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Abstract

Human parsing has been extensively studied recently (Yam-
aguchi et al. 2012; Xia et al. 2017) due to its wide applica-
tions in many important scenarios. Mainstream fashion pars-
ing models (i.e., parsers) focus on parsing the high-resolution
and clean images. However, directly applying the parsers
trained on benchmarks of high-quality samples to a partic-
ular application scenario in the wild, e.g., a canteen, airport
or workplace, often gives non-satisfactory performance due
to domain shift. In this paper, we explore a new and challeng-
ing cross-domain human parsing problem: taking the bench-
mark dataset with extensive pixel-wise labeling as the source
domain, how to obtain a satisfactory parser on a new tar-
get domain without requiring any additional manual label-
ing? To this end, we propose a novel and efficient cross-
domain human parsing model to bridge the cross-domain dif-
ferences in terms of visual appearance and environment con-
ditions and fully exploit commonalities across domains. Our
proposed model explicitly learns a feature compensation net-
work, which is specialized for mitigating the cross-domain
differences. A discriminative feature adversarial network is
introduced to supervise the feature compensation to effec-
tively reduces the discrepancy between feature distributions
of two domains. Besides, our proposed model also introduces
a structured label adversarial network to guide the parsing
results of the target domain to follow the high-order rela-
tionships of the structured labels shared across domains. The
proposed framework is end-to-end trainable, practical and
scalable in real applications. Extensive experiments are con-
ducted where LIP dataset is the source domain and 4 differ-
ent datasets including surveillance videos, movies and run-
way shows without any annotations, are evaluated as target
domains. The results consistently confirm data efficiency and
performance advantages of the proposed method for the chal-
lenging cross-domain human parsing problem.

Introduction

Recently human parsing (Liu et al. 2015) has been receiving
increasing attention owning to its wide applications, such
as person re-identification (Zhao, Ouyang, and Wang 2014),
people search (Li et al. 2017), fashion synthesis (Zhu et al.
).

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Cross-domain human parsing: the upper panel is
the source domain with a large amount of training data, e.g.,
the LIP dataset; the lower panel shows the target domain,
e.g, canteen and road, without any manual labeling.

Existing human parsing algorithms can be divided into
following two categories. The first one is constrained hu-
man parsing. More specifically, the clean images of well-
posed persons are collected from some fashion sharing web-
sites, e.g., Chictopia.com, for training and testing. Represen-
tative datasets include Fashionista (Yamaguchi et al. 2012)
with 685 images, Colorful-Fashion dataset (Liu et al. 2014)
with 2, 682 images and ATR dataset (Liang et al. 2015a)
with 7, 700 dataset. Each image in these datasets con-
tains only one person, with relatively simple poses (mostly
standing), against relatively clean backgrounds. The human
parsers trained in such strictly constrained scenario often fail
when applied to images captured under the real-life, more
complicated environments. The second category is uncon-
strained human parsing. Representative datasets include
Pascal human part dataset (Chen et al. 2014b) with 3, 533
images and LIP dataset (Gong et al. 2017) with 50, 462 im-
ages. The images in these dataset present humans with vary-
ing clothing appearances, strong articulation, partial (self-)
occlusions, truncation at image borders, diverse viewpoints
and background clutters. Although they are closer to real en-
vironments than the constrained datasets, when applying the
human parser trained on these unconstrained datasets to a
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real application scenario, such as shop, airport, the perfor-
mance is still worse than the parser trained on that particular
scenario even with much less training samples, due to do-
main shift on visual features.

In this paper, we explore a new cross-domain hu-
man parsing problem: taking the unconstrained benchmark
dataset with rich pixel-wise labeling as the source domain,
how to obtain a satisfactory parser for a totally different
target domain without any additional manual labeling? As
shown in Figure 1, the source domain (shown in the upper
panel of Figure 1) is a set of labeled data. The target domain
training set (shown in the lower panel of Figure 1) is as a
set of images without any annotations. We believe investi-
gation on this challenging problem will push human parsing
models toward more practical applications.

