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Abstract

Deep learning based salient object detection has recently
achieved great success with its performance greatly outper-
forms any other unsupervised methods. However, annotating
per-pixel saliency masks is a tedious and inefficient proce-
dure. In this paper, we note that superior salient object de-
tection can be obtained by iteratively mining and correct-
ing the labeling ambiguity on saliency maps from traditional
unsupervised methods. We propose to use the combination
of a coarse salient object activation map from the classifi-
cation network and saliency maps generated from unsuper-
vised methods as pixel-level annotation, and develop a simple
yet very effective algorithm to train fully convolutional net-
works for salient object detection supervised by these noisy
annotations. Our algorithm is based on alternately exploit-
ing a graphical model and training a fully convolutional net-
work for model updating. The graphical model corrects the
internal labeling ambiguity through spatial consistency and
structure preserving while the fully convolutional network
helps to correct the cross-image semantic ambiguity and si-
multaneously update the coarse activation map for next it-
eration. Experimental results demonstrate that our proposed
method greatly outperforms all state-of-the-art unsupervised
saliency detection methods and can be comparable to the
current best strongly-supervised methods training with thou-
sands of pixel-level saliency map annotations on all public
benchmarks.

Introduction

Salient object detection is designed to accurately detect dis-
tinctive regions in an image that attract human attention. Re-
cently, this topic has attracted widespread interest in the re-
search community of computer vision and cognitive science
as it can be applied to benefit a wide range of artificial intelli-
gence and vision applications, such as robot intelligent con-
trol (Shon et al. 2005), content-aware image editing (Avidan
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Figure 1: Two kinds of defects in state-of-the-art unsuper-
vised salient object detection methods vs. the results of our
proposed weakly supervised optimization framework.

and Shamir 2007), visual tracking (Mahadevan and Vascon-
celos 2009) and video summarization (Ma et al. 2002).

Recently, the deployment of deep convolutional neural
networks has resulted in significant progress in salient ob-
ject detection (Li and Yu 2016b; 2016a; Liu and Han 2016;
Wang et al. 2016). The performance of these CNN based
methods, however, comes at the cost of requiring pixel-wise
annotations to generate training data. For salient object de-
tection, it is painstaking to annotate mask-level label and
takes several minutes for an experienced annotator to label
one image. Moreover, as the definition of an object being
salient is very subjective, there often exists multiple diverse
annotations for a same image between different annotators.
To ensure the quality of training data sets, these images with
ambiguous annotations should be removed, which makes
the labeling task more laborious and time-consuming. This
time-consuming task is bound to limit the total amount of
pixel-wise training samples and thus become the bottleneck
of further development of fully-supervised learning based
methods.

As a low level vision problem, there exists an ocean of un-
supervised salient object detection methods (Wei et al. 2012;
Cheng et al. 2015; Tu et al. 2016; Zhang et al. 2015;
Yang et al. 2013). These methods are usually based on low-
level features such as color, gradient or contrast and some
saliency priors, such as the center prior (Liu et al. 2011) and
the background prior (Wei et al. 2012). As it is impracti-

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

7024



cal to define a set of universal rules for how an object be-
ing salient, each of these bottom-up methods works well
for some images, but none of them can handle all the im-
ages. By observing the failure cases, We found that most of
the saliency detection error lies in the lack of spatial corre-
lation inference and image semantic contrast detection. As
shown in Figure 1, the two unsupervised saliency detection
methods are only able to detect part of the salient objects in
the first two cases as they fail to take into account the spa-
tial consistency (e.g. encouraging nearby pixels with similar
colors to take similar saliency scores), while for the last two
cases, the two methods completely fail to detect the salient
objects as these objects are of very low contrast in terms
of low-level features (they are salient in high semantic con-
trast). These two kinds of failure cases are hard to be found
in fully-supervised methods.

During the training and testing of several fully-supervised
saliency detection methods (Li and Yu 2016a; Liu and Han
2016; Wang et al. 2016), we found that a well-trained deep-
convolution network without over-fitting can even correct
some user annotation error exists in the training samples.
We conjecture that a large amount of model parameters con-
tained in deep neural network can be trained to discover
the universal rules implied in large scale training samples
and thus can help to detect the ambiguity in the annotation
mask (noisy annotation) and figure out a “correct” one which
being in line with the hidden rules. Moreover, recent work
has shown that CNNs being trained on image-level labels
for classification have remarkable ability to localize the most
discriminative region of an image (Zhou et al. 2016).

