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Abstract

Recently, saliency detection in a single image and co-saliency
detection in multiple images have drawn extensive research
interest in the vision community. In this paper, we investigate
a new problem of co-saliency detection within a single im-
age, i.e., detecting within-image co-saliency. By identifying
common saliency within an image, e.g., highlighting multiple
occurrences of an object class with similar appearance, this
work can benefit many important applications, such as the de-
tection of objects of interest, more robust object recognition,
reduction of information redundancy, and animation synthe-
sis. We propose a new bottom-up method to address this prob-
lem. Specifically, a large number of object proposals are first
detected from the image. Then we develop an optimization
algorithm to derive a set of proposal groups, each of which
contains multiple proposals showing good common saliency
in the original image. For each proposal group, we calculate
a co-saliency map and then use a low-rank based algorithm to
fuse the maps calculated from all the proposal groups for the
final co-saliency map in the image. In the experiment, we col-
lect a new dataset of 364 color images with within-image co-
saliency. Experiment results show that the proposed method
can better detect the within-image co-saliency than existing
algorithms.

Introduction
Research on image-based saliency detection has drawn ex-
tensive interest in the vision community in the past decade.
It started with saliency detection in a single image, i.e.,
within-image saliency detection, which aims at highlight-
ing the visually standing-out regions/objects/structures from
the surrounding background (Cheng et al. 2015; Mahade-
van and Vasconcelos 2009; Zhao, Ouyang, and Wang 2013;
Huang, Feng, and Sun 2015), as illustrated in Fig. 1(a).
More recently, co-saliency detection in multiple images,
e.g., cross-image co-saliency detection (Fu, Cao, and Tu
2013; Zhang et al. 2015a; Huang, Feng, and Sun 2017),
has been attracting much attention with many successful
applications (Meng et al. 2012; Yu, Xian, and Qi 2014;
Joulin, Tang, and Fei-Fei 2014; Tang et al. 2014). As illus-
trated in Fig. 1(b), cross-image co-saliency detection aims to
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Figure 1: Illustrations of different saliency detection prob-
lems. (a) Within-image saliency detection. (b) Cross-image
co-saliency detection, where co-saliency is detected across
three images. (c) The proposed within-image co-saliency
detection. First row: images. Second row: ground-truth
saliency/co-saliency maps.

detect the common saliency, e.g., red-clothed soccer play-
ers, that are present in all three images. In this paper, we
investigate a new problem of detecting co-saliency within a
single image, i.e., within-image co-saliency detection, which
aims to highlight the common saliency within an image. An
example is shown in Fig. 1(c), where the two red-clothed
players show good within-image co-saliency, but the white-
clothed player does not because only one white-clothed
player is present in the image.

Within-image co-saliency detection can benefit many im-
portant applications in computer vision. For example, it
can be used to help detect multiple instances of an ob-
ject class in an image and help estimate the number of
instances of the same object class (He and Gould 2014;
Lin et al. 2014). By combining the features of the identi-
fied co-salient objects, we may obtain more accurate and
more reliable object recognition and detection in the image.
Within-image co-saliency detection can also help identify
and reduce information redundancy within an image. For
example, recent mobile plant-recognition systems (Kumar
et al. 2012) usually require the user to take an plant image
using his/her smart phone camera and then send the plant
image to a remote server for large-scale plant-species clas-
sification. The proposed within-image co-saliency detection
can identify multiple instances of the same plant part, e.g.,
leaf, and then crop out only one of them before sending it
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to the remote server. This may substantially reduce the data
size and communication load. As in (Xu et al. 2008), re-
peated instances of an object class can be used to synthe-
size realistic animation from a still picture, which could be
helped by within-image co-saliency detection.

