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Abstract

Tracking target of interests is an important step for motion
perception in intelligent video surveillance systems. While
most recently developed tracking algorithms are grounded
in RGB image sequences, it should be noted that informa-
tion from RGB modality is not always reliable (e.g. in a dark
environment with poor lighting condition), which urges the
need to integrate information from infrared modality for ef-
fective tracking because of the insensitivity to illumination
condition of infrared thermal camera. However, several is-
sues encountered during the tracking process limit the fusing
performance of these heterogeneous modalities: 1) the cross-
modality discrepancy of visual and motion characteristics, 2)
the uncertainty of degree of reliability in different modalities,
and 3) large target appearance variations and background dis-
tractions within each modality. To address these issues, this
paper proposes a novel and optimal discriminative learning
framework for multi-modality tracking. In particular, the pro-
posed discriminative learning framework is able to: 1) jointly
eliminate outlier samples caused by large variations and
learn discriminability-consistent features from heterogeneous
modalities, and 2) collaboratively perform modality reliabil-
ity measurement and target-background separation. Extensive
experiments on RGB-infrared image sequences demonstrate
the effectiveness of the proposed method.

1 Introduction

As a key component for intelligent motion perception in in-
telligent video surveillance systems (Ye et al. 2015; 2016;
2017; Wang et al. 2016b), tracking target of interests has re-
ceived great research interests and significant progress has
been achieved recently (Zhang et al. 2013a; 2013b; 2015;
2017a; 2017b). Most recently developed tracking algorithms
are grounded on RGB image sequences captured by visible
spectrum cameras, and they construct the appearance model
using visual cues from RGB information (Liu et al. 2016;
Lan, Yuen, and Chellappa 2017), which may disable them
to be applied in some practical scenarios, especially when
information from RGB imaging is not reliable (e.g.in a dark
environment with poor lighting conditions).

With the development of multispectral imaging tech-
niques, more and more vision systems of robotics and video
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Figure 1: Illustration of some video frames from RGB and
infrared modalities. Top: RGB Bottom: infrared

surveillance are equipped with dual cameras, including one
RGB camera and one thermal camera. Infrared thermal cam-
eras can capture the infrared radiation of a subject for imag-
ing, and they are more effective than visible spectrum cam-
eras under poor lighting conditions. Therefore, to develop a
robust object tracking system for practical applications, it is
very necessary to integrate information from infrared modal-
ity with that of RGB modality for effective tracking.

However, several key issues encountered during track-
ing process may limit the modality fusing performance,
which should be addressed for robust multi-modality track-
ing. Firstly, images from RGB and infrared modalities are
intrinsically distinct in their visual characteristic (e.g. inten-
sity, texture), as shown in Fig. 1(a). Such cross-modality dis-
crepancy may lead to significant difference between the sta-
tistical properties of features from different modalities even
if the features represent the same subject. Therefore, tradi-
tional homogeneous feature fusion methods (e.g. concatena-
tion (Wu et al. 2011), multiple kernel learning (Xu, Wang,
and Lu 2012), etc.), which do not explicitly consider the
discrepancy issue, is unsuitable for multi-modality tracking.
As such, bridging the gap between heterogeneous modali-
ties during modality fusion process is essential. In addition,
not all modalities are reliable all the time, and reliability of
different modalities are erratically changed under different
scenarios. As shown in Fig. 1(b), the blue car can be dif-
ferentiated from the background based on color information
of RGB modality while it is ambiguous in infrared modal-
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ity because of the ’thermal crossover’ issue1. Contrarily, in
Fig. 1(c), the vehicle of infrared modality is easier to dis-
tinguished than the RGB-modality. Therefore, dynamically
and properly determining the reliability of different modali-
ties is required for effective modality fusion. Moreover, large
appearance changes with different background distraction
within each modality would be encountered during tracking
process. As illustrated in Fig. 1(d), the target in green is diffi-
cult to be distinguished in RGB modality, while he is clearly
shown in infrared image. However, another pedestrian with
similar appearance which is only shown in infrared image
is close to the target as a background distraction. Therefore,
how to exploit the complementarity of different modalities
to deal with appearance changes and background distraction
is another issue to be addressed.