From Figure 1, we observe the following differences and
commonality across two domains, e.g., the source domain
and the first target domain, canteen. On the one hand, they
have very different illumination, view points, image scale,
resolution and degree of motion blur etc. For example, the
lighting condition in the canteen scenario is much darker
than the source domain. On the other hand, the persons to
parse from both domains share the intrinsic commonality
such as the high-order relationships among labels (reflect-
ing human body structure) are similar. For example, in both
domains, the arms are below the head, but above the legs.
Therefore, the cross-domain human parsing problem can
be solved by minimizing the differences of the features and
maximizing the commonality of the structured labels.

A typical semantic segmentation network (Long, Shel-
hamer, and Darrell 2015; Chen et al. 2014a) is composed
of a feature extractor and a pixel-wise labeler. In this work,
we propose to introduce a new and learnable feature com-
pensation network that transforms the features from differ-
ent domains to a common space where the cross-domain
difference can be effectively alleviated. In this way, the
pixel-wise labeler can be readily applied to perform pars-
ing on the compensated features. The feature compensation
network is trained under the joint supervision from a fea-
ture adversarial network and a structured label adversarial
network. More specifically, the feature adversarial network
serves as a supervisor and provides guidance on the feature
compensation learning like the discriminator of the Genera-
tive Adversarial Network (GANs) (Goodfellow et al. 2014;
Radford, Metz, and Chintala 2015). It is trained to differen-
tiate target and compensated source feature representations.
Similarly, the structured label adversarial network differenti-
ates the groundtruth structural labels and the predicted target
domain labels. Supervised by these two level information,
the cross-domain shift issues can be effectively addressed.
We evaluate our approach using LIP (Gong et al. 2017) as
source domain and 4 datasets as target domains. Extensive
experiments demonstrate the effectiveness of our method on
all domain shifts adaptation tasks.

The contributions of the paper can be summarized as fol-
lowing. Firstly, we are the first to explore the cross-domain
human parsing problem. Since no manual labeling in the
target domain is needed, it is very practical. Secondly, we
propose a cross-domain human parsing framework with the

novel feature adaptation and structured label adaptation net-
work. It is the first cross-domain work to consider both fea-
ture invariance and label structure regularization. Thirdly,
we will release the source code of our implementation to
the academic to facilitate future studies.

Related Work

Human parsing and cross-domain feature transformation
have been studied for decades. However, they generally de-
velop independently. There are few works consider solving
the cross-domain human parsing by considering these direc-
tions jointly. In this section, we briefly review recent tech-
niques on human parsing as well as feature adaption.

Human parsing: Yamaguchi et al. (Yamaguchi, Kiapour,
and Berg 2013) tackle the clothing parsing problem us-
ing a retrieval based approach. Simo-Serra et al. (Simo-
Serra et al. 2014) propose a Conditional Random Field
(CRF) model that is able to leverage many different im-
age features. Luo et al. (Luo, Wang, and Tang 2013) pro-
pose a Deep Decompositional Network for parsing pedes-
trian images into semantic regions. Liang et al. (Liang et
al. 2015b) propose a Contextualized Convolutional Neural
Network to tackle the problem and achieve very impress-
ing results. Xia et al. (Xia et al. 2015) propose the “Auto-
Zoom Net” for human paring. Wei et al. (Wei et al. 2016;
2017) propose several weakly supervised parsing methods
to reduce the human labeling burden. Existing human pars-
ing methods work well in the benchmark datasets. However,
when applied in the new application scenarios, the perfor-
mances are unsatisfactory. The cross-domain human parsing
problem becomes a significant problem for making the tech-
nology practical.

