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Abstract

Single image dehazing is a challenging under-constrained
problem because of the ambiguities of unknown scene radi-
ance and transmission. Previous methods solve this problem
using various hand-designed priors or by supervised training
on synthetic hazy image pairs. In practice, however, the pre-
defined priors are easily violated and the paired image data
is unavailable for supervised training. In this work, we pro-
pose Disentangled Dehazing Network, an end-to-end model
that generates realistic haze-free images using only unpaired
supervision. Our approach alleviates the paired training con-
straint by introducing a physical-model based disentangle-
ment and reconstruction mechanism. A multi-scale adversar-
ial training is employed to generate perceptually haze-free
images. Experimental results on synthetic datasets demon-
strate our superior performance compared with the state-of-
the-art methods in terms of PSNR, SSIM and CIEDE2000.
Through training on purely natural haze-free and hazy images
from our collected HazyCity dataset, our model can generate
more perceptually appealing dehazing results.

Introduction

Images with clear visibility is desirable for most current
computer vision applications.However, images taken in out-
door scenes usually suffer from visual degradation due to
the presence of aerosols in the atmosphere. These small
particles, as the constituents of haze, attenuate and scatter
the light in the atmosphere and affect the visibility of the
image (Narasimhan and Nayar 2002). As a result, image
dehazing, especially single image dehazing, is highly de-
sirable and the problem has been extensively studied over
the past ten years (Fattal 2008; He, Sun, and Tang 2011;
Tang, Yang, and Wang 2014; Zhu, Mai, and Shao 2015;
Cai et al. 2016; Berman, Avidan, and others 2016; Li et al.
2017a).

Many of the successful approaches rely on strong priors
or assumptions to estimate the medium transmission map,
for example, the well-known Dark-Channel Prior (He, Sun,
and Tang 2011) and the more recent Non-local Color Prior
(Berman, Avidan, and others 2016). However, these priors
can be easily violated in practice, especially when the scene
is complex or contains irregular illumination. For instance,
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Figure 1: (a) Unpaired dataset with natural hazy images and
haze-free images. (b) Overall architecture of our Disentan-
gled Dehazing Network. GJ , Gt, GA indicate the genera-
tors for the scene radiance, the medium transmission and the
global atmosphere light, respectively.

the dark-channel prior does not hold for areas that are similar
to the atmospheric light. This usually leads to unsatisfied
dehazing quality for sky regions or bright objects. The non-
local color prior, on the other hand, may fail in scenes where
the airlight is significantly brighter than the scene.

Recent works propose to use convolutional neural net-
works to estimate the transmission map or even the scene
radiance directly (Cai et al. 2016; Ren et al. 2016; Li et al.
2017a). Although these methods can obtain encouraging re-
sults by virtue of the modeling power of CNN, they are re-
stricted in practical application because the model training
requires a large amount of “paired” data for supervision. To
create the image pairs for training, (Cai et al. 2016) and (Ren
et al. 2016) synthesize hazy local patches (16×16) under the
assumption that image content is independent of the locally
constant transmission within a patch. This strategy is sub-
optimal as the training process only considers very local in-
formation and loses the global correlation. (Li et al. 2017a)
synthesizes hazy images using the depth meta-data from an
indoor dataset. However, it is almost impossible to obtain
the ground-true depth information in most real-world sce-
narios. It is also arguable that using synthetic hazy images



for training can lead to perceptually unsatisfactory solutions
because the synthesized haze cannot faithfully represent the
true haze distribution in real cases.