Although several RGB-infrared tracking algorithms have
been developed, most of them may not effectively han-
dle either or all aforementioned issues. One kind of ap-
proaches regard the RGB and infrared modalities as dif-
ferent feature channels and exploit some homogeneous fea-
ture fusion techniques such as feature concatenation (Wu et
al. 2011), joint sparsity regularization (Liu and Sun 2012;
Li et al. 2016), sum rule (Leykin and Hammoud 2010) to
combine multiple modalities for tracking. Such kind of ap-
proaches do not explicitly consider the cross-modality dis-
crepancy issue, which may limit the fusion performance.
Another kind of approaches such as (Conaire, O’Connor,
and Smeaton 2008) perform tracking on each modality in-
dependently and then fuse the results from each modality
to determine the target position. Although the modality fu-
sion is performed on tracker level, the complementarity of
different modalities is not fully exploited during the track-
ing process, and the reliability of different modalities are not
properly evaluated for fusion.

To address aforementioned issues, we proposes a novel
and optimal discriminative learning framework for RGB-
infrared object tracking. The proposed learning framework
is capable of adaptively and collaboratively performing two
discriminative learning tasks: learning classifiers of each
modality for target/background separation and the reliability
weights of different modalities for modality fusion. Through
the way of collaborative learning, the classifier learning
from each modality provides discriminability measurement
of each modality to the process of reliability weight deter-
mination, while reliability weight learning offers importance
weight for classifier fusion which ensures more discrimina-
tive modalities provide higher impact in target/background
separation. In addition, to alleviate the cross-modality dis-
crepancy issue and bridge the gap among different hetero-
geneous modalities, a discriminability-consistent regulariza-
tion is imposed on the learning model which enforces all
the learned heterogeneous feature space share consistent dis-
criminability for more effective modality fusion. To deal
with contaminated samples caused by large appearance vari-
ations (e.g. occlusion, illumination), a feature decontamina-
tion scheme is further incorporated into the learning frame-
work, which produces uncontaminated feature to facilitate

1means the target has similar temperature with background.

reliable classifier learning. Moreover, an efficient iterative
optimization algorithm is derived to learn the optimal model
parameters which guarantee the optimality of the proposed
learning framework.

The contributions of this paper are listed as follows:

• A novel discriminative learning framework is proposed
to adaptively and collaboratively learn classifiers and re-
liability weights of different modalities for RGB-infrared
tracking.

• A new feature learning scheme is incorporated the learn-
ing framework to learn dsicriminability-consistent uncon-
taminated features from heterogeneous modalities.

• An efficient optimization algorithm is derived to solve the
learning model.

2 Related Work

RGB-Infrared Object Tracking Several algorithms have
been proposed for RGB-Infrared Tracking. (Bunyak et al.
2007) developed RGB-thermal moving object segmenta-
tion and tracking based on level set framework. (Conaire,
O’Connor, and Smeaton 2008) propose a RGB-thermal
tracking framework in which multiple spatiogram track-
ers are run on each modality and the results from differ-
ent modalities are fused for final decision. In (Leykin and
Hammoud 2010), a pedestrian tracker is developed based
on background model in which the probabilistic background
map is aggregated from the RGB and infrared maps us-
ing sum rule. To more effectively deal with outliers in-
troduced by large appearance variations, several sparse
representation-based RGB-Infrared trackers have been pro-
posed in which modality fusion is performed by feature
concatenation (Wu et al. 2011), group sparsity regulariza-
tion (Liu and Sun 2012; Li et al. 2016). These methods do
not explicitly consider the cross-modality discrepancy issue,
which may limit the fusion performance.

