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Abstract

Multi-view based shape descriptors have achieved impressive
performance for 3D shape retrieval. The core of view-based
methods is to interpret 3D structures through 2D observa-
tions. However, most existing methods pay more attention to
discriminative models and none of them necessarily incorpo-
rate the 3D properties of the objects. To resolve this problem,
we propose an encoder-decoder recurrent feature aggregation
network (ERFA-Net) to emphasize the 3D properties of 3D
shapes in multi-view features aggregation. In our network, a
view sequence of the shape is trained to encode a discrimi-
native shape embedding and estimate unseen rendered views
of any viewpoints. This generation task gives an effective su-
pervision which makes the network exploit 3D properties of
shapes through various 2D images. During feature aggrega-
tion, a discriminative feature representation across multiple
views is effectively exploited based on LSTM network. The
proposed 3D representation has following advantages against
other state-of-the-art: 1) it performs robust discrimination un-
der the existence of noise such as view missing and occlu-
sion, because of the improvement brought by 3D properties.
2) it has strong generative capabilities, which is useful for
various 3D shape tasks. We evaluate ERFA-Net on two pop-
ular 3D shape datasets, ModelNet and ShapeNetCore55, and
ERFA-Net outperforms the state-of-the-art methods signifi-
cantly. Extensive experiments show the effectiveness and ro-
bustness of the proposed 3D representation.

Introduction

With the rapid development of 3D scene techniques and the
explosive growth of large-scale public 3D shape repositories
(Chang et al. 2015), 3D shape retrieval has become more
significant than ever. Among the existing methods on data-
driven shape descriptors for 3D shapes, feature learning over
multi-view image sequence of 3D shapes achieves the state-
of-the-art performance on various 3D shape retrieval tasks
(Su et al. 2015; Qi et al. 2016). Recently, many researchers
have been devoted to learning a 3D representation based on
deep learning techniques (Qi et al. 2017; Yi et al. 2017; Liu,
Li, and Wang 2017).

Interpreting 3D structures through 2D observations of
shapes is the core of the view-based algorithms. Moreover,
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Figure 1: We propose a method for multi-view based shape
descriptors through emphasizing 3D properties in multi-
view features aggregation. A 3D representation is encoded
with the view sequence of the 3D shape and trained to gen-
erate rendered images of unseen viewpoints.

several works have been conducted on discriminative 3D
representation such as MVCNN (Su et al. 2015), fusing dis-
criminative information of each view into a compact feature
vector. These approaches, while effectively identifying dif-
ferent categories, have a major shortcoming: the learned rep-
resentations do not significantly integrate 3D properties of
shapes. Some local and crucial structures of 3D shapes like
the doorknob of a door object are difficult to be captured
from some rendered images. In addition, though MVCNN
possesses the high discrimination power, the fact that the
model is supervised only for classification tasks with 2D
rendered images hinders its performance seriously in some
cases such as view missing and occlusion. These cases pose
challenges to the view-based 3D representation learning.

Motivated by the recent line of work that learns to gen-
erate 3D shapes by using 3D CAD models (Dosovitskiy,
Springenberg, and Brox 2015; Kulkarni et al. 2015; Choy
et al. 2016; Yan et al. 2016), we introduce the generative
model into the multi-view features fusion process to address
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these challenges. It is assumed that the 3D representation
will necessarily incorporate the 3D properties, which is able
to generate original 3D objects. However, the voxel repre-
sentation of 3D shapes has the problems of low resolution,
requiring redundant parameters and fewer 3D shapes com-
pared to millions of images. Then, we take an equivalent
alternative way that the 3D representation is trained to es-
timate rendered images of 3D shapes. As is shown in Fig.
1, we aggregate certain views’ features to generate unseen
rendered images of a 3D shape from any viewpoints.

In this paper, we propose an encoder-decoder recurrent
feature aggregation network (ERFA-Net) to fuse multi-view
features into a discriminative and generative 3D representa-
tion, aiming at incorporating 3D properties of shapes. In-
stead of only being supervised by the classification task,
the network is trained to generate rendered images of a 3D
shape from unseen viewpoints through fusing the informa-
tion along a multi-view image sequence. The estimation task
gives a strong supervision, which makes the network in-
terpret 3D structures through the 2D multi-view image se-
quence. In order to enhance the quality of the generated
images and adapt to various angles, the viewpoint transfor-
mation layer is presented in decoder part, where the differ-
ent encoded viewpoints can transform the 3D representation
into specific embedding space.

