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Abstract

Modern object detection methods typically rely on bounding
box proposals as input. While initially popularized in the 2D
case, this idea has received increasing attention for 3D bound-
ing boxes. Nevertheless, existing 3D box proposal techniques
all assume having access to depth as input, which is unfor-
tunately not always available in practice. In this paper, we
therefore introduce an approach to generating 3D box pro-
posals from a single monocular RGB image. To this end, we
develop an integrated, fully differentiable framework that in-
herently predicts a depth map, extracts a 3D volumetric scene
representation and generates 3D object proposals. At the core
of our approach lies a novel residual, differentiable truncated
signed distance function module, which, accounting for the
relatively low accuracy of the predicted depth map, extracts a
3D volumetric representation of the scene. Our experiments
on the standard NYUv2 dataset demonstrate that our frame-
work lets us generate high-quality 3D box proposals and that
it outperforms the two-stage technique consisting of succes-
sively performing state-of-the-art depth prediction and depth-
based 3D proposal generation.

Introduction

In the context of 2D scene understanding, generating class-
independent object proposals, such as bounding boxes, has
proven key to the success of modern object detectors; it
has led not only to faster runtimes but also to more accu-
rate detections (Ren et al. 2015). Reasoning in 2D, however,
only provides a limited description of the scene. A 3D in-
terpretation would be highly beneficial for many tasks, such
as autonomous navigation, robotics manipulation and Aug-
mented Reality.

In recent years, several works have attempted to provide
such a 3D interpretation by going beyond 2D bounding
boxes. In particular, several methods have been proposed
to model 3D objects with the 2D coordinates of the eight
vertices of their 3D bounding box (Dwibedi et al. 2016;
Hedau, Hoiem, and Forsyth 2010; Payet and Todorovic
2011). While this indeed better captures the shape of the
object, e.g., by better adapting to orientations not parallel
the image axes, it still does not provide a 3D interpreta-
tion; each 3D bounding box can only be recovered up to
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scale. By contrast, (Fidler, Dickinson, and Urtasun 2012;
Chen et al. 2016a) truly reason in 3D. These works, however,
have tackled the class-specific scenario in outdoor scenes,
and would thus not generalize well to more cluttered envi-
ronments, such as indoor scenes, and to arbitrary objects.

To the best of our knowledge, all the methods that con-
sider the problem of generating class-independent object
proposals (Chen et al. 2016b; Song and Xiao 2016) assume
the availability of depth information. In particular, (Song and
Xiao 2016) achieved state-of-the-art results in indoor scenes
by encoding a 3D scene with a truncated signed distance
function (TSDF) and developing a region proposal network
(RPN) based on 3D convolutions to generate proposals. In
practice, however, depth is not always available, in which
case these methods are inapplicable.

In this paper, we therefore introduce an approach to gen-
erating class-independent 3D box proposals from a single
monocular RGB image. Based on the recent progress in
monocular depth estimation (Eigen, Puhrsch, and Fergus
2014; Eigen and Fergus 2015), the most straightforward way
to doing so would be to rely on a state-of-the-art method to
predict depth, followed by the state-of-the-art depth-based
proposal generation technique of (Song and Xiao 2016).
Here, however, we show that we can significantly outper-
form this two-stage approach by developing an integrated,
fully-differentiable framework that can be trained in an end-
to-end manner.

More specifically, we first propose a differentiable TSDF
(DTSDF) module that can be appended to a depth-prediction
network and produces an approximate TSDF-based repre-
sentation. The quality of the resulting 3D representation,
however, is limited by the accuracy of the predicted depth
map and by our approximation of the TSDF, even when
training the network end-to-end. To overcome this, we there-
fore introduce a residual version of our DTSDF module,
which allows us to compensate for the depth inaccuracies
and thus generate high-quality 3D box proposals.

We demonstrate the effectiveness of our method on the
standard NYUv2 dataset. Our experiments evidence the ben-
efits of the different components of our integrated frame-
work. Furthermore, they show that our approach signif-
icantly outperforms the two-stage approach consisting of
successive depth prediction and box proposal generation.
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Related Work

Nowadays, the majority of object detection methods rely on
generating class-independent object proposals. This trend
was popularized in the 2D scenario, where diverse pro-
posal mechanisms have been developed (Uijlings et al. 2013;
Cheng et al. 2014; Pinheiro, Collobert, and Dollár 2015;
Hayder, He, and Salzmann 2016; Pont-Tuset et al. 2017),
and has proven highly beneficial for both accuracy and
runtime (Ren et al. 2015; Girshick 2015). In particular, in
the current Deep Learning era, the region proposal net-
work of (Ren et al. 2015), which shares feature computa-
tion across the different regions, has been adopted by several
approaches (Song and Xiao 2016; Dai, He, and Sun 2016;
Hayder, He, and Salzmann 2017; He et al. 2017).

