature aggregation framework for person
re-id, which can learn discriminative sequence-level repre-
sentation from simple frame-wise features. McLaughlin et
al.(McLaughlin, del Rincén, and Miller 2016) introduce a
novel temporal deep neural network architecture, and use
optical flow, recurrent layers, and mean-pooling to embed
the inherent temporal hierarchy in the form of short, middle
and long-term temporal information, respectively. Varior et
al.(Varior et al. 2016a) present a novel siamese LSTM archi-
tecture, which can selectively propagate relevant contextual
information and thus enhance the discriminative capacity of
the local features.
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Figure 2: An overview of the proposed video-based re-id framework. We first process each sequence using a convolutional
neural network and generate a feature vector to represent a pedestrian at a single time step. Then, we use a multi-rate recurrent
neural network to encode sequences of representations in different resolutions. Lastly, we train the entire network end-to-end
based on both the Siamese objective and the prediction cost of each pedestrian’s identity.

However, a major limitation of existing works is that the
input frames are encoded with a fixed sampling rate when
training the RNNs. In other words, they fail to consider the
fact that the motion speeds of different pedestrians can vary
a lot. Sometimes even the same pedestrian may move in dif-
ferent speeds across different camera views. Our main goal
in this work is to fill this gap.

The Proposed Approach

In this section we give a detailed description of the proposed
model.

Overview

The goal of our model is to match sequences of same
pedestrians obtained from different cameras. The proposed
Siamese architecture consists of two copies of multi-rate re-
current networks that share the same weights. The funda-
mental idea behind a two-branch Siamese network is that
it takes a pair of pedestrian images/sequences as input and
aims to learn deep identity-discriminative representations so
that images/sequences of the same pedestrian can be cor-
rectly matched whilst different pedestrians can be distin-
guished. Similar to (McLaughlin, del Rincén, and Miller
2016), we train the entire network end-to-end based on both
the Siamese objective and the prediction cost of each pedes-
trian’s identity.

An overview of our proposed architecture is shown in Fig-
ure 2. In our framework, each sequence is first processed by
a convolutional neural network to generate a feature vec-
tor that represents a pedestrian at a single time step. Then,
we use a multi-rate recurrent neural network to encode se-
quences of pedestrian representations in different resolu-
tions. Since initialization is key to train a deep network and
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to avoid poor local minima, we further propose an effective
initialization strategy via context reconstruction.

Input

To capture appearance and motion information for video-
based re-id, our proposed model makes use of both color and
optical flow information, which, as shown in (McLaughlin,
del Rincon, and Miller 2016), will allow the network to bet-
ter exploit short-term temporal information.

Before passing the images to the convolution network, we
first convert them to the YUV color space and normalize
each color channel to have zero mean and unit variance. The
Lucas-Kanade algorithm has been widely used for optical
flow computations, and we use it to compute the horizon-
tal and vertical optical flow channels between each pair of
frames. Thus, the first layer of the convolutional neural net-
work uses five input channels: 3 for colors and 2 for optical
flows.

Convolutional Network

As shown in Figure 2, we process each frame by a convo-
lutional neural network (CNN) at each time step. The CNN
takes an image I as an input, passes through multiple layers,
and generates a vector x as an output. We refer this proce-
dure as a function x = CNN(7). A traditional CNN includes
several layers, such as convolution, pooling, and non-linear
activation steps. Our model can take advantage of any CNN
architecture. In this work we use ResNet-50 (He et al. 2016),
which is different from most existing deep Re-ID networks
(McLaughlin, del Rincén, and Miller 2016). Our motiva-
tion here is to choose an existing network that is competitive
in the ImageNet classification benchmark and that has been
widely used in many other vision problems. Among the re-
cently proposed networks that achieved good classification



performance on ImageNet, ResNet-50 achieved state-of-the-
art performance. In the experiments, we conduct extensive
experiments to evaluate the influence of CNN architectures
on the final performance of our model.

The parameters of all CNNs are shared across all time-
steps. Then, the output is fed into the multi-rate recurrent
network, to encode the sequence of representations in differ-
ent resolutions. To avoid overfitting, we also add a dropout
layer between the CNN and the multi-rate recurrent layer.