Multi-Modality Classification and Recognition To im-
prove the performance of classification and recognition,
many algorithms have been developed to exploited multi-
ple sources of data from heterogeneous modalities (Han et
al. 2012; 2013; Wang, Fang, and Yuan 2014; Yuan, Fang,
and Wang 2014). For example, (Hu et al. 2015) proposed to
jointly learn heterogeneous features from RGB-D modali-
ties by mining their shared and modality-specific structures.
(Wang et al. 2016a) proposed to learn and fuse modality and
component aware features for RGB-D scene classification.
However,these algorithms do not consider the cases when
some features are contaminated. Additionally, some of them
may require large amount of off-line training data. All these
issues make it difficult to employ these algorithms into on-
line multi-modality tracking.

3 Proposed Model

3.1 Robust Collaborative Discriminative
Learning

Jointly learning heterogeneous features and classifiers
with discriminabilty-consistency constraint Let Y m =
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[Y m
1 , . . . , Y m

N0
, Y m

N0+1, . . . , Y
m
N ] denote the recently ob-

tained target and background samples with correspond-
ing labels L = [L1, . . . , LN0+1, LN0+1, . . . , L

m
N ]T , m =

1, . . . ,M denote the index of modality, and 1, . . . , N0 de-
note indexes of target samples while N0 + 1, . . . , N de-
note the indexes of background samples. The first step
of the learning framework is to learn multiple classifiers
from these training samples of different modalities for tar-
get/background separation, i.e.

Ln = fm(Y m
n ),m = 1, . . . ,M ;n = 1, . . . , N (1)

where fm(·) denote the classifier of the m-th modality
which would be used to predict the label of a given sam-
ple in m-th modality. Once the classifier of each modality
is obtained, classifier fusion can be performed to determine
the target position. Traditional discriminative learning algo-
rithms (e.g. SVM (Hare et al. 2016), correlation filter (Hen-
riques et al. 2015), etc) may not be applicable to determine
the classifiers fm of each modality because of the follow-
ing issues. First, large appearance variation in each modal-
ity (e.g. large illumination changes) during the tracking pro-
cess usually introduce some contamination into the collected
samples. Discriminability of the tracking model may be de-
graded if the classifiers are learned from these contaminated
training samples. Second, cross-modality discrepancy may
lead to inconsistent discriminability among heterogenous
feature space (Zhang, Patel, and Chellappa 2017). Fusing
heterogenous modality without considering discrepancy is-
sue may not achieve good fusion performance.

To deal with these two problems, inspired by robust
joint discriminative feature learning (Lan, Zhang, and
Yuen 2016), we propose to jointly learn heterogeneous
features and classifiers for multi-modality tracking under
discriminabilty-consistency constraint where feature learn-
ing is performed to eliminate contaminated features from
large appearance changes and discriminabilty-consistency
constraint is imposed to reduce the cross-modality decrep-
ancy. Let Xm = [Xm

1 , . . . , Xm
N ] denote the learned un-

contaminated features of Y m in m-th modality, Em denote
the removed outliers from contaminated features of m-th
modality, [(wm)T , bm]T ∈ R

dm+1 denote the classifier pa-
rameters, and [A,B]+ denote the maximum operator for two
numbers, i.e. [A,B]+ = max(A,B). Then the uncontami-
nated features and the classifiers can be learned by solving
the following optimization problem:

min
Ω

α1g1({Xm, L, wm, bm}) + λ2

2

M∑
m=1

‖wm‖22

+ α2g2({Xm, Em}) + α3g3({Xm, L0, wm, bm}) (2)
s.t. Y m = Xm + Em,m = 1, . . . ,M ; g1({Xm, L, wm, bm})

=

M∑
m=1

N∑
n=1

[0, 1− Ln((X
m
n )Twm + bm)]+

g2({Xm, Em}) =
M∑

m=1

rank{Xm}+ λ1‖Em‖1

g3({Xm, L0, wm, bm}) =
M∑

m=1

‖(Xm)Twm + 1bm − L∗‖22

where Ω = {Xm, Em, wm, bm, L0} denote the set of pa-
rameters, 1 ∈ R

N is the all-one vector, α1, α2, λ1, λ2 con-

trol the tradeoff between different terms and Ln = +1(−1)
means the n-th sample belong to the class of target (back-
ground). The objective function in (2) consists of three ma-
jor components: g1(·), g2(·) and g3(·). In the following, we
discuss these components in detail one by one.

