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Abstract

Action prediction based on video is an important problem in
computer vision field with many applications, such as pre-
venting accidents and criminal activities. It’s challenging to
predict actions at the early stage because of the large varia-
tions between early observed videos and complete ones. Be-
sides, intra-class variations cause confusions to the predictors
as well. In this paper, we propose a mem-LSTM model to
predict actions in the early stage, in which a memory mod-
ule is introduced to record several “hard-to-predict” samples
and a variety of early observations. Our method uses Convo-
lution Neural Network (CNN) and Long Short-Term Mem-
ory (LSTM) to model partial observed video input. We aug-
ment LSTM with a memory module to remember challenging
video instances. With the memory module, our mem-LSTM
model not only achieves impressive performance in the early
stage but also makes predictions without the prior knowledge
of observation ratio. Information in future frames is also uti-
lized using a bi-directional layer of LSTM. Experiments on
UCF-101 and Sports-1M datasets show that our method out-
performs state-of-the-art methods.

Action prediction is receiving increasing interests in recent
years due to its broad and important applications in real-
world scenarios, such as visual surveillance and traffic ac-
cident avoidance. Different from action recognition, in ac-
tion prediction, the action label needs to be inferred before
the entire action execution has been observed. More impor-
tantly, it is crucial that a prediction algorithm can make ac-
curate predictions at the very beginning stage of a video, for
example, when only few frames of a video are observed.

Although action recognition approaches (Karpathy et al.
2014; Tran et al. 2015) have made great success, action pre-
diction is still a relatively new research topic and it still has
several problems that need to be addressed. In recent years,
various attempts have been made in action prediction (Ryoo
2011a; Cao et al. 2013b; Lan, Chen, and Savarese 2014a;
Kong and Fu 2016; Kong, Tao, and Fu 2017), but mispredic-
tion remains. One major reason is that, in some actions, fea-
tures from the beginning few frames are not discriminative
enough to be classified due to visual similarity. Therefore,
a classifier learned using these features may not be able to
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Figure 1: Actions may have very similar appearance in the
beginning few frames, for example, “basketball” and “bas-
ketball dunk” in UCF-101 dataset, thereby fail action pre-
diction approaches.

find the correct classification boundaries, and thus prediction
approaches would fail. As shown in Figure 1, actions such
as “basketball” and “basketball dunk” have the extremely
similar appearance at their early stage. It is essential to dis-
cover discriminative information for prediction at an early
stage. Recent work in (Kong, Tao, and Fu 2017) show that
prediction performance usually becomes stable when only
half length of videos are observed. This indicates that rich
discriminative information is often seen in the middle of
a video, thereby limiting the prediction performance at the
early stage of videos.

Existing work (Kong, Tao, and Fu 2017) enhances the dis-
criminative power of features by transferring future informa-
tion from full videos to partial videos. MTSSVM in (Kong
and Fu 2016) characterizes action evolution and creates a
nonlinear prediction model using kernels. MSSC method
proposed in (Cao et al. 2013a) learns a new feature represen-
tation by enforcing sparse constraints on the features. Still,
their prediction performance at the early stage of videos (for
example, only 10% − 20% of the frames are observed) is
still relatively low even though the discriminative power of
the features from these frames is already enhanced. In ad-
dition, these approaches are impractical as they require to
know the observation ratio of a testing video.

We introduce mem-LSTM to solve aforementioned prob-
lems. We propose to use memory to store hard-to-predict
training samples in order to improve the prediction perfor-
mance at early stage. The memory module used in this work
measures the predictability of each training sample, and will
store those challenging ones. Given a testing partial video
(a query sample), the memory computes the similarity be-
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tween the query sample and all the memorized samples, and
returns the label of the most similar one for the query. As
the memory retains a large pool of samples, it allows us to
create complex classification boundaries, which are partic-
ularly useful for discriminating partial videos at the begin-
ning stage. Our method also utilizes future information in
a video for accurate prediction. Using a bi-directional layer
of LSTM, information existing in the middle and the late
segments of a video is propagated to the features extracted
from the beginning frames, thereby improving the discrimi-
native power of the features, and enhancing prediction per-
formance. We use a two-stream framework in this paper, in
which RGB and flow streams are fused. In each stream, a
convolutional neural network is utilized to extract features
from frames and then fed into an LSTM at each time in-
terval. A two layer bi-directional LSTM with both forward
connections and backward connections is employed to char-
acterize temporal action evolution and capture future infor-
mation for prediction. The output of the two streams are then
concatenated into a vector, and serve as an input to the global
memory to compare with all hard-to-predict samples.