Feature Adaptation: There have been extensive prior
works on domain transfer learning (Gretton et al. 2009).
Recent works have focused on transferring deep neural net-
work representations from a labeled source dataset to a tar-
get domain where labeled data is sparse. In the case of un-
labeled target domains (the focus of this paper) the main
strategy has been to guide feature learning by minimizing
the differences between the source and target feature distri-
butions (Ganin and Lempitsky 2015; Liu and Tuzel 2016;
Long et al. 2015). Different from existing feature adapta-
tion methods, we explicitly consider the cross-domain dif-
ferences via a feature compensation network.

Structured Label Adaptation: There are few works to
consider the label structure adaptation during domain adap-
tion. Some pioneer pose estimation works take the geometric
constraints of human joints connectivity into consideration.
For example, Chen et al. (Chen et al. 2017) propose Ad-
versarial PoseNet, which is a structure-aware convolutional
network to implicitly take such priors into account during
training of the deep network. Chou et al. (Chou, Chien, and
Chen 2017) employ GANs as pose estimator, which enables
learn plausible human body configurations Our proposed
cross-domain human parsing method differs from existing
domain adaptation methods in that we consider both feature
and structured label adaption simultaneously.
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Figure 2: The cross-domain parsing model. It contains a feature adaptation component to minimize the feature differences be-
tween two domains, and a structured label adaptation component to maximize the label map commonalities across the domains.

Proposed Cross-domain Adaptation Model

Suppose the source domain images and labels are denoted as
Sx and Sy respectively. The target domain images are repre-
sented as Tx. Typical human parsing models are composed
of a feature extractor E (·) and a pixel-wise labeler L (·).
However, the parsing model trained on the source domain
does not perform well in the target domain in presence of
significant domain shift.

Our proposed cross-domain adaptation model to address
this issue is shown in Figure 2. It includes a novel fea-
ture compensation component supervised by two compo-
nents, namely adversarial feature adaptation and adversarial
structured label adaptation components. The feature adapta-
tion component aims to minimize the feature differences be-
tween different domains, while the structured label adapta-
tion is used to maximize the label map commonalities across
the domains. Therefore, the whole model introduces three
novel components (shown in purple rectangular) on top of
conventional human parsing models: feature compensation
network C (·), feature adversarial network Af (·) and struc-
tured label adversarial network Al (·) to address the cross-
domain human parsing problem. Next, we will introduce the
two adversarial learning components and explain how they
help feature compensation to mitigate the domain difference.

Adversarial Feature Adaptation

The feature compensation network and feature adversarial
network collaboratively contribute to the feature adaptation.
C (·) maps the feature representation of the source domain
toward the target domain under the supervision of Af (·).
Alternatively updating them gradually narrows the cross-
domain feature differences.

The feature compensation network, as shown in Figure 2,
takes as input the extracted features E1(Sx) from source do-
main, where E1 (·) is a part of the feature extractor E (·).
The output C (E1 (Sx)) is the feature differences (shift) be-
tween source and target domains. E (·) is composed of 5

convolutional layers of VGG-16 net (Simonyan and Zisser-
man 2014), from conv1 till pool5 in VGG-16.The first sev-
eral layers (from conv1 till pool1) forms E1 (·). The struc-
ture of the feature compensation network is a ResNet-like
(He et al. 2016) network with a 7×7 convolution filters
and then 6 residual blocks with the identical layout con-
sisting of two 3×3 convolution filters followed by batch-
normalization layer and ReLU activation layer. Every three
blocks follows a max pool layer and a 3×3 convolution fil-
ter to reduce feature maps’ sizes. The result of the feature
compensation network is pixel-wisely added to that of the
feature extractor to produce the compensated source domain
feature E (Sx) + C (E1 (Sx)).