With the growing popularity of 3D scene understanding,
it therefore seems natural that several works have turned to
the problem of generating 3D box proposals. To this end,
most approaches exploit the availability of depth sensors. In
this setting, the main trend consists of fitting a 3D model
to the given point cloud inside a 2D bounding box (Chen et
al. 2016b; Lin, Fidler, and Urtasun 2013; Gupta et al. 2015;
Deng and Latecki 2017), which typically leads to class-
dependent methods. By contrast, the work of (Song and Xiao
2016) directly infers 3D boxes by learning shape features in
a volumetric scene representation. While inspired by (Song
and Xiao 2016), here, we introduce an approach that gen-
erates class-independent 3D box proposals directly from a
single monocular image.

A few methods have nonetheless also attempted to reason
in 3D from monocular input (Fidler, Dickinson, and Urta-
sun 2012; Chen et al. 2016a). These works, however, focus
on the class-specific scenario, and have only tackled cases
where a small number of classes are present in the scene. As
such, they would not generalize to cluttered indoor scenes,
and, more importantly, to the problem of class-independent
object proposal generation that we tackle here.

In short, to the best of our knowledge, our approach con-
stitutes the first attempt at generating class-independent 3D
box proposals from a single monocular image. To this end,
we leverage the recent progress on monocular depth esti-
mation (Karsch, Liu, and Kang 2012; Liu, Salzmann, and
He 2014; Ladicky, Shi, and Pollefeys 2014; Eigen, Puhrsch,
and Fergus 2014; Zhuo et al. 2015; Eigen and Fergus 2015;
Liu et al. 2016; Laina et al. 2016) and develop a fully-
differentiable residual module able to generate a volumet-
ric representation of a cluttered indoor scene from an input
image.

While, in a different line of research, a few attempts have
been made to learn a mapping from 2D images and 3D ob-
ject representations (Wu et al. 2016; Girdhar et al. 2016;
Zhou et al. 2017), these methods were developed for object-
centric images, and are therefore not applicable to the com-
plex indoor scene images that we deal with in this paper.

Methodology

We aim to generate 3D object proposals from a single
monocular image. To this end, we design a multi-task deep
network that predicts a depth map, extracts a volumetric rep-

resentation of the scene and generates 3D object proposals in
the form of cuboids. The corresponding three subnetworks
are shown in Figure 1. All three of them are differentiable,
and the entire network can thus be trained in an end-to-end
fashion. In the remainder of this section, we introduce our
volumetric representation prediction network and the object
proposal subnetwork, and then discuss our overall training
strategy.

Volumetric Representation Prediction Network

To build a 3D volumetric scene representation, we first es-
timate a pixel-wise depth map from the input image and
then compute an approximate TSDF from the correspond-
ing point cloud. Below, we introduce our approach to ad-
dressing these two steps. Importantly, to be able to integrate
the resulting modules in a complete multi-task network, we
design them so that they are fully differentiable.

Depth Estimation In this work, we adopt the VGG-based
depth estimation network of (Eigen and Fergus 2015) as our
depth prediction network. In particular, we utilize the first
two scales of the network of (Eigen and Fergus 2015), which
yields an output of size 55 × 74. We then upsample the re-
sulting depth map to the full image size using bilinear inter-
polation, which can be cast as a convolution.

Differentiable TSDF Given the depth map predicted by
the depth network discussed above, we rely on a TSDF,
introduced by (Newcombe et al. 2011), as our volumetric
scene representation. In the accurate TSDF representation,
the 3D space is divided into equally-spaced voxels. Each
voxel is assigned a value encoding the distance of the voxel
center to the closest surface point, derived from the depth
map. Unfortunately, computing such an accurate TSDF is
not differentiable with respect to the input due to the use of a
nearest neighbor search procedure. To address this, and thus
be able to exploit this for end-to-end training, we propose
to make use of a differentiable, projective TSDF approxima-
tion. In particular, instead of looking for the nearest surface
point in the entire 3D space, we only perform the search
along the visual ray of each voxel; we further introduce a
soft truncation function to compute the final representation,
which makes the entire process differentiable.