The aggregated scheme of multi-view features is vital for
the discrimination power of the final 3D representation. In
contrast to other state-of-the-art methods, our encoder part
aggregates the spatial correlation information along a multi-
view image sequence based on the recurrent neural network
LSTM (Hochreiter and Schmidhuber 1997). In our network,
shape information of different views flows along image se-
quence, in which the discriminative information can be cap-
tured and propagate to the deeper LSTM node. Then, with
the accumulation of good features, the final aggregated rep-
resentation can be more discriminative. Moreover, the ran-
domly ordered view sequence is adopted in our method,
making the proposed aggregated features robust to arbitrary
rotation of 3D shapes.

We demonstrate with extensive evaluation that the en-
coded 3D representation has the following key advantages.
Firstly, since 3D properties of shapes give a significant rise
to 2D observations, our aggregated representation performs
robust discrimination in some cases such as view missing
and occlusion. Secondly, in addition to high discrimina-
tion, the proposed representation has strong generative ca-
pabilities. This enables us to tackle a variety of view-based
3D shape tasks. Thirdly, the feature is insensitive to arbi-
trary rotation of 3D shapes. Our 3D representation achieves
the state-of-the-art performance on ModelNet dataset and
ShapeNetCore55 dataset.

In summary, our main contributions are as follows.

• We propose an encoder-decoder recurrent feature aggre-
gation network to build a robust discriminative and gener-
ative 3D shape representation via emphasizing 3D prop-
erties for multi-view 3D shape retrieval.

• We present a recurrent feature aggregation structure to
capture the consistently discriminative features among

views, exploiting spatial correlation information in the se-
quence based on LSTM.

• ERFA-Net significantly outperforms all the state-of-the-
art methods on both ModelNet and ShapeNetCore55, and
has the robustness to view missing and object occlusion.

Related Work

A large number of works (Leng et al. 2016; Girdhar et al.
2016; Fang et al. 2015; Xie et al. 2015) have been pro-
posed to address 3D shape retrieval problem, which are
coarsely divided into two categories: model-based methods
and view-based methods. Compared to high dimensional
model-based methods that exploit the raw 3D representa-
tions of 3D shapes, view-based methods leverage a highly
informative image sequence with some desirable properties,
such as regular structure, efficiency to compute and robust-
ness to handle naive 3D representation. Moreover, owing to
the success made by CNN in vision (Razavian et al. 2014;
Girshick et al. 2013), the CNN-based deep representations
of multiple views from 3D shapes achieve more impressive
performance than model-based methods and lead the best
performance on various 3D shape datasets, such as Model-
Net and ShapeNetCore55. Then our work is mainly related
to multi-view 3D shape retrieval approaches.

Traditionally, view-based methods mainly employed
hand-crafted representations of 3D shapes. A typical ex-
ample of a view-based technique is LightField Descriptor
(Chen et al. 2003), placing 20 cameras on the vertices of
a regular dodecahedron and representing a 3D shape with
Fourier descriptors and Zernike moments. Another widely
used instance is Bag-of-Words (BoW) model (Li and Per-
ona 2005), since it has shown its superiority as natural image
descriptor and reduced the computation complexity. Then
BoRW is proposed through encoding regions of views with
local SIFT features and clustering them with responding
weights to describe a 3D shape. PANORAMA (Papadakis
et al. 2010) obtained a panoramic view of a 3D shape, cap-
turing the global shape information and improving the re-
trieval performance significantly. Meanwhile, (Bonaventura
et al. 2015) proposed a shape descriptor of the Informa-
tion Sphere and utilized mutual information-based measures
for the matching. (Gao et al. 2012) represented a set of 3D
shapes’ rendered images with multiple hypergraphs and ob-
tained a higher order relationship of 3D shapes.