The feature adversarial network Af (·) is introduced to
guide the cross-domain feature adaptation. Different from
traditional adversarial learning models (e.g., vanilla GAN
(Goodfellow et al. 2014)) that performs judgment over raw
images, our proposed feature adversarial network is defined
upon the high-level feature space (pool5) which incorporates
essential feature information for human parsing. It can accel-
erate the training and inference. The architecture of Af (·) is
composed of the same fc6-fc7 layers of the Atrous Spatial
Pyramid Pooling (ASPP) scheme in DeepLab (Chen et al.
2016). Then a convolution layer with 3×3 convolution filters
is appended to create a 1-channel probability map, which is
used to calculate the pixel-wise least square feature adver-
sarial loss, like the local LSGANs (Shrivastava et al. 2016).

The optimization of Af (·) and C (·) are iterative. More
specifically, the objective for updating Af (·) is:

min
Af

EAf = 1
2
ETx∼ptarget(Tx)

[
(Af (E (Tx))− 1)2

]

+ 1
2
ESx∼psource(Sx)

⎡
⎣
⎛
⎝Af

⎛
⎝E (Sx)+C (E1 (Sx))︸ ︷︷ ︸

compensated feature

⎞
⎠
⎞
⎠

2⎤
⎦ ,

(1)
where 1 is an all-one tensor. The feature adversarial net-
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work adopts the least squares loss function, regressing the
feature of the target domain E (Tx) to 1 while regressing
the features of the compensated source domain E (Sx) +
C (E1 (Sx)) to 0. It distinguishes the target feature and the
compensated source domain feature, while the feature com-
pensation network tries to transform them into indistinguish-
able ones.

The learning target of the feature compensation network is
to mitigate the difference between source and target features.
It is trained by optimizing the following objective function:

min
C

Ec =

1
2ESx∼psource(Sx)

⎡
⎣
⎛
⎝Af

⎛
⎝E (Sx)+C (E1 (Sx))︸ ︷︷ ︸

compensated feature

⎞
⎠− 1

⎞
⎠

2⎤
⎦ .

(2)

The target of C (·) is to transform the source domain fea-
tures to the one similar to target domain by trying to confuse
Af (·). Or more concretely, the C (·) tries to generate fea-
tures that persuade the Af (·) to predict the feature is from
target domain (output binary prediction of 1). It implicitly
maps the source domain features toward the target domain
by encoding lighting conditions, environment factors. By it-
eratively boosting the abilities of Af (·) and C (·) through
alternative training, the gap between the two domains are
gradually narrowed down.

Algorithm 1: Training details of the integrated
cross-domain human parsing framework.

Input: Source domain images Sx; source domain
labels Sy; target domain images Tx; feature
extractor E; feature compensation network
C; feature adversarial network Af ; structured
label adversarial network Al; pixel-wise
labeler L; number of training iterations N ; a
constant KC .

1 for t = 1, · · · , N do

2 sample {Si
x}, {Si

y}, {T i
x}, i = 1, · · · , n.

3 update E, L by minimizing P(1)
E,L.

4 update C by minimizing Equation (2).
5 update Af by minimizing Equation (1).
6 if mod(t,KC) == 0 then
7 update E, L by minimizing Equation (4).
8 update Al by minimizing Equation (3).
9 end

10 update E, L by minimizing P(2)
E,L.

11 end

Adversarial Structured Label Adaptation

Only feature compensation cannot fully utilize the valuable
information about human body structure and leads to sub-
optimal parsing performance. Therefore, we also propose a
structured label adversarial network that learns to capture
the commonalities of parsing labels from different domains.
Such information is learnable from the source domain data

because of the following reasons. Firstly, the labels have
very strong spatial priors. For example, in daily-life scenar-
ios, the head always lies on the top, while the shoes appear
in the bottom in most cases. Moreover, relative positions be-
tween the labels are consistent across domains. For example,
the arms lie on both sides of the body, while the head is at
the top of the body. Finally, the part shapes of certain la-
bels are basically similar on both domains. For example, the
faces are usually round or oval while the legs are often long
striped. The pixel-wise labeler and the structured label ad-
versarial network collaboratively adapt the structured label
prediction.