More formally, we divide the 3D space into L ×H ×W
equally-spaced cells of equal volume. Let us then denote by
G ∈ R

L×H×W the 3D grid whose nodes encode the x, y,
and z coordinates of the corresponding cell centers in the 3D
world referential. Our goal now is to compute a TSDF value
for each 3D point on G based on a projective approximation.

Under a perspective camera model, the image location
q = [xc, yc]

T ∈ R
2 obtained by projection of a 3D point

p = [x, y, z]T ∈ R
3 can be expressed as

h(p) = �π(KR−1p)� , (1)

where π is the perspective projection function, that is,
π([x, y, z] = [x/z, y/z]), �� is the floor operator, and K
and R are the matrix of camera intrinsic parameters and the
camera rotation matrix, respectively. The latter only speci-
fies the tilt angle, allowing us to align the scene according
to the gravity direction. Furthermore, given a depth image
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Figure 1: Our 3D object proposal framework. Our model consists of three parts integrated in a single architecture: a depth
estimation network (DepthNet); a residual module to convert the predicted depth into a volumetric representation; a region
proposal network (RPN). The middle part, which constitutes our key contribution, consists of a differentiable TSDF (DTSDF)
encoding and of a residual-side-path network (rspNet) accounting for the predicted depth inaccuracies. These two subnetworks
take two 3D grids as input, which correspond to a voxelization of the scene 3D volume and the projection of the depth map in this
voxelization (see text for more detail). Ultimately, our model outputs the coordinates of 3D candidate boxes and corresponding
objectness scores.

D ∈ R
M×N , the 3D point p̂ = [x̂, ŷ, ẑ]T at image location

q can be obtained

p̂ = c ·D(q), c = RK−1[qT , 1]T . (2)

At each grid location p on G, the projective TSDF value can
thus be obtained by projecting p and computing the distance
between p the corresponding depth map point p̂.

More precisely, here, we consider the distances in the
three directions x, y and z separately. Let g(p, p̂) = p− p̂,
and ψ = ‖g(p, p̂)‖2 is the distance. The difference in z di-
rection can be computed as n(p̂) = [0, 0, 1](R−1p − p̂).
Then, we define the truncated signed distance functions in
x, y and z as

f(p, p̂) =

{
1μ · s(n(p̂)) if ψ/δ ≥ 1

min(g(p, p̂),1μ) · s(n(p̂)) otherwise
(3)

where 1 ∈ R
3 is a vector of ones, and min(·) computes the

element-wise minimum; δ = 0.1, μ = 0.05 and s(x) =
tanh(k · x) (with k = 10 in our experiments) truncates
the distance to a signed constant. In words, p̂ encodes the
surface points, and the sign of the distance then indicates
whether the cell falls behind the surface, that is the cell is
invisible (positive distance), or if it is visible (negative dis-
tance). We further assign zero values to the grid locations of
G whose 2D projections fall out of the image range, which
we refer to as invalid grid regions afterwards.

With this definition, the TSDF value at each location p on
G is differentiable with respect to p̂. Therefore, following
the chain rule, since the values of p, K, R, and therefore
q are fixed, the TSDF values are differentiable with respect
to the depth prediction D. This will then allow us to em-
ploy this volumetric representation in an end-to-end learning
framework.

Residual Network for Volumetric Representation The
DTSDF described above relies on the distance along the vi-
sual ray and, as mentioned before, is only an approximation
to the true TSDF; the true nearest-neighbor to a 3D point
might not be on its visual ray. We have found, however, that,
in practice, the true neighbor is usually not far away from
this approximation. Motivated by this observation, and to

further account for the inaccuracies in the estimated depth
map, we introduce a residual path to improve the DSTDF.

Specifically, the input to our residual-side-path network
(rspNet) consists of a 3D grid similar to G defined above.
However, instead of only encoding the 3D position of the
corresponding cell center at each location, we further append
to this position the coordinates of the corresponding surface
point p̂ along the visual ray. This 3D grid with 6 channels
then acts as input to an encoder-decoder network with the
following structure

input → conv3d → relu → pool3d →
→ conv3d → relu → pool3d → deconv3d →
→ relu → deconv3d → relu → output

(4)

where conv3d, deconv3d, pool3d represent convolution, de-
convolution, pooling operations on a 3D grid, respectively.
The parameters defining the layers of our rspNet are given
in Table 1. Note that all convs/deconvs here contain no bias,
so as to guarantee zero values in invalid grid regions.