However, within-image co-saliency detection is a non-
trivial problem. As far as we know, there is no existing
work that explicitly discusses and tackles this problem. On
one hand, this problem cannot be well addressed by di-
rectly applying the existing methods on saliency detection.
By using a within-image saliency detection method, we may
also highlight objects that show good saliency but not co-
saliency, e.g., the white-clothed player in Fig. 1(c). On the
other hand, cross-image co-saliency methods are also not ap-
plicable here because we only have one input image. One
naive solution might be making multiple copies of the in-
put image and then applying a cross-image co-saliency de-
tection method. However, this solution still does not work,
because it will highlight all the salient objects in the image.
For example, if we make two copies of the image shown in
Fig. 1(c) and then apply a cross-image co-saliency detec-
tion algorithm, all three players including the white-clothed
player will be highlighted. The white-clothed player may
even be emphasized more because she is located at the cen-
ter of both image copies.

In this paper, we propose a new bottom-up method for de-
tecting within-image co-saliency. Given an image, we first
detect a large number of object proposals (Zitnick and Dollár
2014). We then develop an optimization algorithm to derive
a set of proposal groups, each of which consists of multi-
ple selected proposals showing good common saliency in
the original image. Three factors are considered in measur-
ing the common saliency for a group of proposals: 1) the
saliency of each proposal in the original image, 2) similar
image appearance of the proposals, and 3) low spatial over-
lap of the proposals. For each derived proposal group, a co-
saliency map is computed by a clustering-based algorithm.
We then fuse the co-saliency maps computed from different
proposal groups into a final co-saliency map using a low-
rank based algorithm. Since most existing image datasets
used for saliency detection do not consider the within-image
co-saliency, we collect a new dataset of 364 images for per-
formance evaluation. In the experiment, we test the proposed
method and other comparison methods on the new dataset
and quantitatively evaluate their performance based on the
annotated ground truth.

The remainder of the paper is organized as follows. Sec-
tion 2 overviews the related work. Section 3 introduces
the proposed method on within-image co-saliency detection.
Section 4 reports the image dataset and experimental results,
followed by a brief conclusion in Section 5.

Related Work
As mentioned above, most previous work on image-based
saliency detection is focused on two problems: saliency de-
tection in a single image, i.e., within-image saliency de-
tection, and co-saliency detection in multiple images, i.e.,
cross-image co-saliency detection.

Many within-image saliency detection models and meth-
ods have been developed in the past decades. Most tradi-
tional methods identify salient regions in an image based
on visual contrasts (Cheng et al. 2015). Many hand-crafted
rules, such as center bias (Fu, Cao, and Tu 2013), fre-
quency (Achanta et al. 2009), and spectral residuals (Hou
and Zhang 2007) have been incorporated to improve the
saliency detection performance. Graph-based segmentation
algorithms (Rother, Kolmogorov, and Blake 2004; Yu et
al. 2015) could be applied to refine the resulting saliency
maps (Cheng et al. 2015). In (Chang et al. 2011; Li et
al. 2014b; Wang et al. 2013; Shen and Wu 2012), high-
level knowledges such as objectness, fixation predictions,
object boundary, and low rank consistency are integrated to
achieve within-image saliency detection, besides the use of
low-level features like color, texture and SIFT features. Re-
cently, deep learning techniques have also been used for de-
tecting saliency in an image by automatically learning the
features. In particular, it has been shown that multi-scale
deep learning (Li and Yu 2015) and deep contrast learn-
ing (Li and Yu 2016) using patch-level convolutional neural
networks (CNN) or pixel-level fully convolutional networks
(FCN) (Long, Shelhamer, and Darrell 2015) and recurrent
fully convolutional networks (RFCN) (Wang et al. 2016) can
detect the within-image saliency more accurately than many
of the above-listed traditional methods.