• g2({Xm, Em}): this component intends to separate out
outliers Em and facilitate uncontaminated feature learning
of Xm via low rank and sparse modeling. Since target sam-
ples of different modalities in recent frames are temporally
correlative and the target/background samples in the same
frame of each modality owns some similar characteristic
(e.g. lighting condition), this component exploit such kinds
of temporal and spatial correlation to separate out the out-
liers and mine the latent feature space for feature represen-
tation. The sparsity regularization is imposed on the con-
taminated feature to model the outliers while the rank mini-
mization aims to reveal the shared intrinsic subspace among
tracking samples from different modality. Since rank mini-
mization problem is NP-hard problem, we relax the problem
as a nuclear norm ‖·‖∗ minimization problem when deriving
the optimization algorithm for this problem.

• g1({Xm, L, wm, bm}): this component aims to mini-
mize the prediction losses of different modalities based on
the learned features and the classifier parameters. To fully
unleash the discriminative power of the tracking model and
ensure that the learned features of target and background
samples in different modalities can be linearly separated as
well as possible, we employ the margin maximization prin-
ciple and adopt the sum of hinge loss functions for optimiza-
tion. By jointly optimizing g1(·) and g2(·), uncontaminated
features could be provided for reliable classifier learning in
each modality by removing outliers while classifier learning
enhance discriminability of the learned feature. Therefore,
this joint learning strategy enables the feature learning and
classifier training to benefit from each other, which enhance
the representation power and discriminability of the tracking
mdoel.

• g3({Xm, L0, wm, bm}): this component aims to al-
leviate the cross-modality discrepancy. Here L0 =
[L0

1, . . . , L
0
N ]T denotes the consensus vector of the classifi-

cation scores from different modalities, and it encodes the
consistent discriminative information of different modali-
ties. In order to constrain the heterogeneous feature space
share some consistent discriminability, this regularization
term enforces the classification score of each sample of dif-
ferent modalities to be similar and close to the consensus.
Considering that consistency is related to the concept of
agreement while complementarity can be reflected by dis-
agreement (Liu et al. 2015), we do not enforce the scores
of different modalities to be the same. Instead, we adopt the
soft regularization strategy and allow some small disagree-
ment among different modalities in order to exploit their
complementarity in their discriminability.

Large-margin reliability weight learning Since not all
modalities are reliable all the time under different scenar-
ios during the tracking process, the reliability of different
modalities should be adaptively evaluated. A straightfor-
ward solution to incorporate the reliability weights is to
associate the hinge loss of each modality in g1(·) with a
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reliability weight so that g1(·) is formulated by a linear
weighted sum of the prediction loss of different modali-
ties. However, such strategy may not be applicable. This
is because if the value of some hinge loss function is zero
(e.g. Lm′

n ((Xm′
n )Twm′

+ bm
′
) > 1 for n = 1, . . . , N

in m′-th modality), it is intractable to learn the associated
weight. Therefore, it is not appropriate to jointly optimiz-
ing the reliability weight in the learning framework (2), and
thereby we propose another new model to learn the relia-
bility weight adaptively for modality fusion. After obtaining
the classifier parameters and learned features of each modal-
ity {Xm, wm, bm} by solving (2), the classification sores of
the training sample using the learned classifiers can be pre-
dicted as Sm = (Xm)Twm + 1bm, m = 1, . . . ,M , where
Sm = [Sm

1 , . . . , Sm
N ] and Sm

n is the classification score of
the n-th sample in m-th modality. Let β = [β1, . . . , βM ] and
βm denote the reliability weight of the m-th modality. Based
on LPBoost (Demiriz, Bennett, and Shawe-Taylor 2002), the
reliability weights of different modalities can be learned un-
der max-margin principle by solving the following problem:

min
p,{βm}

− p+ C1

N∑
n=1

[0, p− Ln

M∑
m=1

βmSm
n ]+ + C2‖β − β0‖22

s.t.