An effective and practical dehazing model should be able
to learn the mapping from hazy images to haze-free im-
ages without using paired supervision. Moreover, the de-
hazed images should be perceptually consistent with the
haze-free images perceived as such by humans. In this pa-
per, we proposed Disentangled Dehazing Network, a novel
weakly-supervised model that satisfies the above criteria. As
shown in Figure 1, our model introduces a physical-model
based disentanglement and reconstruction mechanism: the
hazy image input is first disentangled into three hidden fac-
tors, the scene radiance, the medium transmission and the
atmosphere light, by three generator networks; these fac-
tors are then combined to reconstruct the original input
using the physical model (Eq. 1). The hidden factors are
also constrained by adversarial loss and regularizations. The
whole framework, sharing similar ideas with CycleGAN
(Scharstein et al. 2014) and the recent AIGN (Tung et al.
2017), relieves the constraint of paired training by utiliz-
ing the feedback signal from a backward/rendering process.
In contrast to their approaches, our disentanglement mecha-
nism enables us to introduce separate constraints on different
hidden factors and learn a physically valid model.

Our Disentangled Dehazing Network provides a new
viewpoint for image dehazing in realistic scenes, which we
call perceptual dehazing. Unlike previous methods that view
haze removal as an image restoration process and try to fully
recover the original scene radiance, our objective is to gener-
ate perceptually haze-free images that are visually pleasing
to humans. In fact, it is not only challenging but also un-
necessary to restore the true scene radiance in most practical
scenarios. First, images of outdoor scenes can contain het-
erogeneous atmosphere, complex scenes and irregular illu-
mination (see examples in Figure 4), which makes the esti-
mation of true medium transmission unreliable. Second, re-
moving the haze thoroughly can cause unnatural image as
the presence of haze is a cue for human to perceive depth
(He, Sun, and Tang 2011). As a result, we aims to generate
perceptually pleasing dehazing results that fit the distribu-
tion of human-perceived haze-free images.

We make the following contributions in this paper:

• We propose a novel image dehazing approach based on
Disentangled Dehazing Network, which is trained by ad-
versarial process and performs physical-model based dis-
entanglement.

• We collect a challenging dataset for image dehazing re-
search, with more than 800 natural hazy images and 1000
haze-free images of outdoor scenes.

• We evaluate perceptual image dehazing through extensive
experiments on both synthetic and real image datasets.

Related Work

Single image dehazing is a challenging while important
problem as the existence of haze dramatically degrades the
visibility of the original scenes and hinders most high-level

computer vision tasks. The success of many previous meth-
ods rely on using strong priors or assumptions. (Tan 2008)
improves the image visibility by maximizing the local con-
trast, with the observation that haze-free images must have
higher contrast. (Fattal 2008) proposes to infer the transmis-
sion by estimating the albedo of the scene, under the as-
sumption that the transmission and surface shading are lo-
cally uncorrelated. The seminal work (He, Sun, and Tang
2011) proposes the dark-channel prior which can estimate
the transmission map effectively in general cases. (Zhu, Mai,
and Shao 2015) proposes a color attenuation prior and de-
velops a linear model to estimate the scene depth using the
brightness and saturation of the image as the input. Instead
of using local priors, (Berman, Avidan, and others 2016)
proposed a non-local color prior, with the observation that
a haze-free image can be faithfully represented with only
a few hundreds of distinct colors. These image processing
methods are designed by researchers based on priors and as-
sumptions, which require no training from labeled data.

Data-driven dehazing models recently become popular
due to the success of machine learning in various vision
applications (Tang, Yang, and Wang 2014). Particularly,
neural networks have been trained to estimate the trans-
mission map from hazy input images (Cai et al. 2016;
Ren et al. 2016). In a more recent work, (Li et al. 2017a)
proposed an end-to-end network that directly output dehazed
images from hazy inputs. In contrast to our approach, these
models have to be trained in a supervised fashion and require
a large amount of paired images or depth information.