Cross-image co-saliency detection has also been studied
by many researchers recently. In (Fu, Cao, and Tu 2013;
Ge et al. 2016), each pixel is ranked by using manually de-
signed co-saliency cues such as inter-image saliency cue,
intra-image saliency cue, and repeatedness cue. In (Cao
et al. 2014; Li et al. 2014a; Tan et al. 2013), co-saliency
maps produced by different methods are fused by further
exploring the inter-image correspondence. Recently, ma-
chine learning based methods like weakly supervised learn-
ing (Cheng et al. 2014), multiple instance learning (Zhang
et al. 2015b), and deep learning (Zhang et al. 2016; 2015a)
are also used for cross-image co-saliency detection. Other
problems related to cross-image co-saliency detection are
co-localization (Joulin, Tang, and Fei-Fei 2014; Tang et al.
2014) and co-segmentation (Meng et al. 2012; Yu, Xian, and
Qi 2014), which aim to localize or segment common ob-
jects that are present in multiple input images. However, all
these within-image saliency detection and cross-image co-
saliency detection methods cannot address the problem of
within-image co-saliency detection, on which this paper is
focused, because they could not de-emphasize salient ob-
jects that do not show within-image co-saliency, e.g., the
white-clothed player in Fig. 1(c).

Other work related to our problem is the supervised ob-
ject detection, a fundamental problem in computer vision.
In (Kanan et al. 2009), top-down approaches considering
object detection are developed for detecting within-image
saliency – objects detected in the image are emphasized
in the saliency map. Ideally, we may extend it to within-
image co-saliency detection: run an object detector (Ren et
al. 2015; Redmon et al. 2015) on the given image and then
match the detected objects. If two or more detected objects
show high-level of similarity and belong to the same object
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Figure 2: Diagram of the proposed method for detecting within-image co-saliency.

class, we highlight them in the resulting co-saliency map. If
a detected object does not match to any other detected object
in the image, we de-emphasize it in the resulting co-saliency
map. However, object detector can only detect known ob-
ject classes (Everingham et al. 2012) that are pre-trained us-
ing supervised learning, not to mention that highly-accurate
large-scale object detection itself is still a challenging re-
search problem. Just like most previous work on saliency
detection, in this paper we detect within-image co-saliency
without assuming any specific object class and recognizing
any objects in the image.

Proposed Method
The basic idea of the proposed method is to first generate
many object proposals (in the form of rectangular bounding
boxes) in the image, and then compute co-saliency by de-
riving proposal groups with good common saliency in the
image. The diagram of the proposed method is illustrated
in Fig. 2. For object proposals, as mentioned above, we do
not consider any prior information on the object classes and
they are detected only based on general objectness. Consid-
ering the possibility that many detected object proposals do
not well cover a real object, as shown in the second column
of Fig. 2, we identify different proposal groups where each
group of proposals show good common saliency. We com-
pute such common saliency for each proposal group in the
form of a co-saliency map in the original image and finally
fuse the co-saliency maps computed from different proposal
groups for the desired within-image co-saliency.

In this paper, we use the classical bottom-up EdgeBox
method (Zitnick and Dollár 2014) to generate object pro-
posals in the image. More specifically, we first use EdgeBox
to generate a large pool of proposals with different object-
ness scores. After pruning overly small proposals (with size
< 1% of the image size), we select M object proposals with
the highest objectness scores from the pool and denote them
as Pi, i = 1, 2, . . . ,M . Based on these M detected pro-
posals, we elaborate on the other three main components of
the proposed methods, i.e., identification of proposal groups,
computing co-saliency map for a proposal group, and fusion
of multiple co-saliency maps, in this section.

Identification of Proposal Groups
Given M object proposals Pi, i = 1, 2, . . . ,M in the image,
we identify N different proposal groups, each of which con-
sists of a subset of proposals with good common saliency. In
this section, we identify these N proposal groups iteratively:
After identifying the first proposal group with highest com-
mon saliency, we exclude the identified proposals and apply
the same algorithm to identify another proposal group. This
process is repeated N times to obtain N proposal groups.
For simplicity, we fix the number of proposals in each group
to be K > 1, which is a pre-set constant. In this paper,
we consider three main factors in measuring the common
saliency of K proposals in a group: 1) saliency of each of
these K proposals, 2) high appearance similarity of these K
proposals, and 3) low spatial overlap of these K proposals.