Inspired by these observations, in this paper, we address
the weakly supervised salient object detection task using
only image-level labels, which in most cases specify salient
objects within the image. We develop an algorithm that
exploits saliency maps generated from any unsupervised
method as noisy annotations to train convolutional networks
for better saliency maps. Specifically, we first propose a con-
ditional random field based graphical model to correct the
internal label ambiguity by enhancing the spatial coherence
and salient object localization. Meanwhile, a multi-task fully
convolutional ResNet (He et al. 2015) is learned, which is
supervised by the iteratively corrected pixel-level annota-
tions as well as image labels (indicating significant object
class within an image), and in turn provides two probability
maps to generate an updated unary potential for the graphi-
cal model. The first probability map is called Class Activa-
tion Map (CAM) and it highlights the discriminative object
parts detected by the image classification-trained CNN while
the second one being a more accurate saliency map trained
from pixel-wise annotation. Though CAM itself is a rela-
tively coarse pixel-level probability map, it shows very ac-
curate salient object localization ability and thus can be used
as a guide to generate more precise pixel-wise annotation for
a second round training. The proposed method is optimized
alternately until a stopping criteria appears. In our experi-
ment, we find that although CAM is trained using images
from a fix number of image classes, it generalizes well to
images of unknown categories, resulting in an intensely ac-
curate salient object positioning for generic salient objects.

The proposed optimization framework also theoretically ap-
plies to all unsupervised salient object detection methods
and is able to generate more accurate saliency map very ef-
ficiently in fewer than one second per image no matter how
time-consuming the original model.

In summary, this paper has the following contributions:

• We introduce a generic alternate optimization framework
to fill the performance gap between supervised and unsu-
pervised salient object detection methods without resort-
ing to laborious pixel labeling.

• We propose a conditional random field based graphical
model to cleanse the noisy pixel-wise annotation by en-
hancing the spatial coherence as well as salient object lo-
calization.

• We also design a multi-task fully convolutional ResNet-
101 to both generate a coarse class activation map (CAM)
and a pixel-wise saliency probability map, the cooperation
of which can help to detect and correct the cross-image
annotation ambiguity, generating more accurate saliency
annotation for iterative training.

Alternate Saliency Map Optimization

As shown in Figure 2, our proposed saliency map optimiza-
tion framework consists of two components, a multi-task
fully convolutional network (Multi-FCN) and a graphical
model based on conditional random fields (CRF). Given
the Microsoft COCO dataset (Lin et al. 2014) with mul-
tiple image labels corresponding to each image, we ini-
tially utilize a state-of-the-art unsupervised salient object de-
tection method, i.e. minimum barrier salient object detec-
tion (MB+), to generate the saliency maps of all training
images. The produced saliency maps as well as their cor-
responding image labels are employed to train the Multi-
FCN, which simultaneously learns to predict a pixel-wise
saliency map and an image class distribution. When training
converged, a class activation mapping technique (Zhou et
al. 2016) is applied to the Multi-FCN to generate a serious
of class activation maps (CAMs). Then the initial saliency
map, the predicted saliency map from Multi-FCN as well
as the average map of the top three CAMs (CAM predic-
tion corresponding to top 3 classes) are employed to the
CRF model to get the corresponding maps with better spatial
coherence and contour localization. We further propose an
annotation updating scheme to construct new saliency map
annotations from these three maps with CRF for a second
iteration of Multi-FCN training. Finally, to generalize the
model for saliency detection of unknown image labels, we
further finetune the saliency map prediction stream of the
Multi-FCN guided by generated CAM using salient object
detection datasets (e.g. MSRA-B and HKUIS) without an-
notations.

