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Abstract

Driven by successes in deep learning, computer vision re-
search has begun to move beyond object detection and image
classification to more sophisticated tasks like image caption-
ing or visual question answering. Motivating such endeavors
is the desire for models to capture not only objects present
in an image, but more fine-grained aspects of a scene such
as relationships between objects and their attributes. Scene
graphs provide a formal construct for capturing these aspects
of an image. Despite this, there have been only a few recent
efforts to generate scene graphs from imagery. Previous works
limit themselves to settings where bounding box information
is available at train time and do not attempt to generate scene
graphs with attributes. In this paper we propose a method,
based on recent advancements in Generative Adversarial Net-
works, to overcome these deficiencies. We take the approach
of first generating small subgraphs, each describing a single
statement about a scene from a specific region of the input
image chosen using an attention mechanism. By doing so,
our method is able to produce portions of the scene graphs
with attribute information without the need for bounding box
labels. Then, the complete scene graph is constructed from
these subgraphs. We show that our model improves upon prior
work in scene graph generation on state-of-the-art data sets
and accepted metrics. Further, we demonstrate that our model
is capable of handling a larger vocabulary size than prior work
has attempted.

Learning representations of visual scenes remains an im-
portant task that underlies many computer vision problems
ranging from visual question answering (Malinowski and
Fritz 2014) to image retrieval (Johnson et al. 2017). In order
to be successful in these tasks, images must be represented
in a form that captures details of the objects contained in
a scene, including what objects are present, what attributes
each object possesses, and how objects relate to one another.
Much of the recent work on learning how to visually perceive
images has focused largely on object detection and classifica-
tion (He et al. 2016; Szegedy et al. 2017). These tasks focus
on identifying one or more concepts or objects depicted in an
image, but cannot produce representations that capture more
complex characteristics or relationships of objects within
scene. Such information may provide insight necessary to
understand a scene.
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Intelligence (www.aaai.org). All rights reserved.

Figure 1: Depiction of our model. Given an image of a scene
(top), our model (middle-left) generates triples (bottom-left)
that express statements about objects in the image. Then,
duplicate entities in the triples with the same lexeme are
determined by examining if they are from similar regions of
the image (middle-right). These duplicates are merged into
single nodes to form a scene graph (bottom-right).

In this work, we focus on the task of learning to produce
structured representations of images that express rich scene
information. More specifically, our goal is to learn a model
that is able to generate a scene graph (Johnson et al. 2017)
given an image. A scene graph describes the content of a
scene by representing objects within an image as nodes and
relationships between objects as edges. By including nodes
that correspond to visual properties, an object can be repre-
sented as having an attribute if an edge is drawn between said
object and attribute. As such, scene graphs are naturally able
to model not only what objects are in a scene, but how they
relate to each other and what attributes they possess.
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For a learned model to map an image to a scene graph, it
must both have the capacity to represent high-dimensional
inputs and the ability to produce complex, structured outputs.
Generative Adversarial Networks (GANs) (Goodfellow et al.
2014) have shown success for such learning problems. In the
GAN framework a generator neural network is pitted against
an adversary network called a discriminator. The network are
trained in tandem, eventually reaching an equilibrium where
the generator can produce output that is indistinguishable
from real data by the discriminator.

While prior GAN models have almost exclusively focused
on generating images, we propose a novel GAN that is able
to generate plausible scene graphs for given images. Our gen-
erator produces individual statements about a scene called
triples, which are three lexeme sequences that describe object
relationships or attributes. Because the generator is trained to
provide a variety of outputs given an image, our generator is
able to produce many different triples, each putting forth a
different statement about a scene. To combine the disparate
triples into a proper scene graph we utilize an attention mech-
anism (Xu et al. 2015) that is trained within our generator to
determine if two lexemes with the same label were produced
from the same spatial region of the input. If they are, we
merge the two lexemes in our scene graph (see: Figure 1).

In summary the contributions of this work are as follows:

1. We formulate a novel GAN model that is able to generate
triples over a scene that contain both object relationship
and attribute statements.

2. We use an attention mechanism both to generate parts of a
scene graph from different parts of an image, and to merge
these subgraphs together.

3. We demonstrate empirically that our model improves on
the state of the art in scene graph generation while also
being able to model object attributes.