A proposal group can be denoted by a vector z =
(z1, z2, . . . , zM )T , where zi ∈ {0, 1}, with 1 indicating
that proposal i is included in the group and 0 otherwise.
First, we can use any within-image saliency detection algo-
rithm (Li and Yu 2016; Zhao et al. 2015; Cheng et al. 2015;
Fu, Cao, and Tu 2013) to compute an initial saliency map
h(X), where X represents all the pixels in the input im-
age and h(x) is the saliency value at pixel x ∈ X . The
saliency of each proposal Pi can then be estimated as hi =
1

|Pi|
∑

x∈Pi
h(x). The saliency of all M proposals can be

summarized into a column vector h = (h1, h2, . . . , hM )T .
Following (Tang et al. 2014; Rubinstein et al. 2013), we de-
fine a saliency energy term to reflect the total saliency of a
proposal group z in the original image by

E1(z) = −zT log(h). (1)

The smaller this energy term, the larger the saliency of this
proposal group in the original image.

To consider the high appearance similarity and low spa-
tial overlap of the proposals in a group z, we first define a
pairwise similarity between two proposals, say Pi and Pj , as

wij =
1

d2ij + o2ij
, (2)

where dij is the L2 distance between the appearance fea-
tures of Pi and Pj , and oij reflects the spatial overlap of Pi
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and Pj . Specifically, we compute the appearance feature of
a proposal by using the normalized RGB color histogram
(256×3 bins) of all the pixels in the proposal. We define oij
as |Pi∩Pj |

min(|Pi|,|Pj |) .
Based on the pairwise similarity wij , we construct a sim-

ilarity matrix W = (wij)M×M . W is a symmetric ma-
trix and we set all diagonal element wii to be 0. The nor-
malized Laplacian matrix can then be computed by L =

I − D− 1
2 WD− 1

2 , where I is an M × M identity matrix, D
is the degree matrix, i.e., a diagonal matrix, whose i-th di-
agonal element takes the value of

∑M
j=1 wij . Using L, we

can define a similarity energy term for a proposal group z
that encourages high appearance similarity and low spatial
overlap as

E2(z) = zT Lz. (3)
Combining the two energy terms shown in Eqs. (1)

and (3), we define the following constrained optimization
problem for identifying a proposal group:

min
z

zT Lz+ λ(−zT log(h))

s.t. zi ∈ {0, 1}, i = 1, 2, . . . ,M

M∑

i=1

zi = K,

(4)

where λ > 0 is a balance factor for the two energy terms, and
the last constraint indicates that we seek a group of K pro-
posals with high common saliency. Since the optimization
variables in z are binary, this is not a convex optimization
problem. To make it convex, we relax the first constraint in
Eq. (4) to

0 ≤ zi ≤ 1, i = 1, 2, . . . ,M.

This way, the optimization problem becomes a standard
quadratic programming under linear constraints, since the
saliency energy term in Eq. (1) is linear and the similarity
energy term in Eq. (3) is quadratic. We can solve this prob-
lem efficiently using the primal-dual interior-point method
by the CVX convex optimization toolbox (Grant, Boyd, and
Ye 2008). After we get the optimal solution z, we simply
select the K proposals with the highest values in z to form
a proposal group. As mentioned above, we iterate this opti-
mization algorithm N times to construct N proposal groups.
Figure 3 shows the proposal groups identified from a sample
image.

Co-saliency Detection in a Proposal Group
Without loss of generality, let P = {P1, P2, . . . , PK} be
an identified proposal group. In this section, we detect the
common saliency in this proposal group and summarize this
common saliency into a co-saliency map in the original im-
age. Starting from the initial saliency map h(X), we first
threshold this saliency map by a threshold (0.2 in our exper-
iments) to obtain salient region XT . Inspired by previous
work on cross-image co-saliency detection (Fu, Cao, and
Tu 2013), we apply the Kmeans algorithm to cluster all the
pixels X in the input image into Z clusters C1, C2, . . . , CZ

based on these pixels’ RGB color values. If a cluster shows

(a) (b) (c)

(d) (e) (f)

Figure 3: Six proposal groups identified from a sample im-
age. (a-f) Proposal groups identified from iteration 1 to iter-
ation 6, respectively. Here we set K = 2.

good spatial overlap with the considered proposal group P ,
the pixels in this cluster tends to show higher within-image
co-saliency in the original image.

