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Abstract

Recent advances in visual recognition show overarching suc-
cess by virtue of large amounts of supervised data. However,
the acquisition of a large supervised dataset is often challeng-
ing. This is also true for intelligent transportation applications,
i.e., traffic sign recognition. For example, a model trained
with data of one country may not be easily generalized to an-
other country without much data. We propose a novel feature
embedding scheme for unseen class classification when the
representative class template is given. Traffic signs, unlike
other objects, have official images. We perform co-domain em-
bedding using a quadruple relationship from real and synthetic
domains. Our quadruplet network fully utilizes the explicit
pairwise similarity relationships among samples from differ-
ent domains. We validate our method on three datasets with
two experiments involving one-shot classification and feature
generalization. The results show that the proposed method
outperforms competing approaches on both seen and unseen
classes.

Introduction

Recent advances in the field of computer vision have provided
highly cost-effective solutions for developing advanced driver
assistance systems (ADAS) for automobiles. Furthermore,
computer vision components are becoming indispensable
to improve safety and to achieve AI in the form of fully
automated, self-driving cars. This is mostly by virtue of the
success of deep learning, which is regarded to be due to the
presence of large-scale supervised data, proper computation
power and algorithmic advances (Goodfellow, Bengio, and
Courville 2016).

Among all ADAS related problems, in this paper, we tackle
unseen traffic sign recognition. A distinctive difference re-
lated to this problem as regards traditional recognition prob-
lems is that synthetic traffic-sign templates are exploited as
representative anchors, whereby classification can be done
for an actual query image by finding the minimum distance
to the templates of each class (i.e., few-shot learning with
domain difference).

In reality, traffic signs differ depending on the country,
but one may obtain synthetic templates from traffic-related
public agencies. Nonetheless, the diversity of templates for a
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single class is limited; hence, we focus on scenarios of chal-
lenging one-shot classification (Koch, Zemel, and Salakhut-
dinov 2015; Lake, Salakhutdinov, and Tenenbaum 2015;
Miller, Matsakis, and Viola 2000) with domain adaptation,
where a machine learning model must generalize to new
classes not seen in the training phase given only a few exam-
ples of each of these classes but from different domains.

In practice, this type of model is especially useful for
ADAS in that: 1) one can avoid high cost re-training from
scratch, 2) one can avoid annotating large-scale supervised
data, and 3) it is readily possible to adapt the model to other
environments.

Given the success of deep learning, a naive approach for
the few-shot problem would be to re-train a deep learning
model on a new scarce dataset. However, in this limited
data regime, this type of naive method will not work well,
likely due to severe over-fitting (Lake, Salakhutdinov, and
Tenenbaum 2015). While people have an inherent ability to
generalize from only a single example with a high degree of
accuracy, the problem is quite difficult for machine learning
models (Lake, Salakhutdinov, and Tenenbaum 2015).

Thus, our approach is based on the following hypothe-
ses: 1) the existence of a co-embedding space for synthetic
and real data, and 2) the existence of an embedding space
where real data is condensed around a synthetic anchor for
each class. We illustrate the idea in Fig. 1. Taking these into
account, we learn two non-linear mappings using a neural
network. The first involves mapping for a real sample into
an embedding space, and the second involves mapping of a
synthetic anchor onto the same metric space. We leverage the
quadruplet relationship to learn non-linear mappings, which
can provide rich information to learn generalized and dis-
criminative embeddings. Classification is then performed for
an embedded query point by simply finding the nearest class
anchor. Despite its simplicity, our method outperforms with
a margin in the unseen data regime.

Related work

Our problem can be summarized as a modified one-shot learn-
ing problem that involves heterogeneous domain datasets.
This type of problem has gained little attention. Furthermore,
to the best of our knowledge, our work is the first to tackle
unseen traffic sign recognition with heterogeneous domain
data; we therefore summarize the work most relevant to our
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Figure 1: Illustration of a synthetic template and real image co-domain mapping.