Recently, the success made by CNN for a number
of applications in vision, such as image classification
(Krizhevsky, Sutskever, and Hinton 2012), object detec-
tion (Ren et al. 2017) and scene recognition (Zhou et al.
2014), has inspired many follow-on studies on view-based
3D shape retrieval. (Zhu et al. 2014) firstly used autoen-
coder for deep representations of 3D shapes based on pro-
jected views, exhibiting good complementarity with the lo-
cal descriptor. GIFT (Bai et al. 2016) extracted view fea-
tures by using CNN with GPU acceleration and adopting
the inverted file to reduce computation in distance metrics.
Meanwhile, a variant of CNN (Shi et al. 2015) was designed
for learning a deep representation from a panoramic view
of a 3D shape, adopting a row-wise max-pooling scheme
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Figure 2: The detailed framework of our proposed encoder-decoder recurrent feature aggregation network. (a) The encoder
(blue): recurrent feature aggregation network, fusing the discriminative information among a multi-view sequence into a com-
pact 3D representation. (b) The decoder (green): viewpoint estimation network, processing the different viewpoints and gener-
ating rendered views correspondingly with the encoded 3D representation.

to obtain the robust alignment between different panoramic
views. The aforementioned methods focused on learning a
representation from every single view, which provides in-
sufficient shape information.

Apart from a single view, many researchers attached im-
portance to building a more discriminative representation
with a highly informative multi-view image sequence of a
3D shape. In the MVCNN (Su et al. 2015), a set of CNNs
was used to extract each view’s deep representation and then
aggregate information from multiple views into a compact
shape descriptors with the element-wise maximum opera-
tion. TLC (Bai et al. 2015) was proposed for 3D shape re-
trieval, where each pair of views was represented in the first
layer and a set of view-pair representations from different
subsets were encoded into final feature vector in the second
layer. (Johns, Leutenegger, and Davison 2016) overcame the
limit on the fixed-length image sequence by decomposing
a view sequence into a set of view pairs and then trained
a CNN to build the pairwise relationship between different
view pairs. However, these methods can not necessarily in-
corporate 3D properties of the shapes. In this paper, we pro-
pose a novel network for multi-view based shape retrieval,
by learning a discriminative and generative 3D representa-
tion. During the training phase, a view sequence of the 3D
shape is trained to generate the rendered images of all view-
points. It is assumed that 3D properties of shapes can be
effectively captured under the supervision where the unseen
views should be estimated accurately. In addition, the infor-
mation along a multi-view image sequence is recurrently ag-
gregated based on LSTM in order to make the encoded 3D
representation discriminative.

Proposed method

The goal of the proposed approach is to learn a 3D repre-
sentation that is discriminative across multiple views, and
generative enough to estimate rendered views of different
viewpoints. These properties are significant for view-based
3D understanding tasks.

We propose a novel encoder-decoder embedding network
for multi-view 3D shape retrieval. As shown in Fig. 2, this
architecture consists of two parts: recurrent feature aggre-
gation network (encoder) and viewpoint estimation network
(decoder). On the one hand, the encoder network guaran-
tees the learned 3D representation with high discrimination,
where the discriminative information among multiple views
is captured and aggregated automatically. On the other hand,
the decoder network is trained to generate projection views
of the same object from different viewpoints, which gives
an effective supervision that the learned representation can
necessarily incorporate the properties of 3D shapes.

Given a 3D shape x, we render an image sequence S(x)
from different viewpoints θi, the combination of azimuth
θazi and elevation θeli , in a unit spherical coordinate system.
We train the proposed approach that receives an input pair
(S(xp), θi), where xp is the input 3D shape and θi is the tar-
get viewpoint, and then aims to estimate the target image yi,
where yi is the rendered view of the same object xp from
the requested viewpoint θi. The encoder fuses the informa-
tion of the image sequence S(x) into a compact 3D repre-
sentation Dp and then the decoder uses it to predict unseen
views. The network is trained by minimizing the combina-
tion of two loss functions: the squared euclidean loss for the
generated image and softmax loss LS for the encoded 3D
representation Dp:

L = LS + λ
∑

i

||yi − ŷi||22 (1)
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where ŷi is the output of network and a scalar λ is used for
balancing the two loss functions. In our experiment we set λ
as 0.01.