Multirate Gated Recurrent Unit

We first revisit the basic Gated Recurrent Unit (GRU), which
is a particular type of RNN and was proposed to allow each
recurrent unit to adaptively capture dependencies of differ-
ent time scales (Cho et al. 2014). It does not have any mech-
anism to control the degree to which its state is exposed, but
rather expose the whole state each time.

More formally, at each time step ¢, given a frame repre-
sentation x; and previous state h;_1, the GRU cell generates
a hidden state h,; and an output o, iteratively as follows:

r; = o(W,x; + U,hy 1), ()
z; = 0(W.x; + U h;_1), 2)
h; = tanh(W;x; + U (rs © hy_y)), 3)
hy=(1-2z)®h1+z,0h )
o, = W, hy, (5)

where o is the sigmoid activation function, ry is the reset
gate, z; is the update gate, h; is the internal state, W, and
U.. are weight matrices and © is the element-wise multipli-
cation. When the reset gate is close to 0, it effectively forces
the unit to act as if it is reading the first symbol of an input
sequence, hence allows it to forget the previously computed
state (Chung et al. 2014). The output o, is calculated by a
linear transformation from the state h,. For simplicity, neu-
ron biases are omitted in the equations. We can write the
entire iteration compactly as:

h; = GRU(Xt, h; 1), o = W,h;. (6)
After a maximum of S iterations, we get the final state hg
of the last step.

Multirate Gated Recurrent Unit. Next, we discuss the
multirate extension of GRU as in (Koutnik et al. 2014;
Zhu, Xu, and Yang 2016). The clockwork RNN (Koutnik
et al. 2014) has delayed connections and units operating at
different time-scales. The novelty of clockwork RNN is that
its states and weights are divided into a few groups to cap-
ture temporal information at different rates. Following (Zhu,
Xu, and Yang 2016), we divide state h; into & groups, and
each group g; has a clock period T;, where i € {1,...,k}.
Empirically, we set & = 3 and 13,75,75 = 1,3,6. For-
mally, at each step ¢, weight matrices of the group ¢ with (¢
mod T;) = 0 are activated and are used to calculate the next
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state as follows:

I‘i = O'(Wrxt + Z Ui’jh{_l),

(7
j=b
z; =o(Wix,+ Y Uh] ), (8)
j=b
h; = tanh(Wix, + > U (r; @bl ), (9)
j=b
hi = (1 -2;) ©h;_; +2; ©hy, (10)

where the state weight matrices U, are divided into k row-
blocks and each row-block is partitioned into k£ column-
blocks. The input weight matrices W, are divided into k
row-blocks and W denotes the weights in row-block i.
There are two modes for state transition, and depending on
which mode we operate, we have

b=1,e=1,
{b =i,e=k,
In the fast to slow mode, states of faster groups (i.e.larger
T;) includes previous slower states (i.e.smaller 77;). Thus, the
faster states incorporate information not only at the current
rate but also information that is slower and more refined. The
intuition for the fast to slow mode is that when it is activated,
we can take advantage of the information already encoded in
the slower states. Empirically, in this paper, we use the fast
to slow mode for its better performance.
When (¢ mod T; # 0), the previous state is directly
passed over to the next state, i.e.,

P
ht_ t—1-

Fast — slow mode

(1)

Slow — fast mode °

(12)

We illustrate the state transition process in Figure 2. We
note that training is much faster than traditional GRU with
the same number of hidden nodes since not all previous
modules are evaluated at every time step.

Network Initialization

Context reconstruction has been demonstrated to play a vital
role in different language modeling applications (Kiros et al.
2015), which inspires us to adapt it for initializing our net-
work in video sequence modeling. We use two decoders to
predict the context sequences of the inputs, i.e., reconstruct-
ing the frame-level representations of the previous sequence
and the next sequence.