The main contribution of this paper is two-fold. We uti-
lize a life-long memory module to remember hard-to-predict
observations. This allows us to learn a more complex clas-
sification boundary, which is particularly useful for classify-
ing partial videos with insufficient discriminative informa-
tion. Furthermore, we utilize information in future frames
to further enhance the prediction performance through a
bi-directional LSTM layer. This essentially transfers dis-
criminative information from middle and late segments of
videos to the beginning segments. Compared with exist-
ing methods (Kong, Kit, and Fu 2014; Cao et al. 2013a;
Ryoo 2011b), our method does not need to know the ob-
servation ratios of testing videos and thus is more practical.

Definitions. We follow the problem setup described in
(Kong, Tao, and Fu 2017). To mimic sequential data arrival,
we segment a complete video x with T frames into K = 10
segments. Consequently, each segment contains T

K frames.
Video lengths T may vary for different videos, thereby caus-
ing different lengths in their segments. For a video of length
T , its k-th segment (k ∈ {1, · · · ,K}) contains frames start-
ing from the [(k−1) · T

K +1]-th frame to the (kTK )-th frame.
A temporally partial video or partial observation x(k) is de-
fined as a temporal subsequence that consists of the begin-
ning k segments of the video. The progress level g of the
partial video x(k) is defined by the number of the segments
contained in the partial video x(k): g = k. The observation
ratio r of a partial video x(k) is k

K : r = k
K .

Related Works

Action recognition is an important research topic in com-
puter vision, which relies on the extracted features from
temporally complete action videos. These features, such as
space-time interest points (Laptev 2005) and dense trajec-
tory (Wang et al. 2011) are composed of spatiotemporal fea-
tures and local appearance features. In (Wang and Schmid
2013) the dense trajectory was improved by utilizing cam-
era motion estimation, detection-based noise canceling and

being represented by a Fisher vector.

Recent studies demonstrated that action features can be
learned by deep learning methods such as convolutional neu-
ral networks (CNN) and recurrent neural networks (RNN).
Two-stream networks (Simonyan and Zisserman 2014) built
on RGB frames and optical flow frames have shown their
promising results on various action datasets. In (Ranzato
et al. 2014; Srivastava, Mansimov, and Salakhudinov 2015;
Donahue et al. 2014; Song et al. 2017; Wu et al. 2015),
RNNs have been used to model long-term temporal correla-
tions in videos, and generate video representation for action
classification. However, most of the methods are expected
to recognize actions through temporally complete videos.
Their performance on temporally incomplete action videos
is unknown.

Action prediction is another important task to predict the
action label contained in a partially observed video. Ryoo
et al. (Ryoo 2011b) proposed the integral bag-of-words and
dynamic bag-of-words approach for action prediction. Cao
et al. (Cao et al. 2013a) proposed a probabilistic formula-
tion for human activity recognition from partially observed
videos. Kong et al. (Kong, Kit, and Fu 2014) presented a
novel multiple temporal scale model in the support vec-
tor machine framework for predicting unfinished actions.
From a perspective of interfering social interaction, Lan et
al. (Lan, Chen, and Savarese 2014b) developed “hierarchical
movements” for action prediction, which is able to capture
the typical structure of human movements before an action
is executed.