Intuitively, the given input information allows the rspNet
to compute the distance between the cell center and the cor-
responding surface point as in the DTSDF. However, by per-
forming convolutions, it is also able to compensate for errors
by looking at larger regions in the reconstructed volume and
capture the necessary information for prediction.

Altogether, our approach to volumetric representation
prediction lets us effectively leverage the strengths of the ex-
plicit DTSDF computation and of the learning-based rspNet.
While the explicit computation is less flexible, it provides
with a reliable approximation of the true TSDF. By contrast,
access to limited data might make it hard to use the rspNet
on its own, but it provides more flexibility to compensate for
the DTSDF and the depth prediction mistakes. The resulting
volumetric representation is then used as input to the region
proposal network described below.

3D Object Proposal Generation

3D Object Proposal Network We follow the recent trend
in generating object proposals consisting of sharing feature
computation, thus speeding up runtime (Ren et al. 2015;
Song and Xiao 2016). In particular, since we work in 3D, we
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conv1 pool1 conv2 pool2 deconv1 deconv2
kernel [3,3,3] [2,2,2] [3,3,3] [2,2,2] [3,3,3] [3,3,3]
channels 3 3 3 3 3 3
stride 1 2 1 2 2 2

Table 1: Parameters of our residual-side-path network. The kernel size is represented in the order [width, length, height]. In the
first convolution, we convert from the original 6 channels (3D cell center + 3D nearest point position along the visual ray) to
3. In the remaining layers, we maintain the number of channels to 3 to match the volumetric representation of the DTSDF and
keep the memory requirement relatively low. For each layer, the strides are the same for all three dimensions. We do not use
any biases in our layers.

adopt the multi-scale 3D region proposal network (RPN) of
the Deep Sliding Shapes (DSS) method of (Song and Xiao
2016). This network relies on a volumetric representation
as input, and is thus well suited to be appended the frame-
work discussed above. As output, it produces another vol-
ume at a lower resolution. To each voxel of the output vol-
ume are associated J anchors (J = 19 in our work). These
anchors represent potential 3D object bounding boxes of dif-
ferent sizes and aspect ratios, and were defined according to
the statistics of the training data. The RPN then predicts a
probability for each anchor to correspond to an actual ob-
ject at each cell location. Furthermore, it also regresses a
6D vector encoding the center position and the three side
lengths of the corresponding 3D bounding box. Instead of
pooling the features for each anchor separately, all the an-
chors of each voxel share their features, but have different
classifiers/regressors.

Extended Anchors In (Song and Xiao 2016), runtime and
accuracy were improved by removing empty anchors based
on the input depth map. Here, however, we do not have
access to the ground-truth depth maps, and our depth pre-
dictions are imperfect. In practice, we found that too many
boxes were removed by this procedure. Furthermore, we
also observed that our depth prediction often essentially dif-
fered from the true one by a single scale factor. Motivated
by this, we therefore propose to enlarge the anchor pool by
scaling the depth maps.

The range of the scale factors between predicted and true
depth maps on the training set was found to be [0.8, 1.2].
We therefore scale the depth prediction with a global scale
in this range with a stride 0.05. Assuming that all resulting
scaled maps are valid ones, we only remove the anchors that
do not contain any points of the scaled depth maps. Since
this procedure can quickly lead to a huge number of an-
chors to consider, thus increasing runtime, we performed 3D
non-maximum suppression to remove anchors with a large
overlap. We further limited the number of valid anchors to
15,000 for each anchor type. Specifically, we keep all the
non-empty anchors in the original, unscaled depth maps, and
add anchors from the scaled depth maps by scoring them ac-
cording to the corresponding inverse absolute scale differ-
ence with 1, e.g., 1/|1.2− 1|.

As evidenced by our experiments, the quality of the an-
chors is important to our results; our extended anchors allow
us to obtain dense supervision in a huge 3D space during
training, and, at test time, it prevents high-scoring proposals

from not being considered because they have been removed
from the candidate pool. Nevertheless, as evidenced by our
ablation study, the extended anchors are not the only key to
the success of our approach; it rather helps boosting the ef-
fectiveness of our residual volumetric prediction module.