The pixel-wise labeler is composed of the fc6, fc7 and
fc8 layers of DeepLab (Chen et al. 2016), which is a fully
convolutional variant of the VGG-16 net (Simonyan and Zis-
serman 2014) by modifying the atrous (dilated) convolutions
to increase the field-of-view. Depending on the properties of
the input, two losses are defined upon the network.

1 P(1)
E,L: The pixel-wise cross entropy loss defined upon the

source domain images E (Sx) and Sy .

2 P(2)
E,L: The pixel-wise cross entropy loss defined

upon the compensated source domain features
E (Sx) + C (E1 (Sx)) and Sy .

The structured label adversarial network is used to distill
the high-order relationships of the labels from the source do-
main groundtruth pixel-wise labels Sy and transfer to guide
parsing target domain images. The architecture of Al (·) is
as follows. LeakyReLU activations and batch normalization
are used for all layers except the output. All layers contain
stride = 2 convolution filter except the last layer, which just
contains one stride = 1 convolution filter to produce the con-
fidence map. All convolution filter used in the network is
5×5 convolution filter.

The optimization is conducted jointly through a minimax
scheme that alternates between optimizing the parsing net-
work and the adversarial network. Al (·) takes either the
ground truth label or the prediction parsing result, and out-
put the probability estimate of the input is the ground truth
(with training target 1) or the segmentation network predic-
tion (with training target 0). The learning target is:

min
Al

EAl
= 1

2ESy∼psource(Sy)[(Al (Sy)− 1)]
2

+ 1
2ETx∼ptarget(Tx)

[
(Al (L (E (Tx))))

2
]
.

(3)

The Al can help refine the feature extractor and pixel-wise
labeler via:

min
E,L

EE,L =
1

2
ETx∼ptarget(Tx)

[
(Al (L (E (Tx))− 1))

2
]
.

(4)
Both E (·) and L (·) collaboratively confuse Af to produce
the output 1, which means that the parsing results are drawn
from the ground truth labels.

Model Learning and Inference

Training details of the integrated cross-domain human pars-
ing framework are summarized in Algorithm 1. Generally
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Table 1: From LIP to Indoor dataset. (%).
Methods Avg. acc Fg. acc Avg. pre Avg. rec Avg. F1

Target Only 89.50 74.53 60.07 59.55 59.75
Source Only 86.84 68.87 51.12 50.97 49.70

DANN 88.04 71.74 52.23 50.73 50.50
Feat. Adapt 88.16 72.56 53.63 52.23 51.59
Lab. Adapt 88.14 72.82 53.21 51.54 50.95

Feat. + Lab. Adapt 87.98 73.86 50.84 54.49 51.73

Table 2: From LIP to Daily Video dataset. (%).
Methods Avg. acc Fg. acc Avg. pre Avg. rec Avg. F1

Target Only 85.96 62.64 58.63 61.07 59.73
Source Only 87.11 63.47 62.05 63.93 62.41

DANN 87.56 63.20 64.28 62.73 62.84
Feat. Adapt 87.64 64.83 63.95 64.25 63.40
Lab. Adapt 87.52 66.53 62.64 65.62 63.62

Feat. + Lab. Adapt 87.88 65.87 64.08 65.97 64.36

Table 3: From LIP to PridA dataset. (%).
Methods Avg. acc Fg. acc Avg. pre Avg. rec Avg. F1

Target Only 89.90 81.44 81.38 82.96 82.12
Source Only 86.10 78.39 72.54 80.60 76.00

DANN 86.17 81.99 73.51 82.18 76.99
Feat. Adapt 86.63 81.51 73.41 82.88 77.39
Lab. Adapt 87.01 79.55 73.74 81.81 77.14

Feat. + Lab. Adapt 87.24 80.81 74.76 82.32 77.92

speaking, all the model parameters are alternatively updated.
Note that before every update of Al, the network E, L, C
and Af are updated for 5 times. Experiments show that the
different updating scheduling between Al and the remaining
network facilitate the model convergence.