proposed method in this section.
Non-parametric models such as nearest neighbors are use-

ful in few-shot classification (Vinyals et al. 2016; Santoro et
al. 2016), in that they can be naturally adapted to new data
and do not require training of the model. However, the perfor-
mance depends on the chosen metric (Atkeson, Moore, and
Schaal 1997).1 To overcome this, Goldberger et al. (Gold-
berger et al. 2004) propose the neighborhood components
analysis (NCA) and that learns the Mahalanobis distance to
maximize the accuracy of the K-nearest-neighbor (K-NN).
Weinberger et al. (Weinberger and Saul 2009), who studied
large margin nearest neighbor (LMNN) classification, also
maximize the K-NN accuracy with a hinge loss that encour-
ages the local neighborhood of a point to contain other points
with identical labels with some margin, and vice versa. Our
work also adopts the hinge loss with a margin in the same
spirit of Weinberger et al. Because NCA and LMNN are lim-
ited on linear model, each is extended to a non-linear model
using a deep neural network in (Salakhutdinov and Hinton
2007) and (Min et al. 2009) respectively.

Our work may be regarded as a non-linear and quadru-
ple extension of Mensink et al. (Mensink et al. 2013) and
Perrot et al. (Perrot and Habrard 2015) to one-shot learning,
in that they leverage representative auxiliary points for each
class instead of individual examples of each class. These ap-
proaches are developed to adapt to new classes rapidly with-
out re-training; however, they are designed to handle cases
where novel classes come with a large number of samples. In
contrast, in our scenario, a representative example is given
explicitly as a template image of a traffic sign. Given such
a template, we learn non-linear embedding in an end-to-end
manner without pre-processing necessary in both Mensink et
al. and Perrot et al. to obtain the representatives.

All of these NN classification schemes learn the metric via
a pairwise relationship. In the recent metric learning litera-
ture, there have been attempts (Wang et al. 2014; Hoffer and
Ailon 2015; Law, Thome, and Cord 2017; Chen et al. 2017;
Huang et al. 2016) to go beyond learning metrics using only a
pairwise relationship (i.e., 2-tuple, e.g., Siamese (Bromley et
al. 1993; Chopra, Hadsell, and LeCun 2005; Hadsell, Chopra,
and LeCun 2006)): triplet (Weinberger and Saul 2009;
Wang et al. 2014; Hoffer and Ailon 2015), quadruplet (Law,

1For up-to-date thorough surveys on metric learning, please refer
to (Kulis and others 2013; Bellet, Habrard, and Sebban 2015).

Thome, and Cord 2017) and quintuplet (Huang et al. 2016).
The use of tuples of more than a triple relationship may be
inspired from the argument of Kendall and Gibbons (Kendall
and Gibbons 1990), who argued that humans are better at
providing relative (i.e., at least triplet-wise) comparisons than
absolute comparisons (i.e., pairwise). While our method also
exploits a quadruple relationship, the motivation behind this
composition is rather specific for our problem definition,
in which two samples from template sets and two samples
from real sets have clear combinatorial pairwise relationships.
More details will be described later.

Other one-shot learning approaches take wholly differ-
ent notions. Koch et al. (Koch, Zemel, and Salakhutdinov
2015) uses Siamese network to classify whether two im-
ages belong to the same class. To address one-shot learning
for character recognition, Late et al. (Lake, Salakhutdinov,
and Tenenbaum 2015) devise a hierarchical Bayesian gen-
erative model with knowledge of how a hand written char-
acter is created. A recent surge of models, such as a neu-
ral Turing machine (Graves, Wayne, and Danihelka 2014),
stimulate the meta-learning paradigm (Santoro et al. 2016;
Vinyals et al. 2016; Ravi and Larochelle 2017) for few-shot
learning. Comparing to these works that have limited mem-
ory capacities, the NN classifier has an unlimited memory
and can, automatically store and retrieve all previously seen
examples. Furthermore, in the few-shot scenario, the amount
of data is very small to the extent that a simple inductive bias
appears to work well without the need to learn complex input-
sensitive embedding (Vinyals et al. 2016; Santoro et al. 2016;
Ravi and Larochelle 2017), as we do so. This provides the
k-NN with a distinct advantage.

Moreover, because we have two data sources, synthetic
templates and real examples, a domain difference is natu-
rally introduced in our problem. There is a large amount
of research that smartly solves domain adaptation (refer to
the survey by Csurka et al. (Csurka 2017) for a thorough
review), but we deal with this by simply decoupling the net-
work parameters from each other, the template and the real
domains. This method is simple, but in the end it generalizes
well owing to the richer back-propagation gradients from the
quadruple combinations.
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Quadruple network for jointly adapting

domain and learning embedding

Our goal is to learn embeddings, such that different domain
examples are embedded into a common metric space and
where their embedded features favor to be generalized as
well as discriminative.