M∑
m=1

βm = 1, βm ≥ 0,m = 1, . . . ,M. (3)

where C1, C2 are the tradeoff parameters, β0 is the reliabil-
ity weight in previous video frame, and p is margin param-
eter to be learned. The objective function in (3) intends to
maximize the margin parameter and imposes that the con-
straint Ln

∑M
m=1 β

mSm
n > p, n = 1, . . . , N are satisfied

as well as possible, which ensures that the incorporated re-
liability weight would facilitate the separation between tar-
get and background by a large margin as far as possible. In
addition, based on the intuition that the target share more
similarity with the tracking results in recent frames, we fur-
ther exploit temporal consistency to determine the reliability
weight based on the weights learned from previous frame.

Putting them all together. Based on all above derivation,
the proposed learning framework can be summarized as fol-
lows:

min
p,{βm}

− p+ C1

N∑
n=1

[0, p− Ln
M∑

m=1

βmSm
n ]+ + C2‖β − β0‖22

s.t.

M∑
m=1

βm = 1, βm ≥ 0,m = 1, . . . ,M,

{wm, bm, Xm, Em} = argmin λ2‖w2‖22 + α2g2({Xm, Em})

+ α1g1({Xm, L, wm, bm}) + α3g3({Xm, L0, wm, bm})
Y m = Xm + Em,m = 1, . . . ,M (4)

The learning framework collaboratively performs feature
learning, classifier learning, and reliability weight determi-
nation of multiple modalities within a unified optimal frame-
work, which enables these three learning tasks to benefit
from each other and achieve a better performance. The op-
timization algorithm for solving (4) will present in the fol-
lowing section.

3.2 Optimization

To construct the learning model in (4), two optimization
problems, i.e. problem (2) and (3) need to be solved. For
problem (3), it is equivalent to solve the following problem
by introducing some slack variables {ξn}:

min
p,{βm},{ξn}

− p+ C1

N∑
n=1

ξn + C2‖β − β0‖22

s.t.

M∑
m=1

βm = 1, βm ≥ 0,m = 1, . . . ,M (5)

Ln

M∑
m=1

βmSm
n > p− ξn, ξn ≥ 0, n = 1, · · · , N

This is a quadratic programming with linear constraint,
which can be solved by standard optimization toolbox. Now
we focus on how to solve problem (2).

The objective function in (2) involves three non-smooth
functions, which are hinge loss function, regularization
function from nuclear norm and �1 norm. Let um

n = 1 −
Ln((X

m
n )Twm + bm). For the sake of simplicity and ef-

ficiency, according to (Nesterov 2005; Xu, Tao, and Xu
2015), the hinge loss function can be approximated by its
smooth version with smooth parameter σ > 0, and the
smooth version with respect to wm and Xm

n , denoted as h(1)
σ

and h
(2)
σ , can be defined as follows:

h(1)
σ (Ω) =

⎧⎨
⎩

0 um
n > 1

1− um
n − σ

2
‖Xm

n ‖∞ um
n < 1− σ

(um
n )2

2σ‖Xm
n ‖∞ else

h(2)
σ (Ω) =

⎧⎨
⎩

0 um
n > 1

1− um
n − σ

2
‖wm‖∞ um

n < 1− σ
(um

n )2

2σ‖wm‖∞ else

where Ω = {Ln, X
m
n , wm, bm} denote the input of the func-

tion. We employ the Alternating Direction Method of Mul-
tipliers (ADMM)(Boyd et al. 2011) to solve problem (2)
with the approximation of hinge loss function. The objective
function in (2) is not jointly convex in all optimal variables,
but is convex with one of these three blocks {Xm, Em},
{wm, bm} and L0 when the other three blocks are fixed. Be-
cause of the non-smooth functions in (2), it is not tractable
to derive an analytical solution to (2). Therefore, an iterative
optimization algorithm based on ADMM is derived to ob-
tained the optimal solution. To make the problem separable,
{Zm} are introduced as auxiliary variables to replace Xm

in the nuclear norm ‖ · ‖∗ of (2),and thus {∀m,Xm = Zm}
is introduced as additional constraints. Then the augmented
Lagrange function L is