We denote Y (¥1,¥2,---,¥n) as the previous
sequence of the current input sequence X, and Z
(21,22, . ..,2y,) as the next sequence. The decoder is a GRU
conditioned on the encoder outputs o1, ..., 0g and the final
state hg of the last step of the encoder. Since soft attention
mechanism has been shown to be quite effective in several
sequence modeling tasks, we utilize the attention mecha-
nism at each step to help the decoder decide which frames in
the input sequence might be related to the next frame recon-
struction. The core of the soft attention mechanism is that
instead of just inputting the original sequence y to the GRU
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Figure 3: The architecture of network initialization. For ini-
tialization, two decoders are used to predict surrounding
contexts by reconstructing previous frames and next frame
sequences. The “<ini>’ is the initial input at step 0. In this
paper, we use a zero vector. Each decoder is chosen with a
probability of 0.5 for reconstruction.

layer, dynamic weights are used to generate a new sequence.
At step t,

yi (13)
where the attention weights W, and W, measure the rele-
vance between the ¢-th element y; of the input sequence and
the history information recorded by the GRU h;_;.

= W.y: + Wyay_q,

hgec _ GRU(y?lm, hgeicl)7 O:tmn _ Wgechttiec (l 4)
In details, the relevance score is calculated as follows:
gi = v tanh(Wj,hi* + W,,0;), (15)

where v, Wj4, W, are all weight parameters. Then, the
attention vector a, can be obtained by:

s
a =)

i=1

exp(g;)
g 7
> -1 exp(g;)

i.e., the weighted average of the encoder outputs o;, with
weights proportional to the relevance score g¢.

Finally, the decoder ¢ generates the prediciton 0 by cal-
culating

0, (16)

dec

0}* = Linear(o}", a;), (17)

where Linear(m,n) = W,,m + W, n. Different from the
classic seq2seq model, we use two decoders here: one for
the past sequence reconstruction and the other for the future
sequence reconstruction. These two decoders do not share
weights. The decoders are trained to minimize the recon-
struction loss of two sequences, which is defined as follows:

> Ue(y<s,01,...,05,hg),y:) + (18)
t

Z€(¢(z<t/7017 e 7057hS)7Zt’)7
t/

where we use the Huber loss that has been widely demon-
strated to be effective:

%(y - y)za

e =

. 19
otherwise (19)
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To minimize the information lag, we reverse the input
order as well as the target order for the past reconstruc-
tion. We train the two decoders with the encoder via back-
propagation and regularize the network by randomly drop-
ping one decoder for each batch (as shown in Figure 3).

Final Representation Learning

After training, we discard the Siamese and identification cost
functions and retrain the CNN and multi-rate recurrent neu-
ral networks for feature extraction. The multi-rate recurrent
neural networks generate multirate states at each step. There
are many ways to pool the states to obtain a global sequence
representation. Xu et al.(Xu, Yang, and Hauptmann 2015)
demonstrated that Vector of Locally Aggregated Descrip-
tors (VLAD) encoding outperforms the other alternatives by
a large margin. Hence, we also apply VLAD to encode the
RNN representations.

VLAD encoding can be regarded as a simplified ver-
sion of Fisher vector encoding. With inputs X
{x1,%2,...,xy} and K coarse centers {ci,Ca,...,Cx}
generated by K -means, we can obtain the difference vector
regarding center ¢ by:

2

:NN(x;)=cp

up = (Xi — Ck), (20)

where NN(x;) indicates x;’s nearest neighbors among K
coarse centers. By concatenating uy over all K centers, we
obtain the feature vector of size DK where D is the dimen-
sion of x;. Different normalization methods have been used
to improve performance. Signed square rooting (SSR) is
usually used to convert each element x; into sign(x;)+/|X;|.
The intra-normalization method normalizes representations
for each center, followed by the /5 normalization for the
whole feature vector. The final normalized feature represen-
tations are used for pedestrian re-identification.

Experiments

In this section, we conduct extensive experiments to eval-
uate the proposed approach in terms of both effectiveness
and generalization ability. We also conduct experiments to
study the affects of different components in the initialization
procedure.

Datasets and Experimental Setup

We carry out our experimental comparisons on the following
two real-world datasets:

iLIDS-VID dataset (Wang et al. 2014). The iLIDS-VID
dataset consists of 600 image sequences of 300 distinct in-
dividuals. It is created based on two disjoint camera views
in public open space. Each image sequence has variable
length, ranging from 23 frames to 192 frames, with an aver-
age length of 73. This dataset is challenging due to clothing
similarities among people, lighting and viewpoint variations
across camera views, cluttered background, and random oc-
clusions.