During inference, the parsing label of the test sample is
obtained by L (E (Sx)). Note that the feature compensation
network, tow adversarial networks are not involved in the
inference stage. Therefore, the complexity of our algorithm
is the same with conventional human parsing method.

Discussions

In terms of the architecture of the adversarial networks,
we originally tried DCGANs (Radford, Metz, and Chintala
2015). However, we found it difficult to optimize (issue of
convergence) and performs not so well. Therefore, we bor-
row the architecture Least Squares Generative Adversarial
Networks (LSGANs) (Mao et al. 2016) to build our ad-
versarial learning networks, which adopts least squares loss
function for the discriminator. It performs more stable dur-
ing learning. For the feature adversarial network, the adver-
sarial loss is defined pixel-wisely on the 2-dim feature maps.
The local LSGANs structure (Shrivastava et al. 2016) can
hence the capacity of the network. The situation is similar
for structured label adversarial network.

Experiments

We conduct extensive experiments to evaluate performance
of our model for 4 cross-domain human parsing scenarios.

Table 4: From LIP to PridB dataset. (%).
Methods Avg. acc Fg. acc Avg. pre Avg. rec Avg. F1

Target Only 88.50 79.71 79.83 82.28 81.00
Source Only 84.46 80.01 72.85 80.01 75.63

DANN 83.91 83.06 71.55 82.83 75.83
Feat. Adapt 85.63 82.30 74.47 81.69 77.28
Lab. Adapt 84.62 80.54 73.13 80.42 75.89

Feat. + Lab. Adapt 86.26 82.39 75.20 81.62 77.89

Experimental Setting

Source Domain : We use LIP dataset (Gong et al. 2017) as
the source domain that contains more than 50, 000 images
with careful pixel-wise annotations of 19 semantic human
parts. These images are collected from real-world scenarios
and the persons present challenging poses and views, heav-
ily occlusions, various appearances and low-resolutions. The
original 19 labels are merged to 12 labels or 4 labels by dis-
carding or combining to be consistent with target domains.

Target Domain: The following four target domains are
investigated in this paper. Some example images from these
target domains are shown in Figure 3.

Indoor dataset (Liu et al. 2016) contains 1, 900 labeled
images with 12 semantic human part labels and 15, 436 un-
labeled images. The images are captured in the canteen by
surveillance cameras and have dim lights.

Daily Video dataset is a newly collected dataset, contain-
ing 1, 584 labeled images with 12 semantic human part la-
bels and 19, 964 unlabeled images. These images are col-
lected from a variety of scenes including shop, road, etc.

PridA and PridB datasets are selected from camera view
A and camera view B of Person Re-ID 2011 Dataset (Roth et
al. 2014). Person Re-ID 2011 Dataset consists of images ex-
tracted from multiple person trajectories recorded from two
different, static surveillance cameras.

Baseline & Evaluation We compare the proposed
method is compared with following baseline methods.
Target Only: Since all of our target domains have pixel-
level annotations, we train and test the parsing model di-
rectly on the target domains. We take the results, derived
from accessing the full supervision, as performance upper
bound for the cross-domain parsing models. In the follow-
ing experiments, the basic model is the same as our feature
extraction network and label predicting network.
Source Only: We apply the model trained on the source do-
main directly to the target domain, without any fine-tuning
on the target domain datasets. It is a valid performance lower
bound of the cross-domain methods.
DANN: There are a few works investigating cross-domain
learning problems following the adversarial learning strat-
egy. Here, we take the most competitive one proposed in
(Ganin et al. 2016). It resolves the cross-domain problems
on classifications. DANN uses an adversary network to
make the features extracted from the source domain and tar-
get domains undistinguishable. The feature extraction net-
work are shared for images from both domains. We adapt
this method for the human parsing problem.