Multi-task Loss and Network Training

We now turn to the problem of training our model. Assum-
ing that we have access to ground-truth depth maps during
training, we propose to define a multi-task loss consisting of
two parts. The first one measures depth prediction error, and
the second encodes errors on the generated proposal them-
selves. Specifically, we define our loss as

L = λLdepth(D,D∗) +
N∑
i=1

Lrpn(pi, p
∗
i , ti, t

∗
i ) , (5)

where Ldepth is the depth loss between the predicted depth
map D and the ground-truth one D∗, and Lrpn is the object
proposal loss comparing the predicted class probability pi
and regressed box parameters ti with the ground-truth ones
p∗i and t∗i for each of the N candidate anchors.

For the depth loss, we adopt the same loss function as
in (Eigen, Puhrsch, and Fergus 2014). In practice, as evi-
denced by our experiments, we have found the depth loss to
be important, as it ensures that the input to the DTSDF and
to the rspNet remains meaningful for volumetric representa-
tion prediction.

The object proposal loss consists of two parts: a softmax
loss for classification of object vs non-object and a smooth
�1 loss on the regression variables. The 3D regression loss
is a direct extension of the one commonly used in 2D (Ren
and Sudderth 2016; Girshick 2015). Assuming that the ob-
jects lie on the ground, a 3D bounding box can be defined
by 7 parameters, [X,Y, Z, L,H,W, θ], where the first three
are the coordinates of the box center, the following three are
the side lengths in the three directions, and θ is the orienta-
tion. In this paper, we approximate the orientation of each
object by the global orientation of scene, which can be es-
timated from the predicted depth (Uijlings et al. 2013). We
are therefore left with 6 parameters to estimate.

Let us denote by [X∗, Y ∗, Z∗, L∗, H∗,W ∗],
[X,Y, Z, L,H,W ], and [Xa, Ya, Za, La, Ha,Wa] the
parameters of a ground-truth box, a predicted one, and
an anchor, respectively. To keep the magnitudes of these
different values more comparable, we make use of relative
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values defined as

tx =
(X −Xa)

Wa
, ty =

(Y − Ya)

Ha
, tz =

(Z − Za)

La

tw = log

(
W

Wa

)
, th = log

(
H

Ha

)
, tl = log

(
L

La

)

t∗x =
(X∗ −Xa)

Wa
, t∗y =

(Y ∗ − Ya)

Ha
, t∗z =

(Z∗ − Za)

La

t∗w = log

(
W ∗

Wa

)
, t∗h = log

(
H∗

Ha

)
, t∗l = log

(
L∗

La

)
,

(6)

where [t∗x, t
∗
y, t

∗
z, t

∗
w, t

∗
h, t

∗
l ] denote ground-truth values and

[tx, ty, tz, tw, th, tl] predicted ones.
Altogether, our object proposal loss can thus be written as

Lrpn(p, p
∗, t, t∗) = Lcls(p, p

∗) + γ
∑
i∈s

r(t∗i − ti)

where
Lcls(p, p

∗) = −p∗log(p)− (1− p∗)log(1− p)

and

r(x) =

{
0.5x2 |x| < 1

|x| − 0.5 otherwise

(7)

is the smooth �1 loss.
In practice, we first generate depth maps using the depth

network. We then remove the empty anchors, following the
procedure used to generate the extended anchors discussed
above, based on the depth predictions. At test time, we sim-
ilarly remove the empty boxes based on the predicted depth
maps, and further perform 3D non-maximum suppression
according to the predicted probabilities p, with a threshold
of 0.35 on the volumetric IoU. Furthermore, we only keep
the top K proposals (K = 150 in our work) among the an-
chors of each of the 19 categories.

Experiments

We evaluate our model on the NYUv2 dataset (Silberman
et al. 2012), which consists of RGB images with their
corresponding depth maps. The ground-truth 3D bounding
boxes are provided with the SUN RGB-D dataset (Song,
Lichtenberg, and Xiao 2015). NYUv2 contains 795 train-
ing images and 654 test images. In our experiments, we
use only RGB images as input, while ground-truth depth
maps are employed for supervision during training. For the
reconstruction volume, we adopt the range and resolution
used in (Song and Xiao 2016), that is, [-2.6, 2.6] meters
horizontally, [-1.5,1] meters vertically, and [0.4, 5.6] me-
ters in depth. Each cell has side lengths of 0.025 meters.
Altogether this yields a volumetric representation of size
208× 100× 208.