Generative adversarial networks (GANs) have become
one of the most successful methods for image generation and
manipulation since (Goodfellow et al. 2014). In GANs, two
networks are adversarially trained at the same time, where
the discriminator is updated to distinguish the real samples
and the output of the generator, and the generator is up-
dated to output fake data to fool the discriminator. Partic-
ularly, conditional adversarial networks, in which the gen-
erator is conditioned on the input images, have been applied
to several image-to-image translation tasks (Isola et al. 2017;
Ledig et al. 2017). An image can be translated into an output
by the conditional generator trained from paired samples,
such as images of a scene in day and night. When unpaired
samples are provided, cycleGAN (Zhu et al. 2017), disco-
GAN (Kim et al. 2017), dualGAN (Yi et al. 2017) and (Liu,
Breuel, and Kautz 2017) trained multiple generators and dis-
criminators together to tackle the tasks; AIGN (Tung et al.
2017) requires an implicit alignment between input and out-
put to be defined by the user. WaterGAN (Li et al. 2017b)
uses a physical model to generate synthetic underwater im-
age from in-air image. Different from previous works, we
disentangle a hazy image into hidden factors based on the
physical model, and the adversarial loss is used to regularize
the distribution of the disentangled haze-free images.

GANs have also been applied to disentangle latent fac-
tors in computer vision, such as pre-defined attributes of im-
ages. The disentangled factors are represented by an embed-
ded vector and later used as input of the generative neural
network to control the output images (Mathieu et al. 2016;
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Chen et al. 2016; Tran, Yin, and Liu 2017; Fu et al. 2017;
Donahue et al. 2017). (Shu et al. 2017) decomposes face im-
ages according to the intrinsic face properties and performs
face editing by traversing the manifold of the disentangled
latent spaces. A preliminary draft (Tung and Fragkiadaki
2016) decomposes an image into several components by re-
trieving training samples from a dataset of all the compo-
nents. In our approach, the disentanglement is derived from
the physical model for the hazy image generation process,
and the hidden factors are generated from hazy images by
neural networks. Different from (Shu et al. 2017), our ap-
proach does not rely on any external algorithm or paired data
for extra supervision, and the disentangled components are
only constrained by adversarial loss and priors.

Our Model

In this section, we first review the physical model of hazy
images. We then introduce our Disentangled Dehazing Net-
work and adversarial training in detail. The network archi-
tectures and implementation details used in our experiments
are also described.

Physical Model

In computer vision and computer graphics, the atmosphere
scattering model has been widely used as the description for
the hazy image generation process (Narasimhan and Nayar
2000; Fattal 2008; He, Sun, and Tang 2011):

I(x) = J(x)t(x) +A(1− t(x)), (1)

where I(x) is the observed hazy image, J(x) is the scene
radiance (haze-free image). t(x) is the medium transmission
map, and A is the global atmospheric light. The goal of im-
age dehazing is to recover J(x), t(x) and A from I(x).

The medium transmission map t(x) describes the por-
tion of the light that is not scattered and reaches the cam-
era. When the atmosphere is homogeneous, t(x) can be ex-
pressed as a function of the scene depth d(x) and the scat-
tering coefficient β of the atmosphere :

t(x) = exp−βd(x) . (2)

Image dehazing is an under-constrained problem if the in-
put is only a single haze image because we need to estimate
all the three components at the same time. In other words,
the presence of haze introduces ambiguities for inferring the
radiance and the depth of the scene.

Estimating the medium transmission map is known as the
key to achieving haze removal (He, Sun, and Tang 2011;
Tang, Yang, and Wang 2014; Cai et al. 2016). However, it is
very challenging to estimate the true t(x) in many realistic
outdoor scenes because of the heterogeneous atmosphere,
complex scenes and irregular illumination. In our model, we
propose to generate the haze-free image and the medium
transmission map simultaneously via disentanglement and
reconstruction, through which each estimation can benefit
from the other.

Disentangled Dehazing Network

We cast the perceptual image dehazing problem as a un-
paired image-to-image translation problem, in which im-
ages in the source domain (hazy) are mapped to the tar-
get domain (haze-free) without any paired information. The
problem is challenging because without paired supervision,
a model can learn arbitrary mapping to the target domain and
cannot guarantee to map an individual input to its desired
output. Previous works solve this problem by introducing
an extra backward generator to generate the original input
(Zhu et al. 2017; Yi et al. 2017; Kim et al. 2017). Although
these approaches can be applied to our task, we found that
they fail to tackle the ambiguities introduced by haze, i.e.,
they cannot distinguish the effect of light attenuation from
the original scene radiance. To better model the formation
of hazy images, we propose to solve the unpaired image-
to-image problem by introducing the physical-model based
disentanglement and reconstruction.