To this end, we leverage a quadruplet relationship, con-
sisting of two anchors of different classes and two others
for examples corresponding to the anchors. We first describe
the quadruple (4-tuple) construction in the following section.
Subsequently, we define the embeddings followed by the
objective functions and quadruplet network.
Notation We consider two imagery datasets: the template
set T ={(T, y)}, where each T denotes a representative tem-
plate image and y∈{1, . . . , C} is the corresponding label (out
of the C class), and the real example set X={Xk}Ck=1, where
Xk is the set of real images {X} of class-k. For simplicity,
we use Tk (Xk) to denote a sample labeled with class-k.

We define Euclidean embeddings as f(·), where f(x)
maps a high-dimensional vector x into a D-dimensional fea-
ture space, i.e., e=f(x) ∈ R

D.

Quadruple (4-tuple) construction

Our idea is to embed template and real domain data into the
same feature space such that a template sample acts as an
anchor point on the feature space and real samples relevant
to the anchor form a cluster around it, as illustrated in Fig. 1.
Specifically, we aim to achieve two properties for an em-
bedded feature space: 1) distinctiveness between anchors is
favored, and 2) real samples must be mapped close to the
anchor that corresponds to the same class.

To leverage the relational information, we define a quadru-
ple, a basic element, by packing two template images from
different classes and two real images corresponding to respec-
tive template classes, i.e., for simplicity, two classes A and
B are considered, then (TA,TB ,XA,XB). From pairwise
combinations within the quadruple, we can reveal several
types of relational information as follows:
1© TA should be far from TB in an embedding space,
2©XA should be far from XB in an embedding space,
3©XA (or XB) should be close to TA (or TB) in an embed-
ding space,
4©TA (or TB) should be far from XB (or XA) in an embed-

ding space,
whereby we derive the final objective function. These rela-
tions depicted in Fig. 2b.

Quadruple sampling We sampled two templates (TA, y)
and (TB , y

′) from template set T while guaranteeing two
different classes, followed by the two real images of XA ∈
Xy and XB ∈ Xy′ .

Comparison to other tuple approaches In metric
learning, the most common approaches would be the
Siamese (Bromley et al. 1993; Chopra, Hadsell, and LeCun
2005; Hadsell, Chopra, and LeCun 2006) and triplet (Wein-
berger and Saul 2009; Wang et al. 2014; Hoffer and Ailon

2015), which typically use 2- and 3-tuples, respectively. From
the given tuple, they optimize with the pairwise differences.
This concept can be viewed as follows: given a tuple, the
Siamese has only a single source of loss (and its gradient),
while triplets utilize two sources, i.e., (query, positive) and
(query, negative). With this type of simple comparison, we
can intuitively conjecture higher stability or performance of
triplet network over Siamese network.

Law et al. (Law, Thome, and Cord 2017) deal with a par-
ticular ambiguous quadruple relationship (a)≺(b)�(c)≺(d)
by forcing the difference between (b) and (c) to be smaller
than the difference between (a) and (d). Huang et al. (Huang
et al. 2016) (quintuplet, 5-tuple) is devised a means to handle
class imbalance issues by leveraging the relationships among
three levels (e.g., strong, weaker and weakest in terms of a
cluster analysis) of positives and negatives. Comparing the
motivations of these approaches, for instance indefinite rela-
tiveness, our quadruple comes from a specific relationship,
i.e., heterogeneous domain data. Moreover, it is important to
note that our quadruple provides richer information (a total
of 6 pairwise information) compared to the method of Law et
al. (quadruplet) which leverages a single constraint from a
quadruple. It is even richer than Huang et al. (quintuplet),
who provides 3 constraints.

Quadruplet Network

Given the defined quadruple, we propose a quadruple met-
ric learning that learns to embed template images and real
images into a common metric space, say R

D, through an
embedding function. In order to deal with non-linear map-
ping, the embedding f is modeled as a neural network, of
which set of weight parameters are denoted as θ. Since we
deal with data from two different domains, template and real
images, we simply use two different neural networks θT and
θR for the template and real images respectively, expressed as
fT(·)=f(· ;θT) and fR(·)=f(· ;θR), such that we can adapt
both domains. Now, we are ready to define the proposed
quadruple network.