Recurrent feature aggregation network

As illustrated in Fig. 2, the recurrent feature aggregation
network contains two main parts: the extraction of features
from multiple views and the aggregation of different visual
feature vectors.

For the view feature extraction, a set of deep represen-
tations are extracted with CNNs for each 3D shape with a
view image sequence. We use a set of CNNs to obtain dif-
ferent view representations, and each view is input to the
CNN independently. For the image sequence S(xp), CNN is
adopted to transform each projected image pi into the fea-
ture vector vi. The set of view features extracted from the
image sequence of the 3D shape xp can be expressed as
V (xp) = {v1, v2, ..., vn}. Since the discriminative power
of the fused image sequence feature heavily depends on
the representations of different views, all features extracted
from CNNs should be as discriminative as possible. To sat-
isfy this requirement, we train CNN for each view and
share the same weights. In terms of the CNN architecture,
we adopt the GoogLeNet with Batch Normalization (Ioffe
and Szegedy 2015). This 22-layer CNN has great power to
learn the discriminative visual representation and fast con-
vergence speed with batch normalization technique. We use
features from the layer pool5/7x7 s1 as the visual features,
the dimension of which is 1024.

For the feature aggregation, due to the great power of re-
current neural networks in spatial-temporal sequence, we
utilize an LSTM network to aggregate the complementary
geometric correlation information in the view features se-
quence. In particular, an out-of-order view sequence of a 3D
shape is adopted to cope with 3D shape transformation. An
LSTM node includes three gates: the input gate i, the forget
gate f and the output gate o. At time stamp t, given input
vt and previous LSTM node state ht−1, the LSTM’s update
mechanism is as follows

it = σ(Wivt + Uiht−1 +Hict−1 + bi) (2)
ft = σ(Wfvt + Ufht−1 +Hict−1 + bf ) (3)
ct = ft ⊗ ct−1 + ii ⊗ tanh(Wcvt + Ucht−1 + bc) (4)
ot = σ(Wovt + Uoht−1 +Hoct + bo) (5)
ht = ot ⊗ tanh(ct) (6)

where σ is the sigmoid function and we use ⊗ as the vec-
tor element-wise product operator. W∗, U∗, H∗ denote the
weight parameters and b∗ is a bias vector. The LSTM net-
work can propagate the discriminative feature information
to the deeper LSTM nodes and forget the noisy information
in visual features. In our experiment, we use two layers of
LSTM nodes to improve the learning power of the aggrega-
tion network for large-scale 3D shape representations.

In the process of recurrent feature aggregation, informa-
tion is propagated from the first part-based recurrent aggre-
gation unit to the last one. At each time stamp t, which
denotes the order of views in a sequence, the LSTM node
t maintains the information of the recurrent unit t − 1

and uses it to output the current fused feature dt with the
input feature vt. Because the discriminative information
may appear anywhere in the different views of a sequence,
we adopt an element-wise max-pooling layer to combine
the output features of different recurrent aggregation units,
{d1, d2, ..., dn}, which allows for the aggregation of infor-
mation across all time steps and avoids the final representa-
tion of the view sequence biasing towards later time-steps.
The final representation of image sequence Dp of the 3D
shape xp can be expressed as

Di
p = max({d1,i, d2,i, ..., dn,i}) (7)

where Di
p denotes the i-th element of the feature vector Dp

and dt,i is the i-th element of the view feature dt.

Viewpoint estimation network

In order to make the aggregated representation incorporate
3D nature of objects, viewpoint estimation network is pre-
sented to predict rendered views of different viewpoints
through exploiting the hidden 3D shape representation. To
be specific, the encoder part transforms the input image se-
quence into a hidden 3D representation Dp of 3D shape xp,
and then viewpoint estimation network takes the Dp and the
target viewpoint as input to output the desired rendered view.

During training, the network is presented with the en-
coded 3D representation and the image showing the view
of the 3D shape together with the target viewpoint. 3D
shapes are randomly sampled from the large-scale 3D shape
database and unseen viewpoints are randomly selected.