The remainder of this paper is organized as follows. We
first discuss previous, related work and compare our method
to other approaches for scene graph generation. We then
discuss our proposed approach, beginning with a formal defi-
nition of our learning problem. Next, we quantitatively eval-
uate our method against the state-of-the-art in scene graph
generation, and qualitatively discuss illustrative examples of
generated scene graphs. Finally, we conclude and discuss
directions of future work.

Related Work

Work related to ours lies primarily in three areas: methods for
learning representations of visual scenes, Reccurrent Neural
Networks (RNNs), and GANs. Next, we review these areas
in relation to our work.

Scene Understanding and Representation

A simple way to describe a scene is to list the objects it
contains. This task is often called visual object recognition, a
classification task for which numerous leaps in performance
have been achieved over the last half-decade (Krizhevsky,
Sutskever, and Hinton 2012; Simonyan and Zisserman 2015;

He et al. 2016; Szegedy et al. 2017) on large-scale image
data sets, such as ImageNet (Russakovsky et al. 2015).

More sophisticated approaches to describing a scene, like
image captioning (Vinyals et al. 2015), dense captioning
(Johnson, Karpathy, and Fei-Fei 2016), and visual question
answering (VQA) (Malinowski and Fritz 2014) provide more
expressive means of capturing the details of an image than
simply listing objects. Each task involves producing natu-
ral language output given an image as input. While these
representations have been shown to be helpful for various
tasks (e.g image retrieval), the outputs can be interpreted in
many different ways due to the ambiguity of natural language.
Further, these tasks do not explicitly attempt to describe the
entirety of a scene or link information from various parts of
a scene together.

One way to limit the ambiguity of natural language and ex-
plicitly model object relationships is to describe scenes using
scene graphs, first proposed by (Johnson et al. 2017). Scene
graphs have been shown to be useful in a number of tasks like
content based image retrieval (Johnson et al. 2017) and auto-
matic caption evaluation (Anderson et al. 2016). In one of the
first works in generating scene graphs, the authors of (Ander-
son et al. 2016) propose a method to generate scene graphs
from captions. More recently, the authors of (Xu et al. 2017)
propose a method to construct a scene graph from an image
by first fixing the structure of the graph, then refining node
and edge labels using iterative message passing. Their work
limits itself to training with the use of bounding boxes and
doesn’t predict attributes, likely because multiple attributes
may share a bounding box with a single object, and learning
to generate multiple attributes given a single bounding box
is non-trivial. In contrast, our method learns to generate in-
dividual triples, using the GAN training framework coupled
with attention to focus on regions. As such, our model does
not require bounding box labels to train and is not limited to
relating two separate objects that were labeled in the image,
thus enabling attribute information to be generated.

Recurrent Neural Networks

Our architecture contains a recurrent language component
to produce triples. More specifically, we utilize Long Short
Term Memory (LSTM) (Hochreiter and Schmidhuber 1997)
networks with attention. The idea of an attention mecha-
nism, first proposed in (Bahdanau, Cho, and Bengio 2014),
is to allow a recurrent network access to the entire input at
every timestep, with the attention mechanism determining
what parts are important. Typically, an attention mechanism
is simply a multilayer perceptron jointly trained with the
rest of the recurrent architecture. (Xu et al. 2015) are the
first to use an attention mechanism in an LSTM with an im-
age as input, with many others following (Yang et al. 2016;
Shih, Singh, and Hoiem 2016; Xu and Saenko 2016; Lu et
al. 2016). Importantly, we explicitly use the attention mecha-
nism to disambiguate entities in produced triples, a technique
that to our knowledge has not been applied in prior work. We
use LSTMs because they are historically one of the most suc-
cessful RNNs, and offer comparatively similar performance
to more recent variants, such as GRUs (Chung et al. 2014).
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Generative Adversarial Networks

Generative Adversarial Networks have generated interest
since their inception in (Goodfellow et al. 2014) because of
their empirical successes in modeling high dimensional data
distributions. Recently, (Arjovsky and Bottou 2017) and (Ar-
jovsky, Chintala, and Bottou 2017) illustrated a number of
theoretical and practical issues with the original GAN formu-
lation, and proposed to train the discriminator to measure the
difference between generated and ground truth samples with
a Wasserstein metric rather than a Kullback-Leibler diver-
gence, accomplished by a change in loss functions. In order
to generate sequences using one hot vector ground truth ex-
amples and continuous vector based generated outputs, this
change is necessary. As explained in (Gulrajani et al. 2017),
the KL divergence between two one hot vectors is infinite
resulting in useless gradients.