Figure 1 (b) shows the overall framework of our approach.
Given two sets of unpaired images (hazy and haze-free)
as (weak) supervision, our goal is to learn a model that
can disentangle the hazy input into hidden factors, under
the constraint of the physical model. The hidden factors
are further constrained by an adversarial training procedure
and prior-based regularizations. Our approach facilitates un-
paired training for the following reasons: 1) It enables sep-
arate constraints/priors on different disentangled factors. 2)
Different generators can be optimized jointly to achieve the
best disentanglement. 3) The reconstruction process is phys-
ically valid and provides a harder constraint on the genera-
tion procedure.

Inspired by the atmosphere scattering model, we disen-
tangle the input hazy image into three hidden factors: the
scene radiance, the transmission map and the global atmo-
sphere light. These three components are then combined us-
ing Eq. (1) to reconstruct the original hazy image. Formally,
let us denote I = {Ii}Ni=1 and J = {Jj}Mj=1 as the two sets
of training samples corresponding to hazy images and haze-
free images, respectively. Our model first performs disentan-
glement using three generators: Ĵ = GJ(I), t̂ = Gt(I) and
Â = GA(I). The three components are then composited to
reconstruct the original input: Î = Ĵ� t̂+Â�(1− t̂), where
� indicates element-wise multiplication.

Our objective function contains three terms: a reconstruc-
tion loss, an adversarial loss and a regularization loss. We
use the traditional L1 losses as the reconstruction loss to en-
courage both pixel-level consistency and less blurring (com-
pared with L2 loss):

Lrecon(GJ , Gt, GA) = EI∼I‖I − Î‖1. (3)

In order to generate both perceptually pleasing and haze-
free images, we introduce a multi-scale adversarial training
procedure for the intermediate output Ĵx. Specifically, while
the multi-scale discriminator D is trained to detect whether
an image is “real” or “fake”, the generator GJ is adversari-
ally trained to “fool” the discriminator. Same as the setting
in Generative Adversarial Networks (GANs) (Goodfellow et
al. 2014), here “real” data means the images sampled from

7487



the target domain (haze-free images) and “fake” data means
the images generated from samples of the source domain
(hazy images). The classical GAN loss can be described as:

LGAN (G,D) = EJ∼J [logD(J)] + EI∼I [log(1−D(G(I)))] .

Inspired by (Isola et al. 2017) and (Zhu et al. 2017), we
use a patch-level discriminator to distinguish the real and
fake images. Different from their approaches which choose
a compromised receptive field size (RFS) for balancing the
trade-off between the sharpness and artifacts of the result,
we proposed to use a multi-scale discriminator that com-
bines a local discriminator (small RFS) and a global discrim-
inator (large RFS). While the local discriminator focuses on
modeling high-frequency structure that is beneficial for tex-
ture/style recognition, the global discriminator can incorpo-
rate more global information and alleviate the tiling artifacts.
Our multi-scale discriminator combines the best of the two
worlds, as shown in Figure 2.

As a result, our multi-scale adversarial loss is:

Ladv(GJ , D) =
1

2
(LGAN (GJ , D

loc)+LGAN (GJ , D
glo)).