For ablation studies, we consider three variants of our
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Table 5: F-1 Scores of each category from LIP to Indoor. (%).

Methods bg face hair U-
clothes

L-arm R-
arm

pants L-
leg

R-leg dress L-shoe R-
shoe

Target Only 95.05 66.46 77.30 81.35 50.79 50.29 80.95 38.28 39.342 63.15 37.285 36.68
Source Only 94.17 58.89 59.10 77.51 43.35 43.39 75.06 35.16 32.53 26.55 24.11 26.54
DANN 94.48 61.38 65.26 78.41 42.01 41.74 78.83 32.84 25.53 35.56 23.76 26.19
Feat. Adapt 94.53 58.92 62.99 78.27 41.14 40.11 79.42 41.49 22.90 45.15 26.53 27.69

Lab. Adapt 94.48 57.71 63.32 78.60 41.20 41.22 79.06 38.99 22.64 45.52 25.90 22.70
Feat. + Lab. Adapt 94.49 56.73 67.86 78.81 42.79 42.64 78.97 36.25 22.86 47.00 25.32 27.00

Table 6: F-1 Scores of each category from LIP to Daily Video dataset. (%).

Methods bg face hair U-
clothes

L-arm R-
arm

pants L-
leg

R-leg dress L-shoe R-
shoe

Target Only 94.50 69.06 57.37 68.16 46.33 42.37 65.01 59.97 60.35 67.06 41.85 44.72
Source Only 95.15 70.28 59.54 69.91 55.25 50.72 72.95 61.52 61.82 60.32 45.55 45.88
DANN 95.18 70.98 58.87 71.13 54.73 50.64 73.23 61.84 61.16 64.16 46.55 45.61
Feat. Adapt 95.35 72.13 55.99 73.01 56.55 52.38 73.08 60.60 62.91 61.72 48.77 48.24
Lab. Adapt 95.37 70.99 59.66 72.18 55.94 52.33 72.76 62.68 63.60 63.08 46.51 48.31
Feat. + Lab. Adapt 95.38 70.88 57.11 73.04 57.05 53.92 73.34 64.80 64.73 64.80 48.34 48.97

Table 7: F-1 Scores of each category from LIP to PridA
dataset. (%).

Methods bg head U-body L-body
Target Only 93.90 76.63 81.83 76.11
Source Only 92.06 69.05 74.49 68.38
DANN 92.01 71.49 75.65 68.80
Feat. Adapt 92.28 71.61 76.71 68.96
Lab. Adapt 92.78 70.24 76.11 69.43
Feat. + Lab. Adapt 92.83 72.01 76.72 70.14

Table 8: F-1 Scores of each category from LIP to PridB
dataset. (%).

Methods bg head U-body L-body
Target Only 92.88 77.23 80.38 73.51
Source Only 90.75 71.79 74.56 65.41
DANN 90.16 72.73 74.79 65.66
Feat. Adapt 91.30 72.59 76.95 68.29
Lab. Adapt 90.88 71.92 74.69 66.07
Feat. + Lab. Adapt 91.59 72.71 78.27 68.99

method, to evaluate the contribution of each sub-network.
Feat. Adapt: Our method with the Feature Adversarial net-
work alone. Lab. Adapt: Our method with the Structured
Label Adversarial network alone. Feat. + Lab. Adapt: Our
method with both Feature Adversarial network and Struc-
tured Adversarial network.

We adopt five popular evaluation metrics, i.e., accuracy,
foreground accuracy, average precision, average recall, and
average F-1 scores over pixels (Yamaguchi, Kiapour, and
Berg 2013). All these scores are obtained on the testing sets
of the target domains. The annotations of target domains are
only used in the “Target Only” method.

Implementation details: The feature extractor and the

pixel-wise labeler use the DeepLab model, with pre-trained
models on PASCAL VOC. The other networks are initial-
ized with “Normal” distribution.