While applications of GANs have largely been limited
to generating images (Radford, Metz, and Chintala 2016;
Ledig et al. 2017; Reed et al. 2016), there have recently been
a few efforts to generate natural language. Such endeavors use
training methods other than backpropagation (Yu et al. 2017),
or a continuous approximation to sampling from a categorical
distribution (Jang, Gu, and Poole 2017; Maddison, Mnih, and
Teh 2017). We leave the training of scene graph generation
models with these approaches for future work. There have
also been a number of works in using GANs with an input
condition, e.g generating images conditioned on text (Reed
et al. 2016; Zhang et al. 2017) or other images (Ledig et
al. 2017). Like previous work, we condition our GAN on
images; unlike previous work, our output is triples.

Generating Scene Graphs from Imagery

In this section, we formalize the problem of generating a
scene graph and discuss the motivation and specifics of our
approach. A unique characteristic of our model is that scene
graphs can be produced by generating their subunits and
stitching them together. As such, we outline architectures and
training approaches suitable for this formulation of the prob-
lem, specifically motivating the use of attention mechanisms
and GANs. Finally, we provide implementation details.

Problem Formulation

The goal of this work is to find a mapping between an image
of a scene and a scene graph. Specifically we propose to learn
a mapping gΘ : I → G from a color image I ⊂ R

d1×d2×3

to a scene graph G = (V,E). Each vertex v ∈ V and edge
e = (ve1, v

e
2) is labeled by a lexeme in a vocabulary V .

Each edge in a scene graph defines a single statement
about a scene called a triple. Let le be the label for edge e
and lv be the edge for vertex v. Every edge e = (v1, v2) ∈
E can be formatted as a triple te = (lv1 , le, lv2). We call
these triples because they are similar in spirit to Resource
Description Framework (RDF) triples (Lassila and Swick
1999), which are three entities representing some statement
about data in the form of a subject-predicate-object structure.
In the scene graphs considered in this work, triples either
describe relations between two objects in the scene (e.g. te =
(“dog”,“on”,“skateboard”) in Figure 1), or state that an object

has an attribute (Ferrari and Zisserman 2008), a mid-level
visual concept (e.g. te = (“dog”, “is”, “brown”) in Figure 1).

With these definitions, two things are clear. Individual
triples are capable of describing the contents of a scene, while
arranging them into a graph resolves duplicate entities into a
single vertex. Seeing that these two steps can be separated,
we map images to scene graphs by first generating triples
given an image, and then resolve objects that are the same
to construct a proper scene graph. We hypothesize that by
focusing on the quality of generated statements, saving the
structuring of the graph for later, we can more accurately pre-
dict components of a scene graph. More formally, we choose
to first find a mapping g′Θ : I �→ V×V×V to find triples over
a scene, and then a mapping g′′ : {V × V × V}n �→ G to
then produce a scene graph from the triples. First we discuss
our method for learning g′Θg

.

Triple Generation Network

For the generation of triples, we propose the a neural net-
work architecture based on ideas from Convolutional Neu-
ral Networks (CNNs), RNNs, and GANS. The network has
two components, the first feeding into the second. The first
is a feature extractor fΘf

: I �→ I ′ that maps images to
visual features using a fully convolutional neural network.
There are L total features produced, and each belongs to R

D,
with D corresponding to the number of convolutional filters
in fΘf

. These features are fed into a recurrent component
rΘr

: I ′ �→ V × V × V . More specifically, we utilize a Long
Short Term Network (LSTM) that outputs a lexeme from the
vocabulary for each of three time steps. Given visual features
X′t ∈ I ′, an LSTM unit at time t is defined by the following:

�ft = σ
(
WfX

′
t + Uf

�ht−1 + bf

)

�it = σ
(
WiX

′
t + Ui

�ht−1 + bi

)

�ot = σ
(
WoX

′
t + Uo

�ht−1 + bo

)

�ct = ft ◦ �ct−1 +�it ◦ tanh
(
WcX

′
t + Uc

�ht−1 + bc

)