The generation of disentangled haze-free image is regu-
larized by the previous adversarial loss. For the disentan-
gled transmission map, we introduce priors as regulariza-
tion. Among the various known priors, we study the simple
while effective choice: the smoothness of the medium trans-
mission map (Tan 2008; Berman, Avidan, and others 2016).
Mathematically, we use the traditional total variation of t̂ as
the regularization loss:

Lreg(Gt) = TV (t) =
∑

i,j

|ti+1,j−ti,j |+|ti,j+1−ti,j |. (4)

Our final objective function is:

L(GJ , Gt, GA, D) = Ladv(GJ , D)

+ λLrecon(GJ , Gt, GA) + γLreg(Gt).
(5)

And we optimize the objective by

G∗J , G
∗
t , G

∗
A = arg min

GJ ,Gt,GA

max
D

L(GJ , Gt, GA, D). (6)

Recovering the Haze-free Image

With the trained model, we can disentangled a hazy image
into three corresponding components, and obtain two recov-
ered scene radiances.

The first one is directly obtain from the output of the gen-
erator GJ , which we denote as Ĵ . The second one, denoted
as Ĵ t, can be obtained using the estimated transmission map
t̂ and atmosphere light Â following the reformulation of
Equation (1):

Ĵ t =
I − Â

t̂
+ Â (7)

Following (Cai et al. 2016), we apply guided image filter-
ing (He, Sun, and Tang 2013) on the estimated transmission
map t̂ during the recovery to introduce further smoothness
shaper edge.

Figure 2: The architecture of the multi-scale discriminator.

Our disentangled generators can provide different view-
points of the dehazing process. Specifically, the generator
GJ tends to generate images with more texture details and
perceptually more haze-clear because it is trained to learn
the mapping to the haze-free images. However, the outputs
of GJ can contain undesirable artifacts due to upsampling
and unstable adversarial training, and are prone to affected
by noise in the hazy regions. The Ĵ t derived from the output
of the generator Gt, on the other, are more smooth and vi-
sually pleasing because of the use of guided image filtering.
But this can result in under-estimation of the haze level of
the image.

With these two recovered scene radiances from different
aspects, we generate our output haze-free image by blending
the two recovered images

Ĵcom = Ĵ � t̂+ Ĵ t � (1− t̂). (8)

The blending retain more details for the regions with less
haze, and ensure the smoothness within the regions with
heavier haze. Different choices of recovery are analyzed in
the ablation study. We report the results of the recovered
Ĵcom in all experiments, unless otherwise stated.

Network Architectures and Implementation Details

We adapt our generator and discriminator architectures from
those in (Zhu et al. 2017). More details on network architec-
tures and training procedures are presented in the appendix.

The generators GI and Gt employ the same network ar-
chitecture except using different numbers of filter channels.
The generator GA shares the same network with Gt until the
upsampling layer. Specifically, the output of the last ResNet
block in GA is connected to a global max-pooling layer fol-
lowed by a fully connected layer.

The multi-scale discriminator is implemented in a fully
convolution fashion and introduces minor computational
overhead compared with the original patch-level discrimi-
nator. As shown in Figure 2, we first design a K-layer dis-
criminator that has a global receptive field size at the last
layer. Then we extract the activation from one of the low-
level layers (say, the k-th layer) and map it to an output. In
our experiment, the local discriminator and global discrim-
inator has a receptive field size of 70 × 70 and 256 × 256,
respectively.
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Figure 3: Qualitative results on NYU-Depth dataset (best viewed in color). CycleGAN cannot generate the corresponding
transmission map and the result is left white.

Experiments

To verify the effectiveness of our Disentangled Dehazing
Network, we perform extensive experiments on both syn-
thetic and natural hazy image datasets. For synthetic dataset,
we quantitatively evaluate our results using the ground-truth
haze-free images. For natural hazy image dataset, we pro-
vide qualitative results to illustrate our superior performance
on generating perceptually pleasing and haze-free images.

Synthetic Dataset

We use D-HAZY dataset (Ancuti, Ancuti, and
De Vleeschouwer 2016), a public dataset built on the
Middlebury (Scharstein et al. 2014) and NYU-Depth
(Silberman et al. 2012) datasets. These two datasets provide
images of various scenes and their corresponding depth
maps, which can be used to create hazy images. Specifically,
the hazy scenes in the dataset are synthesized using the
aforementioned atmosphere scattering model (Eq. (1)). The
medium transmission is estimated based on Eq. (2) using the
depth map and the scattering coefficient β = 1. The global
atmosphere light is set to be pure white. The synthesized
hazy Middlebury and NYU-Depth datasets contain 23 and
1449 image pairs, respectively.