More specifically, for each pixel x ∈ Cz , we define its
unnormalized common-saliency map value triggered by pro-
posal group P , which consists of proposals P1, P2, . . . , PK ,
as

�
′
P(x) =

|(∪K
k=1Pk) ∩XT ∩ Cz|
|(∪K

k=1Pk) ∩XT | , (5)

where the denominator is the number of salient pixels that
are located in the proposal group P and the numerator is
the number of salient pixels in cluster Cz that are located in
the proposal group P . We then normalize the map �

′
P(X) to

a standard Gaussian distribution and denote the normalized
common-saliency map triggered by proposal group P as
�̂P(X). To reduce the effect of clustering errors, we further
combine the initial saliency map h(X) and the common-
saliency map �̂P(X) by pixel-wise multiplication to con-
struct a co-saliency map �P(X) as

�P(x) = �̂P(x) · h(x),x ∈ X,

followed by thresholding (0.2 in our experiments), holes fill-
ing and average filtering. In Fig. 4, we use a sample image
to illustrate the process of this co-saliency detection.

Co-Saliency Map Fusion
Based on N identified proposal groups, we can use each of
them as the trigger to compute a co-saliency map. In this
way, we obtain N co-saliency maps, which we denote as
{�1(X), �2(X), . . . , �N (X)}. In this section, we study how
to fuse these N co-saliency maps into a unified co-saliency
map.

After simple thresholding, we find that the co-salient re-
gions in the N co-saliency maps display color-feature con-
sistency when mapped back to the original color image,
where the color-feature consistency could be thought as a
low rank constraint. Meanwhile other salient objects but not
showing within-image co-saliency and the background are
treated as sparse noises. In this paper, we adapt the method
in (Cao et al. 2014) for fusing the N co-saliency maps. First,
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(a) (b) (c)

(d) (e) (f)

Figure 4: An example of co-saliency detection triggered by
a proposal group. (a) Original image, (b) initial saliency
map h(X) (Li and Yu 2016), (c) a proposal group P with
two proposals, (d) Kmeans clustering results, where each
color indicates a cluster, in total six clusters, (e) normal-
ized common-saliency map �̂P(X), and (f) co-saliency map
�P(X).

for each co-saliency map, say �i(X), we apply a simple
thresholding as that in (Cao et al. 2014) to get pixels with
high co-saliency. We then compute the RGB color histogram
(1,000 bins) of all the identified pixels with high co-saliency
by mapping back to the original color image and denote
this histogram as a column vector fi. Combining the N his-
tograms computed from N co-saliency maps, respectively,
we obtain a feature matrix F = (f1, f2, . . . , fN ). We then
seek to recover a low-rank matrix R from F, i.e.,

(R∗,E∗) = argmin
R,E

(rank(R) + β ‖E‖0)
s.t. F = R + E,

(6)

where β > 0 is a balance factor between the rank of R and
the L0 norm of the sparse noise E. By using nuclear norm to
approximate rank(R) and L1 norm to approximate ‖E‖0,
this low-rank matrix recovery problem becomes convex and
can be solved by robust PCA (Wright et al. 2009).

Following (Cao et al. 2014), the final fused co-saliency
map can be written as a weighted linear combination of the
N co-saliency maps, i.e.,

�(x) =

N∑

i=1

αi · �i(x),x ∈ X, (7)

where the weight αi can be calculated by

αi =
exp(−‖e∗i ‖2)∑N
i=1 exp(−‖e∗i ‖2)

. (8)

In Eq. (8), e∗i is the i-th column of E∗ resulting from Eq. (6).
Less sparse noise e∗i indicates that the i-th co-saliency map
�i(X) is more credible and it should be weighted more in
computing the final co-saliency map �(X). The entire pro-
posed method for detecting co-saliency within a single im-
age is summarized in Algorithm 1.