�ht = ot ◦ tanh(�ct)

(1)

The hidden state ct is used to aggregate information from
the previous step’s LSTM output ht−1 and the input X′t. The
vectors �f ,�i, and �o are gates that determine what information
from X′t (visual features), �ht−1 (output of previous time
step), and �ct−1 (previous hidden state) is and is not used to
determine the current hidden state �ct. Intuitively, these gates
are attempting to explicitly learn what to “remember” and
what to “forget” so that long-term dependencies between
inputs and outputs can be modeled. The vector �ht is the
output produced by the LSTM at step t based on �ct. In order
to map�ht to lexemes in our vocabulary we learn an additional
affine transformation of �ht to produce a |V| length vector,
where each element corresponds to a lexeme in V . This vector
is then normalized so the elements sum to one, and the index
of the highest value can be used index the vocabulary to
finally output a human readable label. This is done at all
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three time steps of the LSTM to create a triple. Note, as
currently defined, the sole input to the recurrent component is
the output of the convolutional component. As such, only one
triple will be generated per input image. Because a scene can
contain many different objects with many different relations
and attributes, we want our generator to model a distribution
over triples, given an image. Motivated by recent successes
in learning generative distributions over structured data using
GANs, we train our generator using an adversarial strategy
that enables us to sample a variety of triples to use as a basis
for scene graph construction.

Adversarially Training the Triple Generator

To train g′Θg
we pit it against a discriminator dΘd

:

(V × V × V ) × I ′ �→ [0, 1], where V = [0, 1]
|V|. The goal

of dΘd
is to discriminate ground truth triples, encoded as

three one-hot vectors in a training set, from three outputs
of g′Θ, given an image. The generator and the discriminator
are trained in tandem, in an adversarial game. The recurrent
component of our generator takes visual features of an image
X′ concatenated with a random vector �n ∼ N (0, I), and
produces a triple t̃e = (v1, v2, v3). The random noise portion
of the input ensures g′Θ does not deterministically produce a
single unique triple given X′, and can instead produce a vari-
ety of triples. Concatenation of the X′ onto �n can be viewed
as conditioning if the generator is viewed as a probability dis-
tribution. We adopt notation to reflect this view that g′Θ and
dΘd

are probability distributions conditioned on an image.
From the training set, a ground truth triple te associated with
X′ is sampled. The discriminator is trained to output a low
value when given (t̃e × X′), and a high value when given
(te ×X′), separating the real triples from generated ones as
much as its architecture allows. Training is performed end to
end using stochastic gradient descent with backpropagation.
As a result error information from the discriminator is propa-
gated to the generator, informing it how to generate triples
similar to those in the training set.

In order for dΘd
to propagate error to g′Θg

, it requires an ap-
propriate loss function. Towards this end, we use the Wasser-
stien metric to measure the distance between the data and
generator distributions, a technique first introduced in (Ar-
jovsky, Chintala, and Bottou 2017). This metric induces the
following loss function:

L (X′, �n; Θg,Θd) = dΘd

(
g′Θg

(�n|X′) |X′
)
− dΘd

(te|X′)
(2)

Minimizing this loss with respect to Θd, allows the dΘd
to

better discriminate samples from gΘ′
g

from those from the
ground truth. Maximizing the loss with respect to Θg allows
gΘ′

g
to produce samples that “fool” the discriminator into

producing high scalar valued scores for generated triples,
indicating the samples look like ground truth samples. As
such, our model is trained in two phases. First, dΘd

is updated
by sampling X′ and �n and performing a stochastic gradient
minimization update with respect to Θd. Then, g′Θg

is updated
by sampling X′ and �n and performing a stochastic gradient
maximization update with respect to Θg .

Because our training algorithm promotes sampling of dif-
ferent triples from a single image, we do not require human
or machine provided bounding boxes, a significant benefit of
our approach over prior work. Since d′Θd

alone informs our
generator, the task of g′Θg

is not to predict a correct output
given a bounding box offset as it is in (Xu et al. 2017), but
rather to predict an output that the discriminator will score
highly. While this eliminates the need for bounding box in-
formation in generating triples, our method requires g′′ to
construct a proper scene graph. The challenge in this task
is that separate triples may contain lexemes that refer to the
same object. This ambiguity must be resolved in order to
successfully construct a scene graph from generated triples.
Our approach to resolve lexemes is to associate a separate
spatial region of the input with each generated lexeme. We
do this using an attention mechanism that produces a vector
that quantifies which regions of the image most influenced
the generation of the lexeme. If two of the of same generated
lexemes have similar attention vectors, we can determine that
they are the same object in the scene. We outline this process
further in the next section.