Multi-Task Fully Convolutional Network

In the multi-task fully convolutional stream, we aim to de-
sign an end-to-end convolutional network that can be viewed
as a combination of the image classification task and the
pixel-wise saliency prediction task. To conceive such an
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Training iteration

Figure 2: Overall framework for alternate saliency map optimization.

end-to-end architecture, we have the following considera-
tions. First, the network should be able to correct the noisy
initial saliency annotations as well as possible by mining the
semantic ambiguity between the images. Second, the net-
work should be able to be end to end trainable to output a
saliency map with appropriate resolution. Last but not the
least, it should also be able to detect visual contrast at differ-
ent scales.

We choose ResNet-101 (He et al. 2015) as our pre-trained
network and modify it to meet our requirements. We first re-
fer to (Chen et al. 2014) and re-purpose it into a dense image
saliency prediction network by replacing its 1000-way linear
classification layer with a linear convolutional layer with a
1×1 kernel and two output channels. The feature maps after
the final convolutional layer is only 1/32 of that of the origi-
nal input image because the original ResNet-101 consists of
one pooling layer and 4 convolutional layers, each of which
has stride 2. We call these five layers down-sampling layers.
As described in (He et al. 2015), the 101 layers in ResNet-
101 can be divided into five groups. Feature maps computed
by different layers in each group share the same resolution.
To make the final saliency map denser, we skip subsampling
in the last two down-sampling layers by setting their stride to
1, and increase the dilation rate of subsequent convolutional
kernels using the dilation algorithm to enlarge their recep-
tive fields as (Chen et al. 2014). Therefore, all the features
maps in the last three groups have the same resolution, 1/8
original resolution after network transformation.

As it has been widely verified that feeding multiple scales
of an input image to networks with shared parameters
are rewarding for accurately localizing objects of different
scales (Chen et al. 2015; Lin et al. 2015), we replicate the
fully convolutional ResNet-101 network three times, each
responsible for one input scale s (s ∈ {0.5, 0.75, 1}). Each
scale s of the input image is fed to one of the three replicated

ResNet-101, and outputs a two-channel probability map in
the resolution of scale s, denoted as Ms

c , where c ∈ {0, 1}
denotes the two classes for saliency detection. The three
probability maps are resized to the same resolution as the
raw input image using bilinear interpolation, summed up and
fed to a sigmoid layer to produce the final probability map.
The network framework is shown in Figure 3.

For image classification task, as we desire to perform
object localization from the classification model, we refer
to (Zhou et al. 2016) and integrate a global average pooling
layer for generating class activation maps. Specifically, as
shown in Figure 3, we rescale the three output feature maps
of the last original convolutional layer in ResNet-101 (cor-
responds to three input scale) to the same size (1/8 original
resolution) and concatenate to form feature maps for classi-
fication. We further perform global average pooling on the
concatenated convolutional feature maps and use those as
features for a fully-connected layer which produces the de-
sired classes distribution output. Let fk(x, y) represent the
activation of channel k in the concatenated feature map at
spatial location (x, y). Define Mc as the class activation map
for class c, where each spatial element can be calculated as
follows (Zhou et al. 2016):

Mc (x, y) =
∑
k

wc
kfk (x, y) . (1)

wc
k is the weight corresponding to class c for unit k (after

global average pooling, each channel of the concatenated
feature map becomes a unit activation value).

Graphical Model for Saliency Map Refinement

By observing the saliency maps generated by state-of-the-
art unsupervised methods, we find that for images with low
contrast and complex background, the salient object can
hardly be completely detected, with common defects exist
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Figure 3: The architecture of our multi-task fully convolu-
tional network (Multi-FCN).

in spatial consistency and contour preserving. We call these
defects internal labeling ambiguity in noisy saliency anno-
tations. Fully connect CRF model has been widely used
in semantic segmentation (Krähenbühl and Koltun 2012;
Chen et al. 2014) to both refine the segmentation result and
better capture the object boundaries. It has also been used
as a post-processing step in (Li and Yu 2016a; 2016b) for
saliency map refinement. In this paper, we refer to (Li and
Yu 2016a) and utilize the same formulation and solver of the
two classes fully connected CRF model to correct the inter-
nal labeling ambiguity. The output of the CRF operation is a
probability map, the value of which denotes the probability
of each pixel being salient. We convert it into a binary label
by thresholding when being used as training sample annota-
tions.