Deep learning methods have also shown in action predic-
tion. Ranzato et al. (Ranzato et al. 2014) introduced a gen-
erative model using the RNN to predict motion in the video.
Srivastava et al. (Srivastava, Mansimov, and Salakhudinov
2015) proposed an unsupervised learning approach by using
LSTM to predict future video sequence.These works mainly
focus on how to describe a segment of an action, as a result,
they can achieve the propose of action prediction by utiliz-
ing these well-defined segment features. Our method does
not aim to describe how an action is evolved in the different
segment; instead, we focus on remembering the early stage
of the action. Moreover, most of action prediction methods
need to know the observation ratio of a test video to make a
prediction. Our methods do not need to know the observa-
tion ratio, and thus can be applied to streaming videos.

Revisiting Long Short Term Memory

Long Short Term Memory (LSTM) (Gers, Schmidhuber, and
Cummins 2000) has achieved great success in various se-
quence learning tasks (Fernandez, Graves, and Schmidhuber
2017). A typical LSTM has three gates, which include an in-
put gate it, a forget gate ft, and an output gate ot. The three
gates are essentially nonlinear summation units. The gates
are used to compute activations from inside and outside of
the LSTM block, and manage the activation of the cell via
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Figure 2: Illustration of the residual connections (in blue
color) in LSTMs.

multiplications.
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

at = tanh(Wcxt + Ucht−1 + ba)

it = σ(Wixt + Uiht−1 + bi)

ot = σ(Woxt + Uoht−1 + bo)

ft = σ(Wfxt + Ufht−1 + bf )

ct = itat + ftct−1

ht = ottanh(ct),

(1)

where ct is the state of a cell at time step t, ht is the LSTM
output, and σ(·) is an activation function.

Limitations in LSTM

When training multi-layer LSTM, we found that it is hard
to converge and it usually hurts the performance. To solve
this problem, we use two strategies to deal with it and cre-
ate the basic LSTM building block used in this research.
First, we combine LSTM with a residual connection (He et
al. 2015) to facilitate learning process. A residual connec-
tion is added to LSTM so that the input itself is added to
the output. Adding the residual connection helps alleviate
overfitting and improve prediction accuracy. More formally,
adding a residual connection to LSTM can be given by (see
Figure 2):

ht = ottanh(ct) + xt (2)

We also regularize the hidden layer activation by adding
an additional term to the cost function: 1T β

∑T
0 (‖ht‖ −

‖ht−1‖)2 (Krueger and Memisevic 2016). This regulariza-
tion minimizes the difference between the output of LSTM
at time t, ht and the output of LSTM at time step t−1, ht−1.
It is added to each layer of LSTM, and helps reduce overfit-
ting and performs better than dropout scheme. The perfor-
mance of our LSTM model can be increased by a consider-
able margin combining with this regularization, and it is still
helpful when we have more LSTM layers. It is quite surpris-
ing that this regularization has such effect on our model.

However, in our experiment, a residual connection works
poor on flow stream. The performance of LSTM with regu-
larization is inferior to the original LSTM model. This may
because of the nature of the flow data. Unlike RGB images,
flow images have a lot of variance between two continuous
frames, which makes regularization less useful.

Figure 3: A memory module remembers partial videos and
full videos of the same action category in a local neighbor-
hood, thereby allowing a testing video at various stages to
find a similar one withe same action label.

Our Method

Overall Architecture

The overall architecture is shown in Figure 4. Our method
can be considered as a two-stream network, consisting of a
RGB stream and a flow stream. In both of the RGB stream
and flow stream, an 18-layer residual network (He et al.
2015) is used to extract features from each frame. Various
LSTM layers are applied on top of the features to model
temporal correlations of the input frames in a small tempo-
ral window. The architecture of the flow stream is similar
to the RGB stream, but we only use LSTM without resid-
ual connections in the flow stream. The output of the two
streams is concatenated and then fed into the proposed mem-
ory module at every time interval. The memory module then
computes the distance between the query sample and all the
memorized samples, and assigns the action label of the clos-
est memorized sample to the query sample. The benefit of
using the memory module is that it can remember early ob-
servations, thereby improving the generalization power.