To improve the generative ability, we propose a transfor-
mation layer that transforms encoded 3D representation ac-
cording to different viewpoints θi, instead of directly using it
to generate images. θi is a vector, which consists of two an-
gles: azimuth θazi and elevation θeli . Firstly, the viewpoint θi
is processed by two FC layers and the output viewpoint fea-
ture dθi is 512D. Secondly, the viewpoint feature will gen-
erate a transformed coefficient for each dimension of 3D
representation Dp and the 3D representation is transformed
with element-wise product operation. The transformed rep-
resentation Transθi(Dp) can be expressed as

Transθi(Dp) = σ(W · dθi)⊗Dp (8)

Here, W ∈ R
512×1024 is the parameters of the fully-

connected layer. σ is the activation function and we adopt
the Leaky ReLU function in this paper. We use ⊗ as the
vector element-wise product operator.

We use the transformed 3D representation Transθi(Dp)
to generate the image of the target viewpoint with a decon-
vnet architecture, which consists of 6 deconvolutional lay-
ers. We also experimented with deeper networks but did
not obtain a significant improvement in performance. The
deconvolution layer performs upsampling and convolution,
which is opposite to the standard convolution and pooling.
For the deconvolutional layers of the network, we use 3× 3
filters, 2 stride and 1 padding for the first 5 deconvolutional
layers and use 2 × 2 filters, 1 stride and 1 padding for the
last deconvolutional layer.
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Figure 3: Some examples of rendered views of 3D shapes on
ModelNet.

Experiment

In this section, we evaluate the proposed method on differ-
ent 3D shape benchmarks and competitions. Moreover, we
compare the performance of different methods in view miss-
ing and occlusion cases. In order to quantify the retrieval
performance, we use several evaluation metrics, including
mean average precision (MAP) , mean area under P-R curve
(AUC) , F-measure and NDCG as defined in (Wu et al. 2015;
Savva et al. 2016).

Implementation details

Each 3D shape is rendered to yield views of 256×256 pixels
for depth images by placing 24 virtual cameras. The length
of multi-view image sequence is 12 to produce the 3D rep-
resentation, and the remaining rendered views of each 3D
shape are used to be estimated.
Training. For each 3D shape, we select 12 views accord-
ing to specific viewpoints as the view fusion sequence and
randomly choose one view from unseen rendered views as
predicted image. Then a number of input tuples, includ-
ing the view fusion sequence, predicted image and corre-
sponding viewpoint, are fed to the network. For the multi-
view features extracting process, the CNN is fine-tuned on
specific 3D shape dataset pre-trained on the ImageNet 1k
dataset (Deng et al. 2009) and the architecture of CNN
adopts GoogLeNet with Batch Normalization, in which the
input image is resized to 224×224. We obtain features from
pooling layer pool5/7× 7 s1 as middle representations. For
the recurrent features aggregation, the output dimension of
LSTM node is 1024.
Testing. For each 3D shape, the 12 views, according to the
fixed viewpoints, are aggregated to obtain a compact 3D
representation. The cosine distance is adopted for retrieval
tasks.

In our experiment, we use the caffe (Jia et al. 2014) tool-

Table 1: The Performance Comparison With State-of-the-art
Methods on ModelNet40 and ModelNet10

Methods ModelNet40 ModelNet10

AUC MAP AUC MAP
SPH 34.47% 33.26% 45.97% 44.05%
LFD 42.04% 40.91% 51.70% 49.82%
PANORAMA 45.00% 46.13% 60.72% 60.32%
ShapeNets 49.94% 49.23% 69.28% 68.26%
DeepPano 77.63% 76.81% 85.45% 84.18%
MVCNN - 80.20% - -
GIFT 83.10% 81.94% 92.35% 91.12%
CNN+Concat 81.72% 80.49% 92.06% 91.57%
CNN+Max 80.98% 79.00% 90.16% 89.55%
ERFA-Net 86.35% 85.38% 93.64% 93.24%
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Figure 4: Precision-recall curves on ModelNet40 dataset (a)
and ModelNet10 dataset (b).

box to implement and train the network. The initial learning
rate is 1e-4, which is annealed by 0.5 once encountering the
training loss plateaus. The weight decay is set to 5e-4 and
the momentum is set to 0.9.