HazyCity Dataset

We collect a real image dataset, HazyCity dataset, for inves-
tigating the perceptual image dehazing problem in realistic
scenes. Our dataset is built on PM25 dataset (Li, Huang, and
Luo 2015), which is used for haze-level estimation in previ-
ous work. Images in our dataset are crawled from a tourist
website and are photos of various attraction sites and street
scenes in Beijing. We ask the annotators to label each im-
age as “perceptually” hazy or not. In other word, an image
is annotated as hazy if the haze can be visually perceived by
human. Each image is annotated by 3 different annotators,
and we only include the images of consistent labels from all
annotators in our dataset. Finally, the HazyCity dataset con-
tains 845 natural hazy images and 1891 haze-free images.
Figure 4 illustrates some example images in our dataset.

The HazyCity dataset differs from all previous datasets
for image dehazing studies in three aspects: 1) A large scale
real image dataset with natural hazy and haze-free images.
2) Images are taken from outdoor scenes, which is more
practical than previous datasets with mostly indoor scenes
(D-HAZY dataset). 3) The dataset is much more challenging
because natural hazy images can contain complex scenes,
heterogeneous atmosphere, irregular illumination and heavy
haze, etc. Our HazyCity dataset can be used as a new testbed
for evaluating image dehazing algorithms in practical out-
door scenes. See Figure 4 for some examples of hazy images
in the dataset.

Comparison Methods and Evaluation Metrics

We compare our proposed model with several state-of-the-
art dehazing methods. The baseline methods can be sepa-
rated in to two groups: prior-based and learning-based. For
prior-based methods, we compare with the classical Dar-
Channel Prior (DCP)(He, Sun, and Tang 2011), and the
more recent Color Attenuation Prior (CAP) (Zhu, Mai, and
Shao 2015) and Non-local Color Prior (NCP) (Berman, Avi-
dan, and others 2016). For learning-based methods, we com-
pare with two recent works DehazeNet (Cai et al. 2016)
and MSCNN (Ren et al. 2016). We also compare with Cy-
cleGAN, a general framework for unpaired image-to-image
translation using GAN. We test the baseline methods using
their released codes and train the model with the recom-
mended parameters.

These baselines are very strong and can obtain decent vi-
sual result for synthetic data. For fair and comprehensive
comparison, we use three different quantitative evaluation

Figure 4: Example hazy images in our HazyCity dataset.
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Metrics DCP CAP NCP MSCNN DehazeNet CycleGAN Ours
PSNR 10.9803 12.7844 13.0461 12.2669 12.8426 13.3879 15.5456
SSIM 0.6458 0.7095 0.6678 0.7000 0.7175 0.5223 0.7726

CIEDE2000 18.9781 16.0327 16.1845 17.4497 15.8782 17.6113 11.8414

Table 1: Average PSNR, SSIM and CIEDE2000 results on NYU-Depth dataset. Numbers in blue indicate the second best
results. Our approach consistently outperforms other methods by a large margin.

Metrics DCP CAP NCP MSCNN DehazeNet CycleGAN Ours
PSNR 12.0234 14.1601 14.1827 13.5501 13.5959 11.3037 14.9539

SSIM 0.6902 0.7621 0.7123 0.7365 0.7502 0.3367 0.7741

CIEDE2000 18.0229 14.3317 15.6075 16.1304 15.4261 26.3181 13.4826

Table 2: Average PSNR, SSIM and CIEDE2000 results on the cross-domain Middlebury dataset.

metrics: PSNR, SSIM and CIEDE2000. PSNR provides a
pixel-wise evaluation and is capable of indicating the effec-
tiveness of haze removal. On the other hand, SSIM is consis-
tent with human perception, and CIEDE2000 measures the
color difference (smaller values indicate better color preser-
vation).