Experiments
Existing publicized image datasets for evaluating saliency
detection such as MSRA (Liu et al. 2011), PASCAL-S (Li et

Algorithm 1 Co-saliency detection within a single image.
Input: A color image
1 Use EdgeBox (Zitnick and Dollár 2014) to generate

M object proposals.
2 Compute the initial saliency map h(X).
3 Generate Z clusters by Kmeans algorithm.
4 FOR i = 1 : N
5 Identify i-th proposal group by solving Eq. (4).
6 Compute co-saliency map �i(X).
7 Exclude proposals in the i-th proposal group.
8 END FOR
9 Fuse the N co-saliency maps �i(X), i = 1, 2, . . . , N

for the final co-saliency map �(X).

al. 2014b), HKU-IS (Li and Yu 2015), iCoseg (Batra et al.
2010) are mainly collected for testing within-image saliency
detection or cross-image co-saliency detection methods. In
most cases, each image only contains one salient object,
which is annotated as the ground truth. In this paper, we have
a different goal of detecting within-image co-saliency, which
is not shown in most images in the publicized datasets.
Therefore, we collect a new image dataset, consisting of
364 color images. Each image shows certain level of within-
image co-saliency, e.g., the presence of multiple instances of
the same object class with very similar appearance. In this
new dataset, 65 challenging images also contain salient ob-
jects without showing any within-image co-saliency, while
other 299 easy images do not. Sample easy and challeng-
ing images with corresponding ground truths in the collected
dataset are shown in Fig. 5. In this new dataset, about 100
images are selected from the iCoseg (Batra et al. 2010),
MSRA (Liu et al. 2011), HKU-IS (Li and Yu 2015) datasets
and the remaining images are collected from the Internet.
Co-salient objects within each image are manually labeled
as the ground truth (a binary mask) for performance eval-
uation. To avoid unreasonable labeling, the ground truths
are double checked by five different researchers in com-
puter vision area. The image size ranges from 150 × 150
to 808× 1078 pixels.

In our experiment, we generate M = 100 object pro-
posals. The number of proposal groups is set to N = 10.
The number of proposals in each group is set to K =
2. We set the balance factors λ = 0.01 in Eq. (4) and
β = 0.05 in Eq. (6). The number of clusters is set to
Z = 6 in the Kmeans algorithm. The initial within-image
saliency map h(X) is computed using the algorithm de-
veloped in (Li and Yu 2016). Seven state-of-the-art within-
image saliency detection methods are chosen as the com-
parison methods: CWS (Fu, Cao, and Tu 2013), LRK (Shen
and Wu 2012), SR (Hou and Zhang 2007), FT (Achanta et
al. 2009), RC (Cheng et al. 2015), DCL (Li and Yu 2016),
and RFCN (Wang et al. 2016). The first five are traditional
feature-based methods and the last two are based on deep
learning.

As in many previous works (Achanta et al. 2009; Fu, Cao,
and Tu 2013; Cheng et al. 2015; Li and Yu 2016), we evalu-
ate the performance using precision-recall (PR) curve, max-
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Figure 5: Sample images and their corresponding within-image co-saliency ground truth in the new dataset (first three: easy,
last four: challenging).

imum F-measure (maxF), MAE error and also report the
average precision, recall and F-measure using an adaptive
threshold. The resulting saliency map can be converted to
a binary mask with a threshold, and the precision and re-
call are computed by comparing the binary mask and the
binary ground truth. Varying the threshold continuously in
the range of [0, 1] leads to a PR curve, which is averaged
over all the images in the dataset in this paper. As in (Li
and Yu 2016), we can calculate the maximum F-measure
(maxF) from the PR curve and the MAE error as the average
absolute per-pixel difference between the resulting saliency
map and the ground truth. As in (Achanta et al. 2009;
Li and Yu 2016), we also use an adaptive threshold, i.e.,
twice the mean value of the saliency map, to convert the
saliency map into a binary mask. Comparing the binary
mask with the binary ground truth, we can compute the
precision and recall, based on which we can compute F-
measure as Fγ = (1+γ2)×Precision×Recall

γ2×Pecision+Recall , where γ2 is set
to 0.3 as defined in (Achanta et al. 2009; Fu, Cao, and Tu
2013; Li and Yu 2016).