The proposed quadruple network Q is composed of two
Siamese networks, the weights of which are shared within
each pair. One part embeds features from template images
and the other part for real images. Quadruple images from
each domain are fed into the corresponding Siamese networks
(depicted in Fig. 2a), and denoted as

Q
(
(TA,TB ,XA,XB) ;θT,θR

)

=
[
fT(TA), fT(TB), fR(XA), fR(XB)

]

=
[
eAT , e

B
T , e

A
X , e

B
X

]
,

(1)

for two different arbitrary classes A and B, where e∈Rd

represents the embedded vector mapped by the embedding
function f .

Loss function We mainly utilize the l2 hinge embed-
ding loss with a margin to train the proposed network.
Given outputs quadruplet features

[
eAT , e

B
T , e

A
R , e

B
R

]
, we

have up to six pairwise relationships, as shown in Fig. 2b),
and obtain six pairwise Euclidean feature distances as
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Figure 2: (a) Quadruplet network structure. (b) pairwise rela-
tions of embedded vectors.

{d(ekj , ek
′

j′ )}
k,k′∈{A,B}
j,j′∈{T,R} , where d(a, b) = ‖a−b‖2 denotes

the Euclidean distance. Let hm(d) denote the hinge loss with
margin m as hm(d) = max(0,m−d), where d is the dis-
tance value. We then encourage the embedded vectors with
the same label pairs (i.e., if k = k′) to be close by applying
the loss h−m(−d), while pushing away the different label
pairs by applying hm′(d).

To induce the embedded feature space with the aforemen-
tioned two properties in the Quadruple Construction section,
the minimum number of necessary losses is three, while we
can exploit up to six losses; hence, we have several choices
to formulate the final loss function, as described below:

HingeM-3 : L3m,m′= hm

(
d
(
eAT , e

B
T

))

+h−m′
(
d
(
eAT , e

A
X

))
+ h−m′

(
d
(
eBT , e

B
X

))
, (2)

HingeM-5 : L5m,m′= L3m,m′ + hm

(
d
(
eAT , e

B
X

))

+hm

(
d
(
eAX , e

B
T

))
, (3)

HingeM-6 : L6m,m′= L5m,m′ + hm

(
d
(
eAX , e

B
X

))
. (4)

In addition, inspired by the contrastive loss (Chopra, Had-
sell, and LeCun 2005), we also adopt an alternative loss by re-
placing the h−m(−d) terms in Eq. (2) with directly minimiz-
ing d.2 We denote this alternative loss simply as contrastive
with a slight abuse of the terminology. We will compare these

2This can be viewed as a l1 version of the con-
trastive loss (Chopra, Hadsell, and LeCun 2005); this is how
HingeEmbeddingCriterion is implemented for the pairwise
loss in Torch7 (Collobert, Kavukcuoglu, and Farabet 2011).

losses in the Experiments section. Analogous to traditional
deep metric learning, training with these losses can be done
with a simple SGD based method. By using shared parameter
networks, the back-propagation algorithm updates the mod-
els w.r.t. several relationships; e.g., in the HingeM-6 case,
the template tower is updated w.r.t. 5 pairwise relationships
(i.e., (TA,TB), (TA,XA), (TB ,XB), (TA,XB), (XA,TB)),
analogously for the real tower.

Experiments

Experiment setup

Competing methods We compare the proposed method
with other deep neural network based previous works and the
additionally devised baseline, as follows:
- IdsiaNet (CireşAn et al. 2012) is a competition winner

of the German Traffic-Sign Recognition Benchmark (Stal-
lkamp et al. 2012) (GTSRB). We directly used an improved
implementation (The Moodstocks team repository ).3 For
all of the experiments, IdsiaNet is exhaustively compared
as a supervised model baseline, in the same philosophy of
the deep generic feature (Donahue et al. 2014). Moreover,
templates are not used for training. For a fair comparison,
the architecture itself is adopted as the base network for
the following models.

- Triplet (Hoffer and Ailon 2015) (Hoffer et al.) is similar
to our model but with triplet data. Three weight shared
networks are used, while in training, we randomly sampled
triplets within the real image set with labels, such that no
template image is exposed during triplet training. This
training method is consistent with Hoffer et al.

- Triplet-DA (domain adaptation) is a variant devised by
us to test our hypothesis that involving different domain
templates as an anchor is beneficial. Three weight shared
networks are used, and for triplet sampling, we sample
one template (T, y) from template set T and then sam-
ple positive and negative real images from Xy and Xk �=y

respectively.