We implemented our model in tensorflow, and trained it
on two NVIDIA Tesla P100, each with 16GB memory. We
mini-batches containing one image each iteration. For each
batch, we sampled negative anchors in a ratio of 1.2 w.r.t.
the positive anchors, with the pos/neg labels assigned ac-
cording to the rules of (Song and Xiao 2016). We set the

initial learning rate to 0.001 and decreased it at a rate of 0.5
every 2 epochs. The final network was selected using a vali-
dation set of 50 images, which was taken out of the standard
training set. In our experiments, we trained our model for at
most 15 epochs. Training our deep network takes roughly 10
hours, and inference takes 2.72s per image on average.

Baselines

As mentioned before, this work constitutes the first attempt
to tackle the problem of generating class-independent 3D
box proposals from a single monocular image. Therefore,
we developed our own baselines by making use of the state-
of-the-art monocular depth estimation network of (Eigen
and Fergus 2015) (with the all three scales, compared to two
scales in our framework), followed by the state-of-the-art
depth-based 3D proposal generation method of (Song and
Xiao 2016). We further also designed a baseline inspired by
the effective faster R-CNN framework of (Ren et al. 2015).
In practice, we trained the baselines using mini-batched of
the same size as ours, and an initial learning rate of 0.001.
We discuss these baselines in more detail below.

Est-DSS The original DSS framework (Song and Xiao
2016) consists of a class-independent multi-scale region pro-
posal network trained on the accurate TSDF representations
of input depth maps. To work in our monocular setting, we
replace the ground-truth depth maps with those predicted by
the three scale model of (Eigen, Puhrsch, and Fergus 2014).
DSS relies on the accurate TSDF, computed from the true
nearest neighbor of each voxel. To better understand the ac-
curacy loss incurred by relying on the projective TSDF in
our model, we further developed another baseline, named
Est-DSS-Approx, where we replaced the accurate TSDF
with our approximate one within the DSS framework.

Est-Faster-RCNN Another approach consists of directly
predicting 3D bounding boxes from the 2D image. To de-
velop a baselines that works in this setting, we made use
of the state-of-the-art faster R-CNN 2D detection frame-
work of (Ren et al. 2015). More precisely, we modified this
framework to regress 3D coordinates from 2D anchors. To
nonetheless exploit depth information, we extracted HHA
features (Gupta et al. 2014) from the depth predictions.
These features, in conjunction with color images, acted as
input to train the proposal generation part of the faster R-
CNN. Specifically, we placed 12 different 2D anchors at
each node on the image grid. For each anchor, we then
regress the depth of its 3D box center, the coordinates of the
2D projection of the box center, and its height, width and
length in 3D space, relative to the anchor center and size,
similarly to Eq. 6. As in our framework, the orientation of
each box was estimated according to the global orientation
of the scene.

Evaluation Metrics

We evaluate the accuracy of 3D object proposals by calculat-
ing their recall, according to a volume overlap with ground-
truth larger than 0.25, and their average box overlap (ABO)
with the ground-truth. Note that, in NYUv2, the ground-
truth consists of 3D box parameters in the world referential
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methods bathtub bed bookshelf box chair counter desk door dresser bin lamp
Est-Faster-RCNN 33.3 84.5 59.8 9.9 82.1 84.6 82.9 4.9 76.4 45.8 34.5
Est-DSS-Approx 70.8 94.8 44.8 10.6 83.8 92.3 79.4 4.9 83.6 30.5 27.2
Est-DSS 75.0 95.5 49.4 10.6 85.3 84.6 84.4 11.8 90.9 37.3 23.6
Ours 70.8 93.5 34.5 15.6 87.4 92.3 82.9 5.9 83.6 37.3 20.0

monitor pillow nightstand sink sofa table tv toilet Recall ABO #Box
Est-Faster-RCNN 8.3 27.3 70.8 53.2 81.2 80.4 24.2 93.3 62.3 0.319 2000
Est-DSS-Approx 4.2 17.9 81.3 71.4 90.6 89.7 21.2 96.7 63.6 0.346 2000
Est-DSS 0.00 24.1 79.2 72.7 92.0 91.8 27.3 96.7 66.1 0.348 2000
Ours 25.0 48.3 81.3 85.7 89.9 89.7 33.3 93.3 69.3 0.364 2000