Saliency Annotations Updating Scheme

We denote the original input image as I and the correspond-
ing saliency map of the specific unsupervised method as
Sanno. After convergence of the first complete training of
Multi-FCN, we apply the trained model to generate saliency
maps as well as the average map of the top 3 class activa-
tion maps for all training images. We denote the predicted
saliency map as Spredict and the average class activation
map as Scam. Furthermore, we also perform fully connected
CRF operation to the initial saliency maps produced by a
specific unsupervised method, the predicted saliency map
from Multi-FCN as well as the average class activation map.
The resulting saliency maps are denoted as Canno, Cpredict

and Ccam respectively. Base on this, we update the train-
ing samples as well as their corresponding saliency annota-
tions for the next iteration according to Algorithm 1. CRF ()
denotes the CRF operation while Supdate refers to the up-
dated saliency map annotation, which is further used as the
saliency groundtruth for the next iterative training. MAE()
is defined as the average pixelwise absolute difference be-
tween two saliency maps (i.e. S1 and S2), which is calcu-
lated as follows:

MAE(S1, S2) =
1

W ×H

W∑
x=1

H∑
y=1

|S1(x, y)− S2(x, y)|.

(2)

where W and H being the width and height of the saliency
map.

Algorithm 1 Saliency Annotations Updating
Require: Current saliency map annotation Sanno, the pre-

dicted saliency map Spredict, CRF output of current
saliency map annotation Canno, CRF output of the pre-
dicted saliency map Cpredict and CRF output of the
class activation map Ccam

Ensure: The updated saliency map annotation Supdate.
1: if MAE(Canno,Cpredict) ≤ α then

2: Supdate = CRF
(

Sanno+Spredict

2

)

3: else if MAE(Canno,Ccam) > β and
MAE(Cpredict,Ccam) > β then

4: Discard the training sample in next iteration
5: else if MAE(Canno,Ccam) ≤ MAE(Cpredict,Ccam)

then
6: Supdate = Canno

7: else
8: Supdate = Cpredict

9: end if

Multi-FCN Training with Weak Labels

The training of the weakly supervised saliency map opti-
mization framework is composed of two stages, both of
which are based on an alternative training scheme. In the
first stage, we train the model using Microsoft COCO
dataset (Lin et al. 2014) with multiple image labels per
image. Firstly, we choose a state-of-the-art unsupervised
salient object detection model and apply it to produce an
initial saliency map for each image in the training. Then we
simply put the saliency maps as initial annotation and train
the Multi-FCN for a pixel-wise saliency prediction as well
as the classification model for better class activation map
generation. While training, we validate on the validation set
of the COCO dataset also with generated pixel-wise noisy
annotations being the groundtruth. Also note that in order
to speed up the training, we initialize the Multi-FCN with
a pre-trained model over the ImageNet dataset (Deng et al.
2009) instead of training from scratch. After training con-
vergence, we choose the model with lowest validation error
as the final model for this iteration, and apply it to gener-
ate saliency maps as well as the average map of top 3 class
activation maps for all training images. Secondly, we apply
saliency annotations updating scheme according to Section
to create updated training tuples (images, saliency annota-
tion and image label) for a second round of training. We
alternately train the model until a stopping criteria appears.
After each training round, we evaluate the mean MAE be-
tween each pair of saliency annotation (Pseudo Groundtruth)
and the predicted saliency map, and the stopping criteria
is defined to be the mean MAE gets lower than a specific
threshold or the total number of training rounds reaches
5. (Noted that as being a weakly supervised method, we
do not use true annotations to determine the merits of the
model).



Finally, in order to generalize the model for generic
salient object detection with unknown image labels, we
further finetune the saliency map prediction stream of the
Multi-FCN guided by offline CAMs using salient object de-
tection datasets (e.g. the training images of MSRA-B and
HKU-IS) without annotations, until the stopping criteria ap-
pears. Here, we calculate the mean of the top 5 CAMs as
the guided CAM, and we discover that although CAM is
trained with specific image classification labels, its predicted
CAMs of the most similar categories in the category set
can still highlight the most discriminative regions in the im-
age and thus still works well as an auxiliary guidance for
generic salient object detection. The loss function for updat-
ing Multi-FCN for pixel-wise saliency prediction is defined
as the sigmoid cross entropy between the generated ground
truth (G) and the predicted saliency map (S):