Retrieval on ModelNet

ModelNet Dataset is composed of 127,915 3D CAD models
from 662 categories. It has two subsets, ModelNet40 dataset
and ModelNet10 dataset, and we use both for evaluation.
The first subset contains 12,311 models and the second con-
tains 4,899 models. We adopt the same training and testing
split mentioned in (Wu et al. 2015). We randomly select 100
unique shapes per category from the subset, where the first
80 shapes are used for training and the rest for testing. Some
examples of rendered views of 3D shapes on ModelNet are
shown in Fig. 3.

The retrieval results of ModelNet dataset are pre-
sented in Table 1. Our method is compared against SPH
(Kazhdan, Funkhouser, and Rusinkiewicz 2003), LFD
(Chen et al. 2003), Panorama (Papadakis et al. 2010),
3D ShapeNets (Wu et al. 2015), DeepPano (Shi et al.
2015), MVCNN (Su et al. 2015) and GIFT (Bai et al.
2016). In addition, several baseline methods are conducted
to evaluate the proposed approach. “CNN+Concat” and
“CNN+Max” use different schemes to fuse the multi-
view representations. “CNN+Concat” concatenates differ-
ent view-specific features into a final representation of the
image sequence. “CNN+MAX” performs max pooling like
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Table 2: The Performance Comparison on SHREC16 Normal Dataset

Methods Micro Macro Micro + Macro

F-measure MAP NCDG F-measure MAP NCDG F-measure MAP NCDG
DB-FMCD-FUL-LCDR 0.472 0.728 0.875 0.203 0.596 0.806 0.338 0.662 0.841
CCMLT 0.391 0.823 0.886 0.286 0.661 0.820 0.339 0.742 0.853
ViewAggregation 0.582 0.829 0.904 0.201 0.711 0.846 0.392 0.770 0.875
MVCNN 0.764 0.873 0.899 0.575 0.817 0.880 0.670 0.845 0.890
GIFT 0.689 0.825 0.896 0.454 0.740 0.850 0.572 0.783 0.873
ERFA-Net 0.776 0.889 0.919 0.574 0.833 0.898 0.675 0.861 0.909

Table 3: The Performance Comparison on SHREC16 Perturbed Dataset

Methods Micro Macro Micro + Macro

F-measure MAP NCDG F-measure MAP NCDG F-measure MAP NCDG
DB-FMCD-FUL-LCDR 0.413 0.638 0.838 0.166 0.493 0.743 0.290 0.566 0.791
CCMLT 0.246 0.600 0.776 0.163 0.478 0.695 0.205 0.539 0.736
ViewAggregation 0.534 0.749 0.865 0.182 0.579 0.767 0.358 0.664 0.816
MVCNN 0.612 0.734 0.843 0.416 0.662 0.793 0.514 0.698 0.818
GIFT 0.661 0.811 0.889 0.423 0.730 0.843 0.542 0.771 0.866
ERFA-Net 0.713 0.880 0.914 0.498 0.834 0.893 0.606 0.857 0.904

MVCNN. To make fair comparison, the CNN architecture
adopts GoogLeNet with Batch Normalization and the exper-
iment setup of view features extraction is the same as that of
our method.

From Table 1, the proposed approach outperforms all
other state-of-the-art methods remarkably. The performance
of MVCNN is limited without utilizing all information of
multiple views. Furthermore, shape-information deficiency
of the single view may hinder the effect of GIFT. In addition,
EFRA-Net performs a clear advantage over “CNN+Concat”
and “CNN+Max”. It is shown that our method can effec-
tively incorporate 3D properties to recognize 3D shapes
more accurately, compared with the common fusion struc-
tures. Fig. 4 shows the comparison of the precision-recall
curves of the above methods. In addition, Fig. 5 shows some
generated views for 3D shapes. As we can see, the necessary
3D details are correctly estimated.

Retrieval on large-scale 3D dataset

The dataset from SHape REtrieval Contest (SHREC) 2016
is a large-scale 3D shape retrieval track. This dataset con-
tains 51,190 3D shapes over 55 common categories, each
subdivided into 204 sub-categories. In our experiment, we
adopt the official training and testing split method, where
the database is split into three parts, 70% shapes used for
training, 10% shapes for validation data and the rest 20% for
testing. Besides, two dataset versions are provided, normal
dataset where all shapes are consistently aligned, and more
challenging perturbed dataset where all shapes are randomly
rotated. To keep the comparison fair, we take three types of
results including macro, micro and mean of macro and mi-
cro, as defined in (Savva et al. 2016).