Table 2: Comparison of our model with the baselines on NYUv2. We show the class-wise recalls and overall recall and ABO
of the 2000 top scored 3D windows on test set. Note that our model outperforms the two-stage baselines and the faster R-CNN
one in both overall recall and ABO, thus showing the benefits of having an end-to-end learning framework.
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Figure 2: Recall as a function of the IoU threshold. Note
that our approach outperforms the two-stage baselines, or
performs on par with them, across the whole range of IoU
thresholds, while the best performing baseline varies for low
and high IoUs. This evidences the stability of our approach.

with a tilt rotation calculated from the ground-truth depth.
Since, in our monocular setting, we cannot have access to
the ground-truth tilt rotation, we estimate it using the ini-
tial depth estimates obtained from the network of (Eigen,
Puhrsch, and Fergus 2014).

Experimental Results

We now present our results on the NYUv2 dataset. In Ta-
ble 2, we first compare our complete model with the three
baselines introduced above. For all methods, we selected the
2000 3D bounding boxes with highest score to calculate the
recall and ABO. Our model significantly outperforms the
baselines in terms of both recall and ABO, thus showing
the importance of end-to-end training and the effectiveness
of our residual volumetric prediction approach at compen-
sating the errors in depth prediction and due to the TSDF
approximation. Even though we tackle the problem of gen-
erating class-independent 3D object proposals, we also re-
port the recall for each of the 19 object categories present
in the dataset. Note that our model more effectively handles
classes of small objects, such as sink, monitor and pillow,
which are typically more challenging to detect. This, we be-
lieve, demonstrates that, while generic, our end-to-end train-
ing mechanism allows us to learn effective class-specific

methods recall ABO #Box
DSS 84.9 0.461 2000
3D Selective Search 74.2 0.409 2000
Ours 69.3 0.364 2000

Table 3: Comparison to depth-based models on NYUv2.
We compare our model with methods based on ground-truth
depth. Note that the gap between our model and these depth-
based ones is relatively small, despite the fact that we rely
only on a monocular image as input.

representations automatically. A qualitative comparison of
our model with the best-performing Est-DSS baseline on a
few images is provided in Figure 3.

Note also that exploiting volumetric representations, as
done by Est-DSS, Est-DSS-Approx and our approach, seems
to be more effective than direct regression to 3D as in our
Est-Faster-RCNN baseline, which yields the least accurate
proposals. We believe that this is due to the fact that the volu-
metric representations is better suited to capture the shape of
3D objects and their distances in 3D space. Finally, by com-
paring Est-DSS-Approx and Est-DSS, we can see that, as
expected, the projective TSDF approximation yields worse
results. Note, however, that our residual framework manages
to compensate for this loss of accuracy, as better evidenced
in the ablation study below.

In Figure 2, we plot the recall as a function of the IoU
threshold for our method and the two-stage baselines. Note
that we generally outperform, or perform on par with, the
baselines on the whole range of IoU values. Note also that
the best performing baseline differs for low and high IoU
thresholds. This, we believe, further demonstrates the stabil-
ity of our model.

Comparison to Depth-based Models In Table 3, we
compare our results with those of depth-based models, i.e.,
DSS (Song and Xiao 2016) and 3D selective search (Ui-
jlings et al. 2013), whose results were obtained using the
implementation by (Song and Xiao 2016). While our model,
which relies only on an RGB image as input, yields slightly
worse results that these methods that exploit ground-truth
depth, the gap is remarkably small; e.g., we achieve only
4.9% lower recall than 3D selective search. Considering the
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Figure 3: Qualitative comparison of our model with Est-DSS. We show the proposals with highest IoU returned by our model
and by the baseline. The results of our model are shown in green, those of the baseline in dashed orange and the ground-truth
boxes in red. Note that our proposals better match the ground-truth ones.

Image Ground Truth Depth Estimation Estimated 3D Reconstruction Proposal

Figure 4: A failure example. Due to the similar appearance of the foreground (pillow) with the background (bed), the depth
cannot be predicted very accurately. Inaccurate depth estimation leads to the failure of our method as well as the baseline
method. The results of our model are shown in green, those of the baseline in dashed orange and the ground-truth boxes in red.

strong ambiguities of depth estimation from a monocular
image, we believe that this small gap shows the effective-
ness of our monocular 3D box proposal model.