M∑
m=1

{Φ(Λm, Y m −Xm − Em) + Φ(Γm, Xm − Zm)

+
λ2

2
‖wm‖22}}+ α1g1({Xm, L, wm, bm})

+ α2g2({Xm, Em}) + α3g3({Xm, L0, wm, bm}) (6)

where Φ(A,B) = μ
2 ‖B‖2F + trace(ATB), μ is the positive

penalty parameter, and {Λm,Γm} are the lagrange multi-
pliers. The optimization algorithm iteratively updates one

7011



block of variables or lagrange multipliers of (6) by fixing
the other variables , which are shown as follows:

Updating L0:With other variable fixed, L0 is updated by
solving the following problem:

min
L0

M∑
m=1

‖(Xm)Twm + 1bm − L0‖2F (7)

which has the close-form solution:

L0 =
1

M

M∑
m=1

[(Xm)Twm + bm] (8)

Updating {Xm,Em}:By some manipulations, Zm and Em

are updated as

Êm = argmin
Em

1

2
‖Em −Am‖2F +

α2λ1

μ
‖Em‖1 = Sα2λ1

μ

(Am)

Ẑm = argmin
Zm

1

2
‖Zm −Bm‖2F +

α2

μ
‖Zm‖∗ = Tα2

μ
(Bm)

(9)

where Am = Y m − Xm + Λm

μ , and Bm = Xm + Γm

μ .
S(·)(·) is the solf-thresholding operator and Sa(A)r,c =
sign(Ar,c) ·max(0, |Ar,c| − a). T(·)(·) is the singular value
soft-thresholding operator, and Ta(A) = UASa(ΣA)V

T
A

where UAΣAV
T
A is the singular value decomposition of A.

After updating Xm and Zm, by employing the smooth ver-
sion of hinge loss function with respect to Xm

n , Xm
n is up-

dated as follows:

X̂m
n = X̃m

n − τ∇Xm
n
L(X̃m

n ) (10)

where ∇Xm
n
L is the gradient of L with respect

to Xm
n , τ is the step size, and ∇Xm

n
L(X̃m

n ) =

α1∇Xm
n
h
(2)
σ (X̃m

n ) + 2α3w
m[(wm)T X̃m

n + bm − L0] −
Λm
n + Γm

n + μ(2X̃m
n + Êm

n − Y m
n − Ẑm

n ).X̃m
n is the value

of Xm
n before updating. We adopt the proximal gradient

method similar to the one in (Lan, Yuen, and Chellappa
2017) to update the variables.

Updating {wm,bm}: With other variable fixed, by em-
ploying the smooth version of hinge loss function h

(1)
σ (·),

{wm, bm} are updated by solving the following problem:

min
{wm,bm}

λ2

2
‖wm‖22 + α1

N∑
n=1

M∑
m=1

h(1)
σ (Ln, X

m
n , wm, bm)

+ α3g3({Xm, L0, wm, bm}) (11)

which is an unconstrained quadratic problem. We employ
the gradient decent to update {wm, bm}, i.e.

[(ŵm)T , b̂m] = [(w̃m)T , b̃m]− τ [∇T
wmL(w̃m),∇T

bmL(b̃m)]
(12)

where ∇T
bmL(b̃m) = α1

∑N
n=1 ∇bmh

(1)
σ (b̃m) +

2α31
T [(Xm)Twm + 1b̃m − L0], and ∇T

wmL(w̃m) =

α1

∑N
n=1 ∇wmh

(1)
σ (w̃m) + 2α3w̃

m[(w̃m)T X̃m + 1bm −
L0] + λ2w̃

m

Algorithm 1: Optimization Algorithm for (4)
Input: Sample number N , modality number M , sample

matrix {Y m}Mm=1, and label vector {Lm}Mm=1,
Output: {Xm,i, Em,i, wm,i, bm,i, βm,i}, L0