L =− βi

|I|∑
i=1

Gi logP (Si = 1|Ii,W )

− (1− βi)

|I|∑
i=1

(1−Gi) logP (Si = 0|Ii,W ) ,

(3)

where W denotes the collection of corresponding network
parameters in the Multi-FCN, βi is a weight balancing the
number of salient pixels and unsalient ones, and |I|, |I| and
|I|+ denote the total number of pixels, unsalient pixels and
salient pixels in image I , respectively. Then βi = |I|

|I| and

1− βi =
|I|+
|I| . When training for multi-label object classifi-

cation, we simply employ the Euclidean loss as the objective
function and only update the parameters of the fully con-
nected inference layer with parameters of the main ResNet-
101 being unchanged.

Experimental Results

Implementation

Our proposed Multi-FCN has been implemented on the pub-
lic DeepLab code base (Chen et al. 2014). A GTX Titan
X GPU is used for both training and testing. As described
in Section , the Multi-FCN involves two stages training.
In the first stage, we train on Microsoft COCO object de-
tection dataset for multi-label recognition, which comprises
a training set of 82,783 images, and a validation set of
40,504 images. The dataset covers 80 common object cate-
gories, with about 3.5 object labels per image. In the second
stage, we combine the training images of both the MSRA-
B dataset (2500 images) (Liu et al. 2011) and the HKU-IS
dataset (2500 images) (Li and Yu 2016b) as our training
set (5000 images), with all original saliency annotations re-
moved. The validation sets without annotations in the afore-
mentioned two datasets are also combined as our validation
set (1000 images). During training, the mini-batch size is set
to 2 and we choose to update the loss every 5 iterations. We
set the momentum parameter to 0.9 and the weight decay to
0.0005 for both subtasks. The total number of iteration is set
to 8K during each training round. During saliency annota-
tion updating, the thresholds α and β are set to 15 and 40

respectively. The mean MAE of the training stop criteria is
set to 0.05 in our experiment.

Datasets

We conducted evaluations on six public salient object bench-
mark datasets: MSRA-B (Liu et al. 2011), PASCAL-S (Li et
al. 2014), DUT-OMRON(Yang et al. 2013), HKU-IS (Li and
Yu 2016b), ECSSD (Yan et al. 2013) and SOD (Martin et al.
2001). Though we do not use any user annotations in train-
ing, we get to know the training and validation sets of the
MSRA-B and HKU-IS datasets in advance. Therefore, for
the sake of fairness, we evaluate our model on the testing
sets of these two datasets and on the combined training and
testing sets of other datasets.

Evaluation Metrics

We adopt precision-recall curves (PR), maximum F-measure
and mean absolute error (MAE) as our performance mea-
sures. The continuous saliency map is binarized using dif-
ferent thresholds varying from 0 to 1. At each threshold
value, a pair of precision and recall value can be obtained
by comparing the binarized saliency map against the binary
groundtruth. The PR curve of a dataset is obtained from
all pairs of average precision and recall over saliency maps
of all images in the dataset. The F-measure is defined as
Fβ = (1+β2)·Precision·Recall

β2·Precision+Recall , where β2 is set to 0.3. We re-
port the maximum F-measure computed from all precision-
recall pairs. MAE is defined as the average pixelwise ab-
solute difference between the binary ground truth and the
saliency map (Perazzi et al. 2012) as described in Equa-
tion 2.

Comparison with the Unsupervised
State-of-the-Art

Our proposed alternate saliency map optimization frame-
work requires an unsupervised benchmark model as initial-
ization. In this section, we choose the state-of-the-art min-
imum barrier salient object detection (MB+) method as a
baseline and take the optimized model as our final model
when compared with other benchmarks. In Section , we will
list more results of our proposed method on other baseline
models to demonstrate the effectiveness of our proposed al-
gorithm.

We compare our method with eight classic or state-of-
the-art unsupervised saliency detection algorithms, includ-
ing GS (Wei et al. 2012), SF (Perazzi et al. 2012), HS (Yan
et al. 2013), MR (Yang et al. 2013), GC (Cheng et al. 2015),
BSCA (Qin et al. 2015), MB+ (Zhang et al. 2015) and
MST (Tu et al. 2016). For fair comparison, the saliency maps
of different methods are provided by authors or obtained
from the available implementations.