Graph Construction from Attention

An attention mechanism is a differentiable function of train-
able parameters that accepts as input some collection of fea-
tures and outputs a relative importance of said features. We
utilize the mechanism introduced in (Xu et al. 2015) in the
recurrent component of our generator. This mechanism is
defined as follows:

eti = aΘa
(�x′i,�ht−1)

αti =
exp(eti)∑L

k=1 exp(etk)

�zt =

L∑
i=1

αti�x
′
i

(3)

Here, aΘa is a multilayer perceptron that accepts a concate-
nation of the input convolutional features �x′i and the hidden
state of the previous step �ht−1 in our recurrent component,
and produces a vector �et for which each element is a relative
importance of each visual feature in X′t. This vector is then
normalized with a softmax to form �αt. Finally, the elements
of �αt are used to weigh the L visual features to produce
a vector �zt ∈ R

D which is used as input to our recurrent
component rΘr

instead of the using all L visual features in
X′t.

Because �αt gives a relative importance of the visual fea-
tures input to rΘr

at time t, and because these visual features
are the product of a fully convolutional neural network fΘf

,
�αt gives an explicit weighting of the spatial regions in the
image used to generate a particular output. As a result each of
the three lexemes in each triple generated by our architecture
can be mapped to a region or regions of the input image.
Thus, our recurrent component generates lexemes based on
specific, emphasized regions of the image.

Note that at the first step t = 1 of LSTM calculation
there is no value for �ht−1 (�h0), so in (Xu et al. 2015) it is
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Figure 2: Our architecture: Input images I and noise �n are first fed to the generator gΘg
(red), which processes the image

using a CNN fΘf
, generates image features X′, passes those to an attention mechanism aΘa that generates a dynamic image

representation �z and attention vector �α. �z is fed to an LSTM that produces triples t̃e. During training, these triples are passed
along with ground truth triples te to the discriminator dΘd

(blue) that contains the same components as the generator. The
discriminator only produces a score, however. During test time all t̃es and αs are passed to g′′ which resolves the triples into a
graph G(V,E).

predicted as a learned affine transformation of the average
of all L features, the idea being to give the an ”overview”
of the content of the image to the attention mechanism. In
contrast we would like to initialize this value such that the
attention mechanism is conditioned on a random portion of
the image to start rather than the whole image, increasing
the variety of triples that can be produced. Thus we map a
random �x′i ∈ R

D to h0 via a learned affine transformation.
In order to resolve lexemes across triples, i.e to create our

mapping g′′Θ, we compare the �αt vectors of lexemes with the
same label using generalized Intersection over Union (IoU):

IoU(�x, �y) =

∑
i min �xi�yi∑
i max �xi�yi

(4)

If their similarity is over a threshold, then the two lexemes can
be deemed one and the same. This use of the attention vectors
produced for each output is, to the best of our knowledge, a
novel application of said vectors.

We now have all the components necessary to train our
generator g′Θg

and then construct scene graphs via g′′. Our
full architecture flow to produce one triple t̃e is as follows.
First, we use fΘf

: I �→ I ′ to extract convolutional features
X′ ∈ R

D×L, which are subsequently fed into our attention
mechanism aΘa

. The attention mechanism produces vectors
�z, �α ∈ R

D. �z is concatenated with �n and fed to our LSTM
which produces an output �ht, then transformed via affine
parameters to generate a single lexeme �vt =

(
Wv

�ht + bv

)
.

We repeat this process three times to generate �v1, �v2, �v3,
resolving these lexemes to their labels to produce the triple
t̃e = (lv1 , lv2 , lv3

). A number of triples are then combined
via their associated attention vectors �α to form a scene graph

proper. With our full architecture outlined here and in Figure
2, we now provide an empirical evaluation and details on our
implementation.