Results on Synthetic Dataset

We train our model using the indoor images in NYU-Depth
database of D-HAZY dataset. Although the dataset contains
paired hazy and haze-free images, we do not use this infor-
mation to train our approach and randomly shuffle to simu-
late the unpaired supervision. We perform standard data aug-
mentation techniques including rescaling, random cropping
and normalization (Zhu et al. 2017). Baseline methods are
also tested on the resized and cropped images for fair com-
parison. To reduce the effect of randomness during training,
we train our model and CycleGAN for five times and report
the median results.

Table 1 shows the quantitative results of our model
on NYU-Depth dataset. Our model outperforms the state-
of-the-art methods consistently for all the three metrics.
(The larger values of PSNR, SSIM and the smaller value
of CIEDE2000 indicate the better dehazing and percep-
tual quality.) In particular, our model achieves a much
higher PSNR score, indicating that we can generate higher
quality images. The recent dehazing approaches (CAP,
NCP, MSCNN, DehazeNet) achieve comparable perfor-
mance with each other and outperform the classical DCP
method, which is consistent with the observation in previous
work (Li et al. 2017a). Although CycleGAN can get decent
PSNR score, it performs relatively worse in terms of SSIM
and CIEDE2000, which indicates limited visual quality.

We show the dehazing results on the NYU-Depth dataset
in Figure 3. We observe that our model can generate bet-
ter details than the baseline methods, especially in the re-
gions with heavy haze. DCP often fails in bright and heavily
hazy regions and produces unrealistically bright result since
the dark-channel prior is violated. Although CAP, MSCNN
and DehazeNet can generate visually decent outputs, they
tend to under-estimate the haze level and the outputs still
look fairly hazy. NCP, on the other hand, tends to produce
over-saturated images with obvious color difference. Cycle-

GAN fails to generate desired outputs with consistent con-
tent, even with the use of adversarial learning and backward
mapping. This is due to the ambiguity of the mapping with
the presence of haze. Our approach can alleviate this prob-
lem by physical-model based disentanglement and presents
reliable restoration of haze-free images. Overall, our model
can generate both haze-free and perceptually pleasing im-
ages.

We also show the estimated transmission maps of the ex-
ample image. Without any direct guidance of the transmis-
sion map, our model can still generate decent results compa-
rable with prior-based methods or supervised training meth-
ods. Moreover, our estimated transmission map achieves
higher contrast than that of CAP, MSCNN and DehazeNet.
This explains how we generate haze-clear images of higher
quality. Although all of these approaches tend to predict
low transmission value for white/bright region (indicating
hazy region), our approach is more robust than that of DCP
and NCP, and does not produce images with unrealistically
bright regions and sever color difference.

To evaluate the generalization performance, we apply the
model trained on NYU-depth on the cross-domain dataset,
Middlebury. Middlebury contains quite different scenes
compared with the NYU-Depth. Table 2 reports the quantita-
tive results on the Middlebury dataset and the visual results
are provided in the appendix. We observe that our model
generalize well and obtain the best performance. Notably,
our model generalize much better than CycleGAN. Our dis-
entanglement mechanism can benefit the model generaliza-
tion because it is trained to learn the underlying generation
process of hazy images.

Ablation Study

Analysis of the Multi-scale discriminator We test the
effectiveness of our proposed multi-scale discriminator by
comparing with the single local discriminator (70× 70) and
global discriminator (256× 256). Table 3 shows the quanti-
tative results. Note that the evaluation is based on the output
of generator GJ , i.e., the Ĵ , because it is directly affected by
the choice of discriminators.

The local discriminator tends to produce sharper results
and therefore achieves higher SSIM scores. On the other
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Hazy DCP             CAP           NCP           MSCNN     DehazeNet CycleGAN Ours 

(a)

(b)

(c)

(d)

DehazeNet Ours 

CycleGAN Ours 

Figure 5: Qualitative results on HazyCity dataset (best viewed in color).