Implementation details For fairness, all of the details are
equally applied unless otherwise specified. All input images
are resized to 48×48 and the mean intensity of training set
is subtracted. We did not perform any further preprocessing,
data augmentation, or ensemble approach.

We use the same improved IdsiaNet (The Moodstocks team
repository ) for the base network of Triplet, Triplet-DA and
our Quadruplet, but replace the output dimension of the final
layer FC2 to be R

D without a softmax layer. Every model is
trained from scratch. Most of the hyper parameters are based
on the implementation (The Moodstocks team repository )
with a slight modification (i.e., fixed learning rates: 10−3,
momentum: 0.9, weight decay: 10−4, mini-batch size: 100,
optimizer: stochastic gradient descent).

3The improved performance is reported in (The Moodstocks
team repository ) with an even simpler architecture and without us-
ing ensemble. For brevity, we denote this improved version simply
as IdsiaNet. Detailed information can also be found in the supple-
mentary material.
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Our quadruplet model is not sensitive to margin values in
loss terms. We simply set the margin for pushing anchors
to 5, while the pull margin is set to 1, such that the push
and pull are slightly imbalanced. We empirically found that
such weighting give slightly better performance but not much.
Depending on the margin setup, back-propagation may auto-
matically adapt scales of their weight parameters.

Models are trained until convergence is reached, i.e.,
Lt−Lt−1

Lt−1
<5% where Lt denotes the loss value at t-th iter-

ation. We observed that the models typically converged at
around 15k-20k iterations. All networks were implemented
using Torch7 (Collobert, Kavukcuoglu, and Farabet 2011).

Dataset

We use two traffic-sign datasets, GTSRB (Stallkamp et
al. 2012) and Tsinghua-Tencent 100K (Zhu et al. 2016)
(TT100K). Since our motivation can be considered to involve
dealing with a deficient data regime and a data imbalance
caused by rare classes, we additionally introduce a subset
split from GTSRB, referred to here as GTSRB-sub. To utilize
the dataset properly for our evaluation schemes, given the
train and test set splits provided by the authors, we further
split them into seen, unseen and validation partitions, as illus-
trated in Fig. 3. The validation set is constructed by random
sampling from the given training set. A description of the
dataset construction process follows. For more details, the
reader can refer to the supplementary material.
GTSRB-all GTSRB contains 43 classes. The dataset con-
tains severe illumination variation, blur, partial shadings and
low-resolution images. The benchmark provides partitions
into training and test sets. The training set contains 39k im-
ages, where 30 consecutively captured images are grouped,
called a “track”. The test set contains 12k images without
continuity and, thus does not form tracks. We selected 21
classes that have the fewest samples as unseen classes with
the remaining 22 classes as the seen classes. Template images
are involved in the dataset.
GTSRB-sub To analyze the performance of the deficient
data regime, we created a subset of GTSRB-all, forming a
smaller but class-balanced training set with sharing the test
set of GTSRB-all. Hence, numeric results will be compatibly
comparable to that from GTSRB-all. For the training set,

Table 1: Evaluations of the proposed quadruplet network with
varying parameters. Evaluation is conducted on the validation
set of GTSRB-all. Accuracy (%) on validation set is reported.

Embedding dim
( HingeM-5 )

Top1 NN

Avg. Seen Unseen

D = 50 67.1 92.2 40.8
D = 100 69.1 95.3 41.6
D = 150 68.9 94.2 42.4

(a) Varying embedding dimension d.

Loss terms
(dim 100)

Top1 NN

Avg. Seen Unseen

HingeM-3 67.3 93.1 40.3
HingeM-5 69.1 95.3 41.6
HingeM-6 68.9 97.3 39.2

(b) Varying number of pairwise loss terms.

we randomly select 7 tracks (i.e., 210 images) for each seen
classes.
TT100K-c The TT100K detection dataset includes over
200 sign classes. We cropped traffic sign instances from the
scenes to build the classification dataset (called TT100K-
c). Although it contains the huge number of classes, most
of the classes do not have enough instances to conduct the
experiment. We only selected classes having official tem-
plates4 available and a sufficient number of instances. We
split TT100K-c into the train and test set according to the
number of instances. We set 24 classes with ≥100 instances
for seen classes and select 12 unseen classes as those having
50-100 instances. The training set includes half of the seen
class samples, and the other half is sorted into the test set.