A visual comparison is given in Fig. 5. As can be seen,
our method generates more accurate saliency maps in var-
ious challenging cases, e.g., object in complex background
and low contrast between object and background. It is par-
ticularly noteworthy that our proposed method employed the
saliency maps generated by MB+ (Zhang et al. 2015) as ini-
tial noisy annotations for iterative training, it can learn to
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Figure 4: Comparison of precision-recall curves among 9 salient region detection methods on 3 datasets. Our proposed ASMO
consistently outperforms other methods across all the testing datasets.

Data Set Metric GS SF HS MR GC BSCA MB+ MST ASMO ASMO+
maxF 0.777 0.700 0.813 0.824 0.719 0.830 0.822 0.809 0.890 0.896MSRA-B MAE 0.144 0.166 0.161 0.127 0.159 0.130 0.133 0.098 0.067 0.068

maxF 0.661 0.548 0.727 0.736 0.597 0.758 0.736 0.724 0.837 0.845ECSSD MAE 0.206 0.219 0.228 0.189 0.233 0.183 0.193 0.155 0.110 0.112

maxF 0.682 0.590 0.710 0.714 0.588 0.723 0.727 0.707 0.846 0.855HKU-IS MAE 0.166 0.173 0.213 0.174 0.211 0.174 0.180 0.139 0.086 0.088

maxF 0.556 0.495 0.616 0.610 0.495 0.617 0.621 0.588 0.722 0.732DUT-OMRON MAE 0.173 0.147 0.227 0.187 0.218 0.191 0.193 0.161 0.101 0.100

maxF 0.620 0.493 0.641 0.661 0.539 0.666 0.673 0.657 0.752 0.758PASCAL-S MAE 0.223 0.240 0.264 0.223 0.266 0.224 0.228 0.194 0.152 0.154

maxF 0.620 0.516 0.646 0.636 0.526 0.654 0.658 0.647 0.751 0.758SOD MAE 0.251 0.267 0.283 0.259 0.284 0.251 0.255 0.223 0.185 0.187

Table 1: Comparison of quantitative results including maximum F-measure (larger is better) and MAE (smaller is better). The
best three results on each dataset are shown in red, blue, and green , respectively.

mine the ambiguity inside the original noisy labels and the
semantic annotation ambiguity across different images, cor-
rect them, and eventually produce an optimized results far
better than the original ones. As a part of quantitative eval-
uation, we show a comparison of PR curves in Fig. 4, as
shown in the figure, our method significantly outperforms
all state-of-the-art unsupervised salient object detection al-
gorithms. Moreover, a quantitative comparison of maximum
F-measure and MAE is listed in Table. 1. Our proposed
alternate saliency map optimization (ASMO) improves the
maximum F-measure achieved by the best-performing exist-
ing algorithm by 8.74%, 11.48%, 17.61%, 17.87%, 12.63%
and 15.20% respectively on MSRA-B, ECSSD, HKU-IS,
DUT-OMRON, PASCAL-S and SOD. And at the same time,
it lowers the MAE by 31.63%, 29.03%, 38.13%, 31.97%,
21.65% and 17.04% respectively on MSRA-B, ECSSD,
HKU-IS, DUT-OMRON, PASCAL-S and SOD. We also
evaluate the performance of further applying dense CRF to
our proposed method, listed as ASMO+ in the table.

Ablation Studies

Effectiveness of Alternate Saliency Map Optimization
Our proposed Multi-FCN based saliency map optimization
framework is composed of two components, a multi-task
fully convolutional network (Multi-FCN) and a graphical
model based on conditional random fields (CRF). To show
the effectiveness of the proposed optimization method, we

compare the saliency map S1 generated from the original
method, the saliency map S2 from directly employing dense
CRF to the original method, the saliency map S3 from train-
ing Multi-FCN with generated saliency maps but without
CRF or CAM guided, the saliency map S4 from training
Multi-FCN with generated saliency maps and CRF guided
but without CAM and the saliency map S5 from our full
pipeline using DUT-OMRON dataset. As shown in Tab. 3,
employing dense CRF operation and iterative training on
fully convolutional ResNet-101 with original saliency map
as noisy groundtruth can both boost the performance of
the original unsupervised method. Our alternately updating
scheme can integrate both of these two complementary ad-
vantages which further gains 5.22% improvement on max-
imum F-measure and 16.6% decrease on MAE. Moreover,
CAM guided saliency annotations updating scheme plays a
paramount role in our optimization framework which also
greatly improve the saliency map performance.