Ablation Study In addition to the previous baseline com-
parison, we perform a comprehensive analysis of the impact
of the different components of our approach. In particular,
we evaluate the importance of (i) making our framework
end-to-end trainable; (ii) relying on the accurate TSDF com-
pared to the approximate one; (iii) our residual network for
volumetric prediction; (iv) our extended anchors; (v) the use
of the depth loss as intermediate supervision.

The results of this ablation study are provided in Table 4.
In short, we can see that (i) our residual volumetric predic-
tion is able to compensate for the loss in accuracy incurred
by the use of the projective TSDF; (ii) Our extended an-
chors help further boost the accuracy of our model, while
they only have little effect when used in conjunction with
the two-stage baseline; (iii) depth supervision is important
for our model, as it ensures that the input to our volumet-
ric prediction remains meaningful. In our experiments, we
set the weight of the depth loss λ to 1. We found, however,
that our results were robust to this value, as long as it is suf-
ficiently large. For example, with λ = 10, our model still
outperforms the baseline with a recall of 67.4 and an ABO
of 0.359. Interestingly, we have observed that our depth esti-

mates, while not globally more accurate than the initial ones,
better separate the foreground objects from the background,
which seems natural since we aim to generate proposals for
the foreground objects. Altogether, we believe that this ab-
lation study clearly evidences the strengths of the different
components of our approach.

Generalization of our Model To demonstrate the gen-
erality of our approach, we make use of the SUN-RGBD
dataset (Song, Lichtenberg, and Xiao 2015) to test our model
and the Est-DSS baseline. The SUN-RGBD dataset con-
sists of 5050 test images, including some from the NYUv2
dataset. For this evaluation to be more meaningful, we do
not fine-tune the models, and explicitly exclude the NYUv2
images from the test set, thus leaving us with 4395 images.
In practice, since the image size of SUN-RGBD changes, we
simply resize them all to the size of the NYUv2 images, i.e.,
[427,561]. Furthermore, to adjust the camera intrinsic ma-
trix to the new image size, we multiply the focal lengths and
the principle point by the ratio of the NYUv2 image size to
the original SUN-RGBD size of each input image.

The results of this experiment are provided in Table 5. Our
model achieves a performance similar to that on the NYUv2
dataset. Furthermore, it outperforms the baseline in both re-
call and ABO, thus showing the ability of our model to gen-
eralize to new data.
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End-to-End Trainable Acc.TSDF Residual Path Ext. Anchors Depth Loss Recall ABO
� � � � � 63.6 0.346
� � � � � 66.1 0.348
� � � � � 65.7 0.356
� � � � � 54.7 0.298
� � � � � 66.3 0.360
� � � � � 67.4 0.356
� � � � � 69.3 0.364

Table 4: Ablation study on NYUv2. We evaluate the influence of different components of our framework. Note that our residual
volumetric prediction module is able to effectively compensate for our use of an approximate TSDF representation, and can be
further improved by the use of our extended anchors, which, by contrast, have only little effect on the two-stage baseline.

methods recall ABO #Box
Est-DSS 64.1 0.328 2000
Ours 67.9 0.353 2000

Table 5: Generality study on SUN-RGBD excluding
NYUv2: We evaluate our model and a baseline model, which
are both trained on NYUv2, on a subset of SUN-RGBD ex-
cluding those from NYUv2. Here it shows that our model
remains more effective than the baseline on this data, thus
evidencing the generality of our approach.

For completeness, we also report the results of our ap-
proach on the complete SUN-RGBD test set, including the
images from NYUv2. This corresponds to a recall of 68.1%,
and an ABO of 0.354. Both of which are slightly higher than
our results on the previous SUN-RGBD subset.

Conclusion

We have introduced an end-to-end method to generate class-
independent 3D object proposals from a single monocular
image. To the best of our knowledge, this constitutes the
first attempt to work in this challenging setting for com-
plex indoor scenes. Our experiments have demonstrated that
our residual, fully-differentiable TSDF module produces an
effective volumetric representation to generate box propos-
als, thus outperforming the two-stage approach based on
the standard, non-differentiable TSDF. We have found that
depth supervision was beneficial to our model. Importantly,
however, our model does not require accurate depth on all
parts of the image. In particular, the accuracy of the back-
ground depth is unimportant since we focus on foreground
objects. In the future, we therefore plan to modify the depth
loss to focus more strongly on the foreground objects.
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