One-shot classification

We perform one-shot classification by 1-nearest neighbor
(1-NN) classification. For 1-NN, the Euclidean distance is
measured between embedding vectors by forward-feeding
a query (real image) and the anchors (template images) to
the network, after which the most similar anchor out of the
C classes is found (C-way classification). For the NN per-
formance, we measure the average accuracy for each class.
The seen class performance is also reported for a reference
purpose.

Self-Evaluation The proposed Quadruplet network has
two main factors: the embedding dimension D and the num-
ber of pairwise loss terms. We evaluate these on the validation
sets Ψs and Ψu of GTSRB-all. The Quadruplet network is
trained only with the seen training set Φs.

Embedding dimension: We conduct the evaluation while
varying the embedding dimension D, as reported in Table 1a.
We vary D from 50 to 150 and measure the one-shot classi-
fication accuracy. We observed that the overall average ac-
curacy across the seen and unseen classes peaked at D=100.

4The official templates are provided by the Beijing Traffic Man-
agement Bureau at, http://www.bjjtgl.gov.cn/english/trafficsigns/
index.html.
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Figure 4: Some of failure cases for unseen recognition.

Table 2: One-shot classification (Top 1-NN) accuracy (%) on
the unseen classes. Performance on seen classes are shown
as an additional reference.

Network type
Datasets

Anchor GTSRB GTSRB subset TT100K

Seen Unseen Seen Unseen Seen Unseen

IdsiaNet × 74.6 40.2 59.4 34.7 87.7 14.6
Triplet Real 62.6 33.9 54.9 23.5 5.9 1.0

Triplet-DA Template 86.0 54.5 60.8 47.6 86.2 67.1

Quad.+contrastive-5 Template 92.4 42.7 69.2 41.8 92.0 67.5
Quad.+hingeM Template 90.8 45.2 70.1 47.8 94.9 67.3

While the unseen performance may increase further beyond
D = 150, since this sacrifices the seen performance, we
select the dimension with the best average accuracy, i.e.,
D = 100, as the reference henceforth.

pairwise loss terms: The quadruplet model gives 6 pos-
sible pairwise distances between outputs. Intuitively, three
possible options, i.e., HingeM-3, HingeM-5 and HingeM-6
in Eqs. (2-4), satisfy our co-domain embedding property. The
results in Table 1b show a trade-off between different losses.
HingeM-3 performs worse on both seen and unseen classes
than the others, while the other two have a clear trade-off.
This implies that HingeM-3 is not producing enough informa-
tion (i.e., gradients) to learn a good feature space. HingeM-5
outperforms Loss6 on unseen classes but HingeM-6 is better
on seen classes. We suspect that complex pairwise relation-
ships among real samples may lead to a feature space which
is overly adapted to seen classes. This trade off can be used
to adjust between improving the seen class performance or
regularizing the model for greater flexibility. We report the
following results based on HingeM-5 hereafter.

Comparison to other methods We compare the results
here with those of other methods on the test sets Ωs and Ωu

Table 3: One-shot classification (Top 1-NN) accuracy (%)
from GTSRB-all to TT100K-c.

Network trained on GTSRB Top1 NN
sample average

IdsiaNet 36.5
Triplet DA 34.1

Quadruple+hingeM 42.3

of three datasets. All networks are trained only with the seen
training and validation set Φs ∪Ψs of respective datasets.

For IdsiaNet, we use the activation of FC1 for feature em-
bedding. For the other networks, we use the final embedding
vectors. For the Quadruplet network, we test two cases with
contrastive-5 and HingeM-5.

Table 2 shows the results on the three datasets, where
Triplet has the lowest performance, while Triplet-DA per-
forms well. Moreover, our quadruplet network outperforms
Triplet-DA in most of cases for both seen and unseen classes.
This supports our hypothesis that the template (also a differ-
ent domain) anchor based metric learning and the quadruplet
relationship may be helpful for generalization purposes.

To check the embedding capability of each approach fur-
ther, we trained each model on GTSRB Φs ∪Ψs and tested
on TT100K-c Ωs ∪ Ωu. This experiment qualifies how the
networks perform on two completely different traffic sign
datasets. It is more challenging than using a single dataset
in that more generalized representation power is required.
Table 3 shows the top1-NN performance of each model. Our
model performs best on the transfer scenario, which implies
that good feature representation is learned.