The proposed network is particularly developed for action
prediction. Compared with existing LSTM networks, (Sri-
vastava, Mansimov, and Salakhudinov 2015; Donahue et al.
2014; Wu et al. 2015; Yang, Molchanov, and Kautz 2016),
our method augments LSTMs with a life-long memory for
the purpose of memorizing hard-to-predict samples. This is
particularly important when predictions are made when only
few frames are observed. We also enhance the representa-
tion power of partial videos by utilizing future information
through a bi-directional LSTM layer. Compared with exist-
ing action prediction approaches (Kong, Tao, and Fu 2017;
Kong, Kit, and Fu 2014) in which the observation ratio
should be known to those action predictors, our method does
not need such information and thus is more practical in real-
world scenarios.

Memorizing Hard-to-Predict Samples

It is essential to predict actions at their early stage, for ex-
ample, when only the beginning 10% of the frames are ob-
served. Although recent work (Kong, Tao, and Fu 2017;
Kong and Fu 2016) has improved the feature representa-
tion power, the prediction performance at an early stage is
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Figure 4: Architecture of the proposed network. A partially observed video is split into two streams, a RGB stream and a flow
stream. CNN networks are used on each RGB frame and flow frame. LSTM networks are used to generate latent features for
each frame, which are then averaged to generate a representation for each stream. The output representations of the two streams
are then concatenated to query the memory Key-Value pairs to produce the final prediction.

still low since the learned features extracted from observed
partial videos are hardly distinguishable. Instead of improv-
ing the discriminative power of the features, we propose
to memorize hard-to-predict training samples in the train-
ing phase. As shown in Figure 4, the memory (Kaiser et al.
2017) is added to the last layer of the proposed network, act-
ing as a global memory. The memory is optimized to keep
partial videos and full videos of the same class in a local
neighborhood, thereby allowing a testing partial video at ei-
ther early stage, middle stage, or late stage to find a similar
one with same action label (Figure 3).

The memory module M consists of a matrix K ∈ Rm×k

of memory keys, a matrix V = {v} storing m memory val-
ues, and an additional vector A of size m that tracks the age
of items stored in memory. A memory M is defined as fol-
lows:

M = (K,V,A). (3)

Here, K stores m hard-to-predict samples of dimensional
k, and V = {v} = {(y, z)} indicates their corresponding
action classes y and progress levels z.

Memory query. Basically, the memory is a set of key-
value pairs. Memory requires a query as input to look for
the most similar instance stored in key matrix K and out-
puts the corresponding value as result. The question is how
to compute the similarity d. In our experiment, we use two
similarity metrics, dot product and Gaussian kernel, to com-
pute the similarity, which are defined by

d = q ·K[i], and d = exp(−‖q −K[i]‖2
2δ2

). (4)

Here q represents the input query, and K[i] represents the
i-th key in the memory.

Memory loss is computed based on correct neighbors and
incorrect neighbors. Suppose that the corrected value v =
(y, z) is given to the query sample q. Given a series of k

nearest neighbors (n1, · · · , nk) to q, the correct neighbor
nu is defined as V [na] = v, where a is the smallest index.
Incorrect neighbors are the samples that either have incorrect
action labels y: V [nb](y) �= v(y), or have incorrect progress
levels z: V [nc](z) �= v(z), where b and c are the smallest
indices. The memory loss can be expressed as

max([q ·K[nb] + q ·K[nc]− q ·K[na] + ξ], 0), (5)

where ξ is a positive margin. This loss function essentially
uses dot product to compute the similarity between the query
and the memorized samples. We would like to maximize the
similarity to the correct key and also minimize the similarity
to the incorrect keys.

Memory update is performed to account for the fact that
newly presented query q corresponds to v. The update is
performed depending on the returned key value is correct or
not. Denote n is the nearest neighbor to q: n = NN(q,M).