During training of the feature adversarial adaption com-
ponent, “Adam” optimizer is used with β1 = 0.5 and β2 =
0.999. The learning rate is 1e-5. When training the struc-
tured label adaptation component, we use “Adam” optimizer
with β1 = 0.5, and β2 = 0.999, while the learning rate is 1e-
8. The remaining networks are optimized via “SGD” opti-
mizer with momentum of 0.9, learning rate 1e-8 and weight
decay of 0.0005. The whole framework is trained on Py-
Torch with a mini-batch size of 10. The input image size is
241 × 121. The experiments are done on a single NVIDIA
GeForce GTX TITAN X GPU with 12GB memory. The con-
stant KC is 5 in our experiment.

Quantitative Results

Table 1 to 4 show the quantitative comparison of the pro-
posed method with baseline methods. The best scores except
those performed by “Target Only” (upper bound) are shown
in black bold.

From these results, we can observe that the “Feat. + Lab.
Adapt” method always outperforms about 1% ∼ 2% than
the method “Source Only” and “DANN” in the value “Avg.
F-1”, which verifies the effectiveness of the proposed cross-
domain method. Note that, the “Avg. F-1” score of “Feat. +
Lab. Adapt” is even higher than those of “Target Only” on
the Daily Video dataset. We believe the reason is that the
number of images in the training set is quite limited in this
dataset and our proposed model is effective at transferring
useful knowledge to address the sample-insufficiency issue.
Besides, “Feat. Adapt” performs better than “Lab. Adapt” on
the dataset Indoor, PridA, and PridB. This is from the fact
that the features output by the “pool5” layer contain more
sufficient characteristics, so the adversary network on these
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Figure 3: Qualitative Results on 4 target domains. “GT” stands for the groundtruth labels.

features has more influence on the whole performance.
The detailed “F-1” scores of each category are shown in

Table 5 ∼ 8, which verify the effects of our method.

Qualitative Results

Some qualitative comparisons on the four target domains are
shown in Figure 3.

For the dataset Indoor, back-view persons appear more
frequently, and the illuminations are poor. Therefore, the
predictions of left and right arms/shoes are often incorrect,
and the hairs may be mis-predicted as backgrounds as well.
For the persons in the 1st and 3rd rows of the dataset Indoor,
the left and right arms are confused by “Source Only”. The
DANN performs slightly better, but our model is able to pre-
dict the left and right arms correctly. The hair of the second
person is missed in both the “Source Only” and “DANN”
methods, due to the dim lights of the image. The dress of the
4th person looks smaller because the camera is much higher
than the person. So “Source Only” and “DANN” methods
wrongly predict them as upper clothes.

For the dataset Daily Video, cameras are put at general po-
sitions but the poses of persons are more challenging. Peo-
ple usually appear in frontal view, but they are often mov-

ing fast, e.g. the 2nd person, or in nonuniform illumina-
tions, e.g. 3th and 4th persons. In these cases, the proposed
model performs better, benefiting from the structure adver-
sary network. Our method also performs better in predicting
the classes of clothes, e.g. the 1st person.

The resolution of the dataset PridA and PridB are very
low. As shown in Figure 3, our model and its variants also
win in predicting details of the persons.

Conclusion

In this paper, we explored a new cross-domain human pars-
ing problem: making use of the benchmark dataset with ex-
tensive labeling, how to build a human parsing for a new
scenario without additional labels. To this end, an adversar-
ial feature and structured label adaptation method were de-
veloped to learn to minimize the cross-domain feature dif-
ferences and maximize the label commonalities across the
two domains. In future, we plan to explore unsupervised do-
main adaptation when the target domain are unsupervised
videos. The videos provide rich temporal context and can
facilitate cross-domain adaptation. Moreover, we would like
to try other types of GANs, such as WGAN (Arjovsky, Chin-
tala, and Bottou 2017) in our network.
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