Initialization:
i ← 1, Xm,i ← Y k, Em,i ← 0, wk,i ← 0, bm,i ← 0

while stopping conditions are not satisfied do

Update L0,i+1 via solving (7)
Update {Xm,i+1, Em,i+1} via (9) and (10)
Update {wm,i+1, bm,i+1} via (11)
Update {Λm,i+1,Γm,i+1} via (13)
μi+1 ← max(μmax, ρμ

i)
i ← i+ 1
Check stopping conditions

end
Obtain βm via solving (5)

Updating {Λm,Γm}:The multipliers are updated as
follows:

Γ̂m = Γ̃m + μ(X̂m − Ẑm)

Λ̂m = Λ̃m + μ(Ŷ m − X̂m − Êm) (13)

The optimization algorithm iteratively update the optimal
valuables and the multipliers until ‖Y m − Xm − Em‖ <
γ‖Y m‖,m = 1, . . . ,M . In each iteration, the penalty pa-
rameter μ is updated as μ̂ = max(μmax, ρμ). We set γ as
10−5, ρ as 1.5, μmax as 106 and the initial value of μ as
10−6. The overall procedure is shown in Algorithm 1.

4 Implementation Details

4.1 Appearance Modeling and Target Decision

After the learned features are obtained by solving prob-
lem (3), another issue is how to utilize these feature for ap-
pearance modeling. Typical approaches such as SVM (Hare
et al. 2016) or sparse representation (Lan, Ma, and Yuen
2014; Lan et al. 2015) can be utilized for appearance mod-
eling. For the sake of robustness, we adopt the sparse rep-
resentation for appearance modeling. Based on the learned
features of different modalities Xm, m = 1, . . . ,M , we
construct feature sets of different modalities which are de-
noted as Dm, and also includes some recently obtained im-
portant samples. The sparse representations {ami } of the tar-
get candidates {Cm

i }, i = 1, . . . , P,m = 1, . . . ,M which
are sampled by a particle filter can be learned as follows:

am
i = argmin

a
η‖a‖1 + ‖Cm

i −Dma‖22 (14)

where η controls the tradeoff between the reconstruction er-
ror and sparse regularization. Then we define the decision
function for target state decision as follows:

F ({am, Cm}) =
M∑

m=1

‖Cm −Dmam‖22 (15)

+ ν|
M∑

m=1

βm((wm)TDmam + bm)− 1|

where ν is the tradeoff parameters. The decision function
consists of two components: the reconstruction error using
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the learned features and the prediction loss with respect to
the target label (+1), which simultaneously exploit the re-
construction ability and discriminability of the learned fea-
ture for final target decision. Since the classifier parameters
are estimated using the learned features, it is more suitable
to perform classification in the same feature space. As such,
we use the reconstructed samples to calculate the prediction
loss for classification. We choose the sate of target candi-
date which achieve the lowest value of the decision function
as the target state.

5 Experiment

5.1 Experimental Setting

Sixteen video pairs2 which include videos of RGB and in-
frared modality under different scenarios and conditions are
used to evaluate the RGB-infrared tracking performance.
These video pairs cover various challenging factors such as
occlusion, poor illumination conditions, large scale changes,
etc.. They are aligned accurately, which makes the tracked
targets of each video pair locate in almost the same position
in each video frame from RGB and infrared modalities. Ten
baseline methods are used for comparison, which include
the STRUCK (Hare et al. 2016), RPT (Li, Zhu, and Hoi
2017), KCF (Henriques et al. 2015), MEEM (Zhang, Ma,
and Sclaroff 2014), STC (Zhang et al. 2014), CT (Zhang,
Zhang, and Yang 2014), MIL (Babenko, Yang, and Belongie
2011), CN (Danelljan et al. 2014), L1 (Wu et al. 2011), and
JSR (Liu and Sun 2012) methods. The L1 and JSR methods
are proposed for RGB-infrared tracking. For the remaining
trackers, they are originally proposed for tracking objects in
RGB modality. Following the setting used in (Li et al. 2016),
features from RGB and infrared modalities are concatenated
as the input of these trackers so that they can perform RGB-
infrared tracking on these fifteen video pairs. Tracking re-
sults of these trackers on these RGB-infrared videos can be
obtained from (Li et al. 2016).