PRID 2011 dataset (Hirzer et al. 2011). The PRID 2011
dataset contains 400 image sequences of 200 randomly sam-
pled people from two cameras. Each image sequence has



Table 1: Performance comparison against state-of-the-art alternatives on ILIDS-VID and PRID-2011 datasets. Cumulative
Matching Characteristics (CMC) curve is used as an evaluation metric. Larger value indicates better performance.

iLIDS-VID PRID-2011
Rankl Rank5 Rank1(0 Rank20 Rankl Rank5 Rank10 Rank20
PaMM (Cho and Yoon 2016) 30.3 56.3 70.3 82.7 45.0 72.0 85.0 92.5
SI?’DL (Zhu et al. 2016) 48.7 81.1 89.2 97.3 76.7 95.6 96.7 98.9
CNN+XQDA (Zheng et al. 2016) 53.0 814 - 95.1 77.3 93.5 - 99.3
STFV3D+KISSME (Liu et al. 2015) 443 71.7 83.7 91.7 64.1 87.3 89.9 92.0
DVR (Wang et al. 2016) 39.5 61.1 71.7 81.0 40.0 71.7 84.5 92.2
RCN (McLaughlin, del Rincén, and Miller 2016)  58.0 84.0 91.0 96.0 70.0  90.0 95.0 97.0
TDL (You et al. 2016) 56.3 87.6 95.6 98.3 56.7 80.0 87.6 93.6
Ours (CaffeNet) 58.8 86.9 95.5 98.2 77.2 93.8 96.8 98.3
Ours (VGG16) 58.9 87.8 95.8 98.7 77.8 94.2 97.2 98.8
Ours (ResNet-50) 60.8 89.2 97.2 99.5 78.4 94.8 97.9 99.4

variable length consisting of 5 to 675 image frames, with
a variable number of 100. The dataset was captured in un-
crowded outdoor scenes with rare occlusions and simple
background. However, these two camera views have signifi-
cant viewpoint, illuminations, and color inconsistency.

Following (Wang et al. 2014; McLaughlin, del Rincén,
and Miller 2016), we randomly split each dataset into 50%
of persons for training and 50% of persons for testing for
all experiments. During testing, we use the first camera as
the probe set and the second camera as the gallery set. For
all the datasets, the performance is evaluated by the average
Cumulative Matching Characteristics (CMC) curves after 10
random training-test splits. The CMC curve, at rank score k,
gives the percentage of the test queries whose target is within
the top k closest match.

Experimental Setup. We implement the proposed model
using the framework released by (McLaughlin, del Rincén,
and Miller 2016) based on Torch. We will release our code
and trained models upon acceptance. We train the network
using an Nvidia TitanX Pascal with 12GB memory. The hy-
perparameters of the convolutional network were pre-trained
on the ImageNet dataset. The network was trained using
stochastic gradient decent with a learning rate of le-3, and
a batch size of 1, and the input to the Siamese network is
alternated between positive and negative sequence pairs, as
in (McLaughlin, del Rincén, and Miller 2016). We train the
network for 500 epochs. When we get the vector represen-
tation for each pedestrian, we evaluate the proposed model
using the same metric as in (McLaughlin, del Rincén, and
Miller 2016).

Test Initialization Strategy

First, we verify the advantage of our initialization strategy
in § by comparing it against an encoder using random ini-
tialization. To ensure a fair comparison, both methods are
trained and tested using the same train/test splits. The re-
sults on iLIDS-VID and PRID-2011 datasets are reported in
Figure 5 and confirm that our initialization strategy can sig-
nificantly improve the re-id performance.
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Study of Different Combinations of the Proposed
Model

We compare several variants in the initialization step and
investigate the roles of different components. Our method is
compared with a model without attention, a model without
context, and a model without multirate. The experimental
results on iLIDS-VID and PRID-2011 datasets are shown in
Figure 4.

To begin with, we evaluate the importance of context re-
construction. In a model without context reconstruction, i.e.,
only one decoder is used, neither past nor future context in-
formation is considered, i.e., “Ours w/o context” in Figure 4.
The results show that with context prediction, the encoder is
able to take into account temporal information around neigh-
boring sequences, hence can model the temporal structures
in a better way.