If the returned value v is incorrect (either action label or
progress level), i.e., V [n] �= v, we will update the mem-
ory by writing the query (q,v) into the memory. We find
the place in the memory for writing the query by n′ =
argmaxi A[i] + r, where r is a random number introducing
randomness. Then the query q is written into the memory by

K[n′] = q, V [n′] = v, A[n′] = z. (6)

Here, the age of a memory item starts at its progress level
z as we encourage partial videos at their early stage to be
stored in the memory. The age of all items will then be in-
cremented by 1 after every memory update.

If the returned value v is correct (both action label and
progress level are correct), then the key is updated by aver-
aging the item K[n] and q, and normalizing it:

K[n] ← K[n] + q

‖K[n] + q‖ . (7)

The age of item n is also reset by A[n] ← (A[n] + z)/2,
where z is the progress level of the query q.
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Integrating Memory into LSTM

Previous work (Kaiser et al. 2017) adds memory module
after every time-step of LSTMs. However, we argued that
there is no need to remember every time-step output of the
LSTMs in the context of action prediction, because of the
motion between neighbor frames would be quite similar in
the video. Instead, we only use one global memory to re-
member all the early observations in this work (see Fig-
ure 4). We average the outputs of the LSTMs from all time-
steps, and feed this output into the memory module. By do-
ing this, the memory module can remember the global out-
put of the LSTM.

The function of global memory is similar to a classifier.
However, the major difference is that action label given by
the memory is computed by the data similarity while the la-
bel given by a classifier is computed by the learned model.
Features extracted from partial videos (especially the ones at
their early stage) have less discriminative power compared
to the features from full videos (Kong, Tao, and Fu 2017;
Kong, Kit, and Fu 2014). Using such indistinguishable fea-
tures may not be able to learn a complex classification
boundary. On the contrary, computing sample similarity in
a large sample pool using memory can learn a complex clas-
sification boundary, and thus can improve the prediction per-
formance even few frames are observed. We will show that
in the experiments.

Attention could be an alternative for modeling the corre-
lations between frames within a small period of time and
the action categories. However, attention focuses on local
short-term information, which may not be able to provide
information in a long-term scope. To get better performance
of early detection, a life-long memory mechanism is intro-
duced in our framework. By utilizing this mechanism, the
model can learn hard-to-predict actions at their early stages.

Modeling Future Context

One limitation of conventional LSTM is that they are un-
able to make use of future context. We propose to use bidi-
rectional LSTM and enrich current features by integrating
future information. As shown in Figure 5, in this work, we
add a backward LSTM on top of the forward LSTM without
interactions in the hidden layers. The two layers compute
their own hidden features independently, and their outputs
are then summed up at output layer at each time step from
t = 1 to t = T .

The proposed bi-directional LSTM has the capability of
utilizing both previous and future context information for
action prediction. Different from (Kong, Tao, and Fu 2017),
our method is flexible in utilizing bi-directional information,
while (Kong, Tao, and Fu 2017) only transfers information
from future frames to the current. In addition, our method
filters out unnecessary information using the cell in LSTM,
while (Kong, Tao, and Fu 2017) does not and thus may in-
troduce noise in the learned features.

Two-Stream Network

We follow the method in LRCN (Donahue et al. 2014) to
create a two stream network that contains a RGB stream and

Figure 5: Structure of bi-directional LSTM. The forward
LSTM and backward LSTM are separated. The results of
two layers are then added to the output layer.

a flow stream. ResNet-18 model is trained on RGB images
for the RGB stream. A flow frame is calculated by (Brox et
al. 2004), and the results are transformed into a ”flow im-
age” by scaling and shifting x and y flow values to a range
of [0, 255], and the center of x and y flow is set to 128. Af-
ter we obtain x and y channels, we compute the third chan-
nel by using the magnitude of flow. A ResNet-18 model is
then trained on those flow images. We use this ResNet-18
model to extract flow features for training the flow stream.
As aforementioned, residual connection and regularization
does not improve the result of the flow stream, and thus the
bi-directional LSTM is used for training on flow images.