We empirically set the λ1, λ2, α1, α2 and α3 in (2),
the C1 and C2 in (3), η in (14) and ν in (15) to be
0.1, 0.01, 0.1, 1, 0.02, 0.1, 0.001, 0.01, 0.1, respectively.
Considering the tradeoff between stability and adaptivity,
in addition to the target and background samples in recent
frames, the target sample from the first few frames from the
beginning are also included in the training samples. For im-
age patch in RGB modality, we transform it to be in grey
scale and extract the HOG feature (Dalal and Triggs 2005)
in order to capture the gradient information. For the one in
infrared modality, we extract the intensity feature.

5.2 Experimental Results

Two metrics are used to quantitatively evaluate the pro-
posed tracker: VOC overlapping rate and success rate. The
VOC overlapping rate is defined as area(S1

⋂
S2)

area(S1

⋃
S2)

where S1

and S2 are the bounding box of the ground-truth and the
tracker. If the overlapping rate of a tracking results in a

2http://hcp.sysu.edu.cn/resources/
http://vcipl-okstate.org/pbvs/bench/index.html

video frame is larger than 0.5, we regard it as a track suc-
cess. The success rate is defined as the percentage of video
frames in which the track success happen. Tables 1 and 2
record the success rate and the overlapping rate of all the
compared tracker on these 16 videos. The quantitative re-
sults from these two tables show that the proposed tracker
performs better than other ten compared trackers on most
videos in terms of overlapping rate and success rate with
the best mean performance in terms of both metrics. The
proposed tracker ranks in top three on fifteen videos in
terms of success rate and ranks in top three on fourteen
videos. In particular, it achieves excellent performance on
some videos which cover occlusion (e.g. Minibus1, Tricy-
cle), poor illumination conditions (e.g. MinibusNig, BusS-
cale), thermal crossover (e.g.RainyCar1, RainyCar2), etc..
This is because the proposed learning framework can adap-
tively perform feature decontamination and learning reliable
classifiers, which enable it to deal with contaminated sam-
ples caused by large appearance changes (e.g. occlusion, il-
lumination change). In addition, by learning classifiers of
each modality and performing weight determination un-
der dscirminabity-consistency constrain, cross-modality dis-
crepancy can be reduced and reliable modality can be guar-
anteed to play more important role in target/background sep-
aration. Even if some unreliable modality exists under some
scenarios (e.g. infrared modality under the case of thermal
crossover), the impact of such kind of modality would be
suppressed, and the importance of reliable modality would
be enhanced for more effective modality fusion.

6 Conclusion

In this paper, we propose a novel discriminative learning
framework to fuse RGB-Infrared modality for object track-
ing. By explicitly imposing the discriminability-consistent
constrain, removing outliers and learning uncontaminated
feature, collaboratively estimating classifiers and reliabil-
ity weight of different modalities in an optimal learning
framework, the proposed method could alleviate the cross-
modality discrepancy and perform effective fusion of mul-
tiple modalities to handle large appearance variation more
robustly and differentiate the target from background more
discriminatively. Extensive comparison experiments with
other ten baseline methods demonstrate its effectiveness and
excellent performance.
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Figure 2: Qualitative results on some frames of RGB and infrared modality with challenging factors. (a) Thermal crossover
and scale changes(RainyCar1, BusScale, RainyCar2). (b) Low illumination conditions and occlusion(MinibusNig, Cycling,
Minibus1). The RGB infrared modality are shown in the top and bottom rows of each sub-figure, respectively.
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