Empirical Evaluation

One goal of our evaluation is to compare our method to the
current state-of-the-art in scene graph generation. As (Xu
et al. 2017) sets the current state-of-the-art, we compare to
their method, using metrics their work established, and on
the dataset they evaluated on. All data comes from the Visual
Genome (VG) dataset (Krishna et al. 2016), since this is the
largest and highest quality dataset containing image-scene
graph pairs available today and the same data that (Xu et
al. 2017) use for evaluation. In addition, to demonstrate our
model’s ability to generate attributes in addition to relations,
we show the performance of our model trained on an extended
vocabulary that contains attribute triples.

Experimental Set-up

For the feature extractor component fΘf
, we use the convolu-

tional layers of (Simonyan and Zisserman 2015) to produce
input features, which are standardized. fΘf

is not trained
with the rest of the architecture, but rather pre-trained on
the image classification task of (Russakovsky et al. 2015).
Following the example of (Gulrajani et al. 2017), we use the
Adam stochastic gradient algorithm (Kingma and Ba 2015)
with learning rate 1e−4, β1 = 0.5, β2 = 0.9 to train both the
discriminator and generator. Our gradient penalty coefficient
λ (Gulrajani et al. 2017) is set to 10, and no hyperparameter
optimization is done. Each layer of our architecture uses layer
normalization (Ba, Kiros, and Hinton 2016) to help avoid
saturating LSTM non-linearities. For our graph construction
phase, entities that have more than a 80% match using the
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generalized IoU metric are considered to be duplicate entities.
In the cases where more than one label appears for these
entities, we use majority voting to determine a single label.
We note that this threshold could be tuned on a validation set
by some metric, e.g the recall @ k metric discussed in the
next section.

VG contains over 108,000 image/scene graph pairs. We
create two splits of these pairs. The first split exactly matches
that of (Xu et al. 2017), which is a 70-30 train-test split
of the dataset capturing the top 150 object classes and 50
relations for a vocabulary size of 200. The second split is also
a 70-30 train-test split, but includes the 400 most common
object classes, 150 most common relations, and 150 most
common attributes. The first split allows us to compare our
model directly to the results reported in (Xu et al. 2017). The
second not only expands the vocabulary to a larger number
of relations, but also includes attributes, enabling evaluation
of our model on a larger variety of possible triples and more
complex scene graphs.

In (Xu et al. 2017), there are three separate tasks that are
used to evaluate their models: predicate classification, scene
graph classification, and scene graph generation. In predicate
classification, the task is to predict the correct predicate for a
relation triple with the two objects being given, along with
their bounding boxes. In scene graph classification, the task
is to predict object labels and a predicate given a set of bound-
ing boxes. In this work we only examine the task of scene
graph generation as we do not use bounding box information,
making the tasks of predicate and scene graph classification
largely irrelevant for measuring our methods performance.

The metric used in (Xu et al. 2017), recall at k, is defined
as the fraction of the k most likely generated triples that
appear in the ground truth, relative to the total number of
triples in the ground truth. For a set of ground truth triples te
and generated triples t̃e we formally define this in (5):

r@k =

∣∣t̃e ∩ te
∣∣

|te|
(5)

The idea behind this metric is that models should not be
penalized for making true predictions that don’t happen to
be in the ground truth data. Since labels are sparse and very
few (if any) scenes are labeled with all object relationships
and attributes, such a penalty would significantly cloud inter-
pretation of results. When reporting results, we multiply the
fraction given by r@k by 100 to create a percentage.

Here we present our qualitative and quantitative results
of our evaluation. In order to filter predictions to the top k,
we generate a large sample of ∼ 500 triples, and use the
discriminator to score each of the generated triples and rank
by score from highest to lowest, with a high score indicating
the discriminator thinks the triple is likely to come from the
ground truth distribution. We refer to our method as SG-GAN,
an abbreviation for Scene Graph GAN.

Results

Table 1 shows the comparison between our model and the
state of the art reported in (Xu et al. 2017). On this form of
the VG data, our method achieves approximately double the

Table 1: Recall @ 50 and 100 for the task of scene graph
generation on the split of (Xu et al. 2017). We compare only
to their best results and nearly double the performance in
both cases.