Then, we investigate the effect of the attention mecha-
nism. We compare the proposed model with the same model
without the attention mechanism, where temporal attention
is removed and the decoder is forced to perform reconstruc-
tion based on only the last encoder state, i.e., “Ours w/o at-
tention” in Figure 4. The results confirm that the attention
mechanism is important for learning good representations
and also helps the learning process of the encoder.

Lastly, we demonstrate the necessity of the multi-rate
GRU. We compare with the standard GRU, i.e., “Ours w/o
multirate” in Figure 4. The results shows that the proposed
model encodes multirate sequence information, and is capa-
ble of learning more robust and discriminative representa-
tions from the pedestrian sequences.

Comparison with the State-of-the-art

We now compare the re-id performance of the proposed ap-
proach against state-of-the-art methods in the literature. As
described in the proposed model, numerous CNN architec-
tures can be used in our model, so we also include results of
the proposed model with different CNN architectures (Caf-
feNet, VGG16 and ResNet-50).

In Table 1, we report the CMC results of all the compared
algorithms on the iLIDS-VID and PRID-2011 datasets.
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Figure 4: CMC curves for iLIDS-VID and PRID-2011 datasets, for different variants in the initialization step. Best viewed in
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Figure 5: CMC curves for iLIDS-VID and PRID-2011
datasets, comparing the same structure but with different ini-
tialization methods. The experimental results demonstrate
that our initialization strategy largely boosts the perfor-
mance of person re-id.

When we compare the results of our model with different
CNN architectures (CaffeNet, VGG19 and ResNet-50), we
find that the architecture that achieved better performance on
ImageNet also performs better on our person re-id datasets,
demonstrating the generalization ability of these networks.
Comparing all the experimental results in Table 1, we can
see that the proposed method outperforms other alternatives
by a large margin for both datasets: For instance, on iLIDS-
VID, our model achieved rank-1 score 60.8 while the second
best achieved 58 and the last only achieved 30.3, whereas
on PRID-2011 our model achieved rank-1 score 78.4 while
the second best achieved 77.3 and the last only achieved 43.
This observation is also consistent among the entire ranking
profile.

Generalization Evaluation

Finally, we evaluate the generalization of our model by
cross-dataset testing, which may also serve as a good way
to avoid over-fitting. Following (McLaughlin, del Rincén,
and Miller 2016), we use the large and diverse iLIDS-
VID dataset for training and 50% of the PRID2011 dataset
for testing. The Recurrent Convolutional Network (RCN)
(McLaughlin, del Rincén, and Miller 2016) is used as a
baseline. The experimental results are reported in Table 2,
and should be compared with Table 1. From the experiments
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Table 2: Performance comparison of generalization evalua-
tion. Cumulative Matching Characteristics (CMC) curve is
used as an evaluation metric. Larger value indicates better
performance.

Train on iLIDS-VID, Test on PRID-2011

Rank1 Rank3$ Rank10 Rank20
RCN 28.4 57.6 69.2 81.5
Ours 32.8 61.4 72.6 84.3

in Table 2, we can observe that the proposed model outper-
forms RCN with Rank1 CMC of 32.8 vs28.4, confirming the
superiority of the proposed model in terms of generalization.
Comparing the results of the proposed model with the re-
sults reported in Table 1, we observe again that the proposed
model significantly outperforms the recent method PaMM
(Cho and Yoon 2016).

Conclusion and Future Works

In this paper, we have proposed a novel siamese gated recur-
rent convolutional network for the video-based pedestrian
re-identification problem. To explicitly embed short term
and medium term temporal information into the network
structure, we propose to use both optical flow and color fea-
tures together with a recurrent layer. The use of multi-rate
gated recurrent unit allows the system to be able to accom-
modate pedestrians with different motion speeds. We have
also introduced an effective initialization strategy for our
network via context reconstruction. Experimental results are
reported on two standard datasets, and confirm the superior-
ity of the proposed model. In the future, we plan to apply the
current framework to other related challenging tasks, e.g.,
memory question answering.
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