Table 2 and Table 3 present the performance compari-
son on the normal and perturbed datasets. Our ERFA-Net is
compared to various state-of-the-art methods, including DB-

Airplane

Bathtub

Monitor

Figure 5: Predictions of the network for “airplane”, “bath-
tub”, “monitor” classes (top row) and the corresponding
ground truth (bottom row) on the testing dataset. The net-
work correctly estimates the views.

FMCD-FUL-LCDR (Tatsuma and Aono 2016), CCMLT,
ViewAggregation, MVCNN (Su et al. 2015) and GIFT (Bai
et al. 2016). As we can see, our method achieves state-of-
the-art performances on the normal and perturbed datasets.

There is an interesting phenomenon that our approach
leads to a higher improvement on the SHREC16 perturbed
dataset than on the ModelNet dataset, compared to MVCNN
and GIFT. The possible reasons are two-fold. On the one
hand, instead of the well-distributed training and testing split
in ModelNet40 or ModelNet10, a huge difference in the
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number of 3D shapes of different categories is presented
in SHREC16 dataset, hindering the training and converging
of 3D shape recognition algorithms. On the other hand, the
shapes in SHREC16 perturbed dataset are randomly rotated.
The performance of some methods, lacking robustness for
the spatial transformation of 3D shapes, is restricted. How-
ever, our method is insensitive to 3D shapes’ transforma-
tion owing to the randomly ordered view image sequences.
Therefore, our method exhibits encouraging scalability and
rotation invariance in large-scale 3D competition.

Robust discrimination of encoded representation

Robust discrimination of 3D representations is vital for
multi-view 3D shape retrieval, especially for the real scenes.
In practical applications like robust-operated 3D shape re-
trieval, view missing and occlusion caused by other objects
can seriously affect the retrieval accuracy. In this experi-
ment, we evaluate the discriminative capacity of our aggre-
gated features on the ModelNet40 dataset by adding some
noise, including view missing and occlusion, to the test-
ing view sequences. Then the methods are trained with nor-
mal rendered images and tested with noisy view sequences.
Some examples of testing images are shown in Fig. 6. For
the testing view sequence, some images in the sequence
are replaced by noise images, which are meaningless black
background images or views of other objects.

We compare different methods with the different number
of noisy views, which is shown in Fig. 6. The performances
of “CNN+Max” and MVCNN decrease sharply under the
noisy cases since the output of the maximum operation may
be information of noisy views. Moreover, “CNN+Concat”
can not capture robust 3D shape representations from redun-
dancy information of the 3D shape multi-view sequence . As
we can see, although the performances suffer from the noise,
our aggregated feature still remarkably obtains the state-
of-the-art results, which achieves 81.15% MAP on Mod-
elNet40 dataset when 6 images (50%) are polluted. Com-
pared to the noise-free image sequences, the MAP decreases
slightly by 8.58% when almost 70% images (8 noise views)
are contaminated. This demonstrates that the 3D properties
of shapes do give a significant rise to features of 2D images,
make the 3D representation maximally reduce the adverse
effect of noise and have strongly robust discrimination.

Conclusion

We presented an encoder-decoder recurrent feature aggre-
gation network that learns robust discriminative and gen-
erative 3D representations when being trained on the task
of estimating views of any unseen viewpoints by exploit-
ing multi-view sequence of 3D shapes. Supervised by gen-
erative task, the aggregated feature of the randomly ordered
view sequence can effectively incorporate the 3D properties
of shapes, making it robust to view missing and occlusion.
Therefore, in future work, we will investigate ways to ap-
ply the proposed method to noisier real 3D scenes such as
robotic-operated 3D shape recognition.
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Figure 6: (a) is some examples of contaminated view se-
quence of the “chair” shape, including view missing (red
box) and being occluding by other objects (green box). (b)
shows the performance on different number of noise views.
Our method performs robust discrimination in these noisy
cases.
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