Metric SG-GAN (Xu et al. 2017)
r @ 50 6.84 3.44

r @ 100 8.95 4.24

Table 2: Recall @ 50 and 100 for the task of scene graph
generation on our own split of both attributes and relations.
There is no prior work in generating both using the same
architecture and so we make no comparisons.

Metric SG-GAN (Xu et al. 2017)
r @ 50 1.74 –

r @ 100 2.47 –

recall@50 and recall@100 as (Xu et al. 2017). Again, we
reiterate, this performance was achieved without the need
for bounding box labels. For our custom split of the VG
data we observe a reduction in performance (Table 2), when
switching to the model trained and evaluated on our custom
split of both relations and attributes.

We speculate that the inclusion of attributes makes for a
more difficult learning task than the increase in vocabulary
alone for a few reasons. The visual cues necessary to detect
relations and those necessary to detect attributes vary signifi-
cantly, increasing the burden on any architecture attempting
to capture both at the same time. Another reason is that the
attention mechanism is likely to behave very differently de-
pending on whether or not it is generating a relation vs an
attribute. For generating an attribute one would expect the
attention mechanism to look in the very near proximity of
the object in contrast to all over the image. While neural
networks have a very large capacity and ought to be able to
“remember” how to treat the two differently, we suspect the
stark difference between looking in a different location for
each lexeme produced and looking in the same location for
each lexeme produced is still challenging.

While the performance gain is significant over prior work,
the recall of our model is low relative to related visual in-
ference tasks. This is somewhat expected, given that scene
graph generation combines a number of these tasks as sub-
problems such as object detection, object/object relationship
identification, and attribute prediction. As a result, we note
that the task of scene graph generation remains a challenging
problem which likely presents an opportunity for future work
to improve on our results.

In Figure 3 we show examples of scene graphs that we
generated using our relations only model and our relations-
attributes model respectively. For interpretability we limit
the triples generated to the top 10 (or below if duplicate
entities are resolved) as determined by our discriminators.
The results are not out of line with how we train our model.
Many of the triples that exist in the graphs generated by our
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Figure 3: Example scene graphs generated by SG-GAN. a) These scene graphs were generated by the model trained on the
relations only data split. b) These were generated by the model trained on both relations and attributes.

method are either true or close to being true. In particular
object detection seems to work fairly well, which is also
unsurprising given that (Simonyan and Zisserman 2015), the
pretrained model that provides our convolutional features, is
trained on an object detection task. In the qualitative results,
like the quantitative results, there is a performance drop when
increasing vocabulary size and including attributes.

Conclusion and Future Work

In this paper we proposed a novel technique for learning
to represent an image via a scene graph. Our approach is
based on generating individual subgraphs called triples, and
exploiting an attention mechanism to stitch triples together
into a proper scene graph. We hypothesized that by focusing
on generating individual true statements about a scene in the
form of triples, we can create better triples and thus better
scene graphs. After triples are generated, we made explicit
use of vectors from an attention mechanism in our generator
to determine which lexemes in the triples refer to the same
object, yielding a method that combines lexemes into a single
node in our scene graph. To our knowledge this is a novel
use of attention in neural networks. By learning our model
using an adversarial training technique, our method can be
trained to generate object attributes in addition to object
relations, which prior work did not do, and without bounding
box information, which prior work required. In an empirical
evaluation, we illustrate that our method for generating scene
graphs outperforms the current state-of-the-art, achieving
double the recall@50 and recall@100.

One potential experiment that can be explored in future
work is the insertion of various architectures into the GAN
framework. For example, while our convolutional features
are fixed and extracted from a CNN trained to recognize

images, training a convolutional component of the network
jointly with our LSTM may improve performance as the
tasks of image recognition and scene graph generation are
sufficiently different. Another line of research includes ex-
ploring other structured prediction problems given a complex
input (like an image) using GANs. For example, while we
argued for the adoption of scene graphs over image captions
as image representations, image captioning has proven to
be useful and could potentially benefit from an adversarial
training approach. There are also unexplored lines of research
in working with scene graphs themselves. Structured knowl-
edge sources have a number of applications that have not yet
found their way to using scene graphs as a source, e.g faceted
search. Lastly we suggest that scene graph provide a means of
linking information in an image with information from data
of other modalities, for example text. Since many informa-
tion extraction techniques for text produce graph structured
results, they may be compatible with scene graphs.
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