Sensitivities to Benchmark Method Selection As de-
scribed in Section , our proposed alternate saliency map op-
timization method is based on an unsupervised benchmark
model as initialization. To demonstrate that our proposed
method is widely applicable to the optimization of any unsu-
pervised salient object detection method, we apply our op-
timization method to the other two recently published unsu-
pervised saliency detection methods, including BSCA (Qin
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Figure 5: Visual comparison of saliency maps from state-of-the-art methods. The ground truth (GT) is shown in the last column.
Our proposed method consistently produces saliency maps closest to the ground truth.

Table 2: Comparison with fully supervised salient object detection methods on HKU-IS, ECSSD and PASCAL-S datasets.

Data Set Metric DRFI LEGS MC MDF RFCN DHSNet DCL+ ASMO+ ASMO+
(with mask)

maxF 0.776 0.770 0.798 0.861 0.896 0.892 0.904 0.855 0.913HKU-IS MAE 0.167 0.118 0.102 0.076 0.073 0.052 0.049 0.088 0.041

maxF 0.782 0.827 0.837 0.847 0.899 0.907 0.901 0.845 0.918ECSSD MAE 0.170 0.118 0.100 0.106 0.091 0.059 0.068 0.112 0.057

maxF 0.690 0.752 0.740 0.764 0.832 0.824 0.822 0.758 0.847PASCAL-S MAE 0.210 0.157 0.145 0.145 0.118 0.094 0.108 0.154 0.092

Table 3: Effectiveness evaluation of different components
of alternate saliency map optimization on DUT-OMRON
dataset.

Metric S1 S2 S3 S4 S5 S5+CRF
maxF 0.588 0.630 0.651 0.685 0.722 0.732
MAE 0.161 0.178 0.151 0.126 0.101 0.100

et al. 2015) and MST (Tu et al. 2016). Experimental re-
sults in Tab. 4 have shown that although these methods have
achieved very good results, the application of our proposed
optimization algorithm can still significantly improve their
performance.

Evaluation on Semi-Supervised Setting In this section,
we aim to compare our proposed method with the state-of-
the-art fully supervised methods. As shown in Tab. 2, our
proposed weakly supervised ASMO with CRF already con-
sistently outperforms 3 fully supervised methods including
DRFI (Jiang et al. 2013), LEGS (Wang et al. 2015) and
MC (Zhao et al. 2015), and it is comparable to MDF (Li
and Yu 2016b). Particularly noteworthy that when we add
the groundtruth mask of the training set of MSRA-B dataset
to form a semi-supervised setting of our method, it greatly
outperforms all state-of-the-art fully supervised methods
across all the three testing datasets (HKU-IS, ECSSD and
PASCAL-S). We conjecture that our model considered more

Table 4: Evaluation of different benchmark methods in alter-
nate saliency map optimization on DUT-OMRON dataset.

Metric MB+ ASMO
(MB+) BSCA ASMO

(BSCA) MST ASMO
(MST)

maxF 0.621 0.722 0.617 0.685 0.588 0.691
MAE 0.193 0.101 0.191 0.121 0.161 0.126

semantic information than existing fully-supervised models
as we additionally included the Microsoft COCO dataset in
our initial training.

Conclusions

In this paper, we have introduced a generic alternate opti-
mization framework to improve the saliency map quality of
any unsupervised salient object detection methods by alter-
nately exploiting a graphical model and training a multi-task
fully convolutional network for model updating. Experimen-
tal results demonstrate that our proposed method greatly out-
performs all state-of-the-art unsupervised saliency detection
methods and can be comparable to the current best strongly-
supervised methods training with thousands of pixel-level
saliency map annotations on all public benchmarks.
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