In order to demonstrate quantitatively the behavior of the
Quadruplet network, we visualize unseen examples that are
often confused by Quadruplet in Fig. 4. The unseen classes of
examples that are highly similar to other classes are challeng-
ing even for humans; furthermore due to the poor illumination
condition, motion blur and low resolution.

Learned representation evaluation

In this experiment, we evaluate the generalization behavior
of the proposed quadruple network, which is analyzed by
comparing the representation power of each network over
unseen regimes (and seen class cases as a reference). In order
to assess the representation quality of each method purely,
we pre-train competing models and our model for Φs ∪Ψs

of each dataset (i.e., only on seen classes), fix the weights
of these models, and use the activations of FC1 (350 dimen-
sions) of them as a feature. Given the features extracted by
each model, we measure the representation performance by
separately training the standard multi-class SVM (Chang and
Lin 2011) with the radial basis kernel such that the perfor-
mance heavily relies on feature representation itself. 5

We use identical SVM parameters (nonlinear RBF kernel,
C = 100, tol = 0.001) in all experiments. In contrast to FC1
trained only on seen data, the SVM model is trained on both
seen and unseen classes with an equal number of instances per
class, and we vary the number of per class training samples:
10, 50, 100, and 200. SVM training samples are randomly
sampled from the set Φs ∪Ψs ∪ Φu ∪Ψu (Fig. 3), and the
entire test set Ωs ∪ Ωu is used for the evaluation. We report
the average score and confidence interval by repeating the
experiments 100 times for the case of [No. instances/class:
10] and 10 times for the cases of [No. instances/class: 50,

5We follow an evaluation method conducted in (Tran et al. 2015),
where the qualities of deep feature representations are evaluated in
the same way.
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Table 4: Feature representation quality comparison for un-
seen classes. SVM classification errors (%) are reported with
the datasets, GTSRB-all, GTSRB-sub and TT100K-c, and
according to the number of SVM training instances per class.
Notice that, for all the networks, the classes evaluated in this
experiment are not used for training the networks, i.e., un-
seen classes are used only for SVM training. Marked in bold
are the best results for each scenario, as well as other results
with an overlapping confidence interval with 95%.

Network No. instances/class

200 100 50 10

IdsiaNet 6.14 (±0.50) 6.82 (±0.57) 7.82 (±0.64) 11.01 (±0.31)
Triplet 7.22 (±0.33) 7.94 (±0.33) 8.79 (±0.40) 15.83 (±0.38)

Triplet-DA 9.04 (±0.30) 9.35 (±0.42) 10.26 (±0.63) 15.17 (±0.29)

Quad.+cont. 5.30 (±0.14) 6.09 (±0.39) 6.96 (±0.37) 9.59 (±0.23)
Quad.+hingeM 3.77 (±0.29) 3.86 (±0.27) 4.13 (±0.30) 7.69 (±0.28)

(a) GTSRB-all.

Network No. instances/class

200 100 50 10

IdsiaNet 17.89 (±0.41) 18.28 (±0.60) 18.34 (±0.79) 25.84 (±1.52)
Triplet 17.39 (±0.67) 18.22 (±0.92) 20.49 (±1.64) 30.53 (±2.47)

Triplet-DA 15.84 (±0.38) 16.77 (±0.73) 18.24 (±0.48) 28.43 (±1.61)

Quad.+cont. 12.12 (±0.33) 11.72 (±0.40) 12.83 (±0.43) 18.83 (±1.35)
Quad.+hingeM 13.81 (±0.31) 14.26 (±0.38) 15.59 (±0.52) 24.31 (±0.45)

(b) GTSRB-sub.

Network No. instances/class

20

IdsiaNet (CireşAn et al. 2012) 3.71 (±0.35)
Triplet (Hoffer and Ailon 2015) 3.70 (±0.30)

Triplet-DA 5.05 (±0.45)

Quad.+cont. 2.97 (±0.31)
Quad.+hingeM 2.87 (±0.24)

(c) TT100k-c.

100, 200]. For each sampling, we fix a random seed and test
each model with the same data for a fair comparison.

With the three datasets, we show the results of the unseen
Ωu and seen Ωs test cases in Table 4 and 5, respectively. The
unseen and seen class datasets are mutually exclusive; hence,
the errors should be compared in each dataset independently,
e.g., the numbers in Table 4-(a) are not directly comparable
with those in Table 5-(a). Instead, we can observe the algo-
rithmic behavior difference by comparing Table 4 and 5 with
respect to the relative performance.