Results
Figure 6 shows the PR curves of the proposed method and
seven comparison methods that were developed for within-
image saliency detection. We can see that, in general, the
proposed method performs better than all these seven com-
parison methods in detecting the within-image co-saliency,
in terms of the PR curve. The main reason lies on that these
seven comparison methods detect saliency in the image, in-
cluding the salient object without showing any within-image
co-saliency. We can also see that the two deep learning
based methods (DCL (Li and Yu 2016), RFCN (Wang et
al. 2016)) can detect better within-image co-saliency than
the five traditional saliency detection methods. Among the
five traditional methods, CWS (Fu, Cao, and Tu 2013) and
RC (Cheng et al. 2015) show relatively better performance
in detecting within-image co-saliency. Table 1 compares the
maxF and MAE error of the proposed method against these
seven comparison methods. From this table, we can also see
that the proposed method achieves the best performance in
detecting within-image co-saliency.

The average precision, recall and F-measure using adap-
tive thresholds (Achanta et al. 2009; Li and Yu 2016) are
shown as a bar chart in Fig. 7. We can see that, using
adaptive thresholds, the proposed method achieves the best
average precision, recall and F-measure against the seven
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Figure 6: PR curves of the proposed method (‘Ours’) and the
seven saliency detection methods, averaged over all the 364
images in the collected dataset.
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Figure 7: Average precision, recall and F-measure using
adaptive thresholds. Our F-measure: 88.1%; second best F-
measure: 85.9%.

comparison methods in detecting within-image co-saliency.
Specifically, the average precision, recall and F-measure us-
ing adaptive thresholds are [0.882, 0.907, 0.881] when using
the proposed method, while the second best is achieved sim-
ilarly by DCL (Li and Yu 2016) ([0.856, 0.904, 0.859]) and
RFCN (Wang et al. 2016) ([0.872, 0.856, 0.859]). Among
the seven comparison methods, DCL, RFCN, RC and CWS
show relatively better performance than the others. Using
adaptive thresholds, F-measure of the proposed method on
the 299 easy images is 0.905 and the second best F-measure
is 0.897 by RFCN. With adaptive thresholds, F-measure of
the proposed method on the 65 challenging images is 0.771
and the second best F-measure is 0.688 by RFCN.

Figure 8 shows sample results of within-image co-
saliency detection from the proposed method and the com-
parison methods including seven within-image saliency de-
tection methods. We can see that the proposed method is
capable of highlighting the regions that show within-image
co-saliency and de-emphasizing the salient regions that do
not show within-image co-saliency. However, the compar-
ison methods might highlight all the salient regions or ig-
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Metric CWS LRK SR FT RC DCL RFCN Ours
maxF (%) 76.7 67.4 40.3 58.2 80.2 88.8 88.3 90.3
MAE error 0.165 0.241 0.246 0.244 0.142 0.059 0.083 0.050

Table 1: The maximum F-measure (maxF) and MAE error of the proposed method (‘Ours’) and the seven within-image saliency
detection methods. Larger maxF and smaller MAE error indicate better performance.

Figure 8: Within-image co-saliency detection results on seven sample images.

nore to emphasize the regions that show within-image co-
saliency.

Conclusions
In this paper, we raised a new problem of detecting co-
saliency in a single image, i.e., detecting within-image co-
saliency. We developed a new bottom-up method to solve
this problem. This method starts with detecting a large num-
ber of object proposals in the image, without using any prior
information on the object classes. We then developed an op-
timization model to identify a set of proposal groups, each
of which consists of multiple proposals with good common
saliency in the original image. Co-saliency is then detected
in each proposal group and fused for the final within-image
co-saliency map. We collected a new set of 364 images
with good within-image co-saliency, and then used them to
test the proposed method. Experimental results showed that
the proposed method outperforms the recent state-of-the-art
saliency detection methods in detecting within-image co-
saliency.
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