To fuse the results from both RGB and flow streams, we
concatenate the output of RGB stream and flow stream, and
put this result into a memory module. We also tried several
fusion strategies including average pooling, sum pooling and
max pooling on the two features, but they result in poor per-
formance. It is possible because the features from partial
videos are considerably noisy. If we allow interaction be-
tween the features from two streams, noise level will be fur-
ther enhanced, and thus may confuse the memory and cause
incorrect key-value pairs in the memory module. Concatena-
tion, on the contrary, does not allow such interactions, and
keeps the original properties of the features, thereby leading
to a better prediction performance.

Experiment

Datasets

We use the UCF-101 (Soomro, Zamir, and Shah 2012) and
Sports-1M datasets (Karpathy et al. 2014) to evaluate our
method. UCF1-101 dataset consists of 13,320 videos dis-
tributed in 101 human actions, such as “Baseball pitch” and
“Playing Guitar”. Sports-1M dataset consists of 1, 133, 158
videos divided into 487 videos. In this work, we follow
(Kong, Tao, and Fu 2017), and only test on part of the
Sports-1M dataset in order to conduct a fair comparison. We
use the first 50 classes in the Sports-1M dataset and sample
9223 videos following (Kong, Tao, and Fu 2017).

Implementation Details

We adopted the ResNet-18 (He et al. 2015) and VGG-19
for RGB and optical flow data separately. The ResNet-18 is
pre-trained on ImageNet ILSVRC-2012 (Deng et al. 2009)
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(a) UCF-101 dataset
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(b) Sports-1M dataset

Figure 6: Action prediction results on (a) UCF-101 dataset
and (b) Sports-1M dataset.

training set. Then the ResNet-18 is fine-tuned on UCF-
101 dataset and it can achieve 69.1% accuracy. Pre-training
ResNet-18 on ImageNet can significantly reduce the overfit-
ting problem of the model and increase the accuracy from
47.9% to 69.1%. We train optical flow CNN from scratch.

In our RGB LSTM setting, raw video is split into an image
sequence. A fine-tuned ResNet-18 network is used to extract
features from video frames. The input to LSTM is features
extracted from each video frame. The input and output size
of LSTM is 512. The bi-directional LSTM model contains
one forward LSTM layer and one backward LSTM layer,
each LSTM layer has a residual connection and regulariza-
tion. Every time step of LSTM follows a linear layer (size:
512, number of classes) and a Logsoftmax layer as the clas-
sifier. In our flow LSTM setting, flow features are extracted
from flow images by using similar CNN network as RGB
channel. The input size of LSTM is 4096 and output size
of the LSTM are 512. We only use 1 layer LSTM on top of
flow features. Every time-step of LSTM also follows a linear
layer and a Logsoftmax layer as the classifier. The detailed
training setting is same as RGB LSTM.

Memory in our method can be seen as a classifier. The
outputs of both RGB LSTM and flow LSTM from all time
steps will be averaged and then fed into the memory mod-
ule. The output value of memory is the class label. During
training and testing, the memory-size is set to 5000, K is
set to 16 and the key-size is 1024 (same as the sum of RGB
LSTM and Flow LSTM). The entire networks are trained
using stochastic gradient descent (SGD) algorithm imple-
mented on a single Titan X GPU.

Results

Prediction Performance We compare our method with
dynamic bag-of-words (DBoW) and integral bag-of-words
(IBoW) (Ryoo 2011b), C3D (Tran et al. 2015) with Chi-
square SVM, MSSC (Cao et al. 2013a), MSDA (Chen et
al. 2012), MTSSVM (Kong, Kit, and Fu 2014), and Deep-
SCN (Kong, Tao, and Fu 2017) on the UCF-101 dataset
and the Sports-1M dataset. RGB LSTM and RGB-BiLSTM
methods are used as baseline methods. Note that all these
comparison methods need to know the observation ratio for
accurate prediction, while our method doesn’t need it.