Metric Local Global Multi-scale
PSNR 13.7518 15.3304 15.6440

SSIM 0.6909 0.6779 0.7432

CIEDE 15.1497 13.7075 12.3797

Table 3: Comparison between our proposed multi-scale dis-
criminator and the local / global discriminator.

hand, the global discriminator can better estimate the haze
level of the image and generate more haze-clear results, cor-
responding to higher PSNR scores. Our multi-scale discrim-
inator combine the best of the two worlds and can achieve
both sharp and haze-clear results (See Table 3).

Analysis of recovering haze-free images We show the ef-
fectiveness of blending two generated haze-free images Ĵ

and Ĵ t in Table 4.

Metric Ĵ Ĵ t Ĵcom

PSNR 15.644 15.1486 15.5456

SSIM 0.7432 0.7548 0.7726

CIEDE 12.3797 12.2036 11.8414

Table 4: Comparison of different methods for recovering the
haze-free image.

Analysis of model learning We analyze how the presence
of corresponding hazy / haze-free scenes in the training sam-
ples can effect the model training. We first randomly split the
dataset into two halves (split 1 and 2). We use different com-
binations of the images for model training, and then test the
model on the hazy images in split 2. The different settings
and corresponding results are shown in Table 5.

Our results show that the best dehazing results can be ob-
tain when both corresponding hazy and haze-free scenes are
used for training, even though without paired supervision.
However, other settings can still achieve comparable perfor-
mance. This implies that it is not necessary to have paired

Setting Hazy Haze-free PSNR SSIM CIEDE
1 Split 2 Split 2 15.2269 0.7510 12.1974
2 Split 1 Split 2 14.8033 0.7246 13.0321
3 Split 2 Split 1 14.7089 0.7466 13.0126
4 Split 1 Split 1 14.7460 0.7368 12.9533

Table 5: Different settings for model training. All settings
are tested on hazy images in split 2.

hazy and haze-free scenes during training (see setting 2 and
3). And our model has decent generalization performance
even when no corresponding scenes presented in training
data (see setting 4).

Results on HazyCity Dataset

We evaluate our Disentangled Dehazing Network on the real
image dataset. Figure 5 shows the visual results of our model
and the comparison with other dehazing algorithms.

These hazy examples, though very common in outdoor
scenes, turn out to be very challenging for most of current
dehazing algorithms. Most of the prior-based approaches
fail to generate visually pleasing results because the pri-
ors and assumptions used in their algorithms are easily vi-
olated. The data-driven methods (MSCNN, DehazeNet and
our model) tend to be more robust without the limitation
of the haze-relevant priors or heuristic cues. Comparing
with DehazeNet, our model can generate more haze-clear
and vivid results (see the result in row (c)). Moreover, De-
hazeNet may misestimate the transmission on some haze-
clear regions and generate undesirably dark results (see the
results in row (a) and (d)). CycleGAN can generate haze-
free style images, thanks to the power of adversarial training.
However, it is not faithful to the original scene radiance and
fails to retain content details. Although our model cannot
generate fully haze-free images, it provides a practical ap-
proach to enhance the visibility of hazy images, using only
unpaired data.
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Conclusion
In this paper, we propose Disentangled Dehazing Network, a
novel image dehazing model that learns to perform physical-
model based disentanglement by adversarial training. The
model can be trained using only unpaired supervision and
is able to generate perceptually appealing dehazing results.
Extensive experiments on both synthetic and real image
datasets verify the effectiveness and generalization ability
of our approach.

Although we focus on image dehazing in this paper, the
proposed method can be generalized to many other applica-
tions where the layered image models (Wang and Adelson
1994; Yan et al. 2016) can be applied, such as image de-
raining and image matting. We intend to investigate more
general applications of our disentangled network in the fu-
ture.
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