In the unseen case in Table 4, for all of the results, the
proposed Quadruplet variants outperform the other compet-
ing methods, supporting the fact that our method generalizes
well in limited sample regimes by virtue of the richer infor-
mation from the quadruples. As an addendum, interestingly,
Triplet-DA performs better than Triplet only with GTSRB-
sub. We postulate that, in terms of feature description with
some amount of strong supervision support, Triplet gener-
alizes better than Triplet-DA, due inherently to the number
of possible triplet combinations of Triplet-DA (|T |·|X |2, and
generally |T |	|X |) is much smaller than that of Triplet due
to the use of a template anchor as an element of triplet, while
Triplet improves all the pairwise possibility of real data (i.e.,

Table 5: Feature representation quality comparison for seen
classes. SVM classification errors (%) are reported with the
datasets, GTSRB-all, GTSRB-sub and TT100K-c, and ac-
cording to the number of SVM training instances per class.
Marked in bold are the best results for each scenario, as well
as other results with an overlapping confidence interval with
95%.

Network type No. instances/class

200 100 50 10

IdsiaNet 3.70 (±0.09) 4.24 (±0.14) 4.72 (±0.18) 6.52 (±0.10)
Triplet 5.00 (±0.08) 5.51 (±0.12) 6.22 (±0.16) 9.11 (±0.15)

Triplet-DA 4.75 (±0.12) 5.30 (±0.10) 6.08 (±0.22) 8.99 (±0.13)

Quad.+cont. 4.49 (±0.09) 4.50 (±0.12) 4.65 (±0.11) 5.61 (±0.13)
Quad.+hingeM 4.46 (±0.08) 4.63 (±0.12) 4.81 (±0.15) 5.98 (±0.08)

(a) GTSRB-all.

Network type No. instances/class

200 100 50 10

IdsiaNet 7.55 (±0.25) 8.64 (±0.22) 10.13 (±0.43) 17.19 (±0.23)
Triplet 10.88 (±0.25) 12.35 (±0.31) 14.28 (±0.27) 24.50 (±0.30)

Triplet-DA 8.78 (±0.30) 10.44 (±0.2) 12.80 (±0.37) 21.15 (±0.28)

Quad.+cont. 6.04 (±0.16) 6.88 (±0.11) 7.92 (±0.28) 12.51 (±0.21)
Quad.+hingeM 6.57 (±0.15) 7.54 (±0.23) 8.87 (±0.31) 14.02 (±0.20)

(b) GTSRB-sub.

Network type No. instances/class

20

IdsiaNet (CireşAn et al. 2012) 4.23 (±0.22)
Triplet (Hoffer and Ailon 2015) 5.30 (±0.14)

Triplet-DA (100) 5.53 (±0.17)

Quad.+cont. 5.39 (±0.23)
Quad.+hingeM 4.33 (±0.14)

(c) TT100k-c.

|X |3). For the quadruplet case, more pairwise relationships
results in higher number of tuple combinations and leads to
better generalization, even with the use of templates.

In the seen class case in Table 5, our method and IdsiaNet
show comparable performance outcomes with the best ac-
curacy levels, while Triplet and Triplet-DA do not perform
as well. We found that the proposed Quadruplet performs
better than the other approaches when the number of train-
ing instances is very low, i.e., 10 samples per class. More
specifically, IdsiaNet performs well in the seen class case,
but not in the unseen class case compared to Quadruplet.
This indicates that the embedding of IdsiaNet is trapped in
seen classes rather than in general traffic sign appearances.
On the other hand, the proposed method learns more general
representation in that its performance in both cases is higher
than those of its counterparts. We believe that this is due to
the regularization effect caused by the usage of templates.

Conclusion

In this study, we have proposed a deep quadruplet for one-
shot learning and demonstrated its performance on the unseen
traffic-sign recognition problem with template signs. The
idea is that by composing a quadruplet with a template and
real examples, the combinatorial relationships enable not
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only domain adaptation via co-embedding learning, but also
generalization to the unseen regime. Because the proposed
model is very simple, it can be extended to other domain
applications, where any representative anchor can be given.
We think that N > 4-tuple generalization is interesting as
a future direction in that there must be a trade-off between
over-fitting and memory capacities.
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