UCF-101 dataset. Results in Figure 6(a) show that our
method consistently achieves superior results over state-of-
the-art action prediction methods on UCF-101 dataset. Our
method outperforms DeepSCN by 6% and 3.33% at obser-
vation ratios 0.1 and 0.2, respectively. This demonstrates
that the memory module in our networks memorize hard-
to-predict samples, and thus can help enhance predict per-
formance. As videos in UCF-101 dataset are not difficult to
distinguish when more frames are observed, fewer samples
are memorized in our network, and thus the performance gap
between our method and DeepSCN reduces to around 2% at
observations ratios 0.3 to 1.0. Our method also outperforms
three existing action prediction methods, IBoW, DBoW and
MSSC. All these methods are fed with C3D features. How-
ever, all these methods create a model for each observation
ratio and do not particularly memorize hard-to-predict sam-
ples. In addition, these methods need to know the ratio of
a testing sample, and thus is not practically feasible. Our
method outperforms IBoW, DBoW and MSSC by 14.72%,
14.72%, and 16.97%, at observation ratio 0.1, respectively.
Our method also outperforms C3D+SVM with chi-square
kernel. The C3D method performs 3D convolutions on the
videos for action recognition, but it is not optimized for ac-
tion prediction. At observation ratio 0.1, our method outper-
forms the C3D method by 11.02%, demonstrating that ben-
efits of the memory module and bi-directional LSTM layers
in our method for action prediction.

Our method consistently outperforms RGB LSTM and
RGB Bi-LSTM, showing that the benefit of using flow
stream in the prediction task. At observation ratio 0.1, the
performance gap between our method and the two RGB
streams (RGB LSTM and RGB Bi-LSTM) is around 1%.
However, as more frames are observed, the gap increases to
surprisingly 19.06% for RGB LSTM and 15.75% for RGB
Bi-LSTM, respectively, demonstrating the importance of us-
ing flow stream in the prediction task. This result also shows
that flow information may not be very discriminative in the
beginning frames of videos. Most videos just have some
non-informative motion in the beginning frames, and thus
the flow information extracted from these frames are noisy.

Sports-1M dataset. Our method consistently outperforms
all the comparison methods. Compared with existing action
prediction methods DeepSCN, MTSSVM, MSSC, IBoW
and DBoW, our method achieves superior results at all
observation ratios. Our method outperforms DeepSCN by
2.58% at observation ratio 0.1. Even though DeepSCN
transfers discriminative information from full videos to par-
tial videos, noise may also be transferred which results in
negative transfer problem. In addition, the transferring map-
ping is essentially a linear one, and thus may not funda-
mentally improve the power of the features from the be-
ginning few frames. By comparison, our method uses the
memory module to discover hard-to-predict samples, which
allows us to learn a more complex classification bound-
ary. In addition, the bi-directional LSTM in our method
uses a nonlinear mapping to transfer information from fu-
ture frames to current frames, thereby improving the dis-
criminative power of the features. The improvement of our
method over MTSSVM and MSSC at observation ratio 0.1
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Table 1: Instant prediction results (observation ratio = 0.1).
Methods UCF-101 Sports-1M

MSSC 34.05% 46.70%
Dynamic BoW 36.29% 43.47%
Integral BoW 36.29% 43.47%

MSDA 39.55% 49.27%
C3D + SVM 40.00% 50.83%
MTSSVM 40.05% 49.92%
DeepSCN 45.02% 55.02%

RGB LSTM 50.01% 48.77%
RGB Bi-LSTM 50.01% 53.36%

Our method 51.02% 57.60%

is 7.68% and 10.9%, respectively, which is remarkable. The
largest performance gap between our method and IBoW is
18.00% at observation ratio 1.0; and it is 29.24% between
our method and DBoW occurred at observation ratio 0.8.
Our method also shows significant improvement over RGB
LSTM and RGB Bi-LSTM, demonstrating the benefit of us-
ing flow stream.

Table 1 shows the instant prediction performance where
only the beginning 10% frames are observed to all the meth-
ods. Our method achieves 51.02% on UCF-101 dataset,
and 57.60% on Sports-1M dataset, higher than all the other
comparison methods. Thanks to the memory module, our
method performs well when fewer frames are given even
though they are difficult to be distinguished. Note that
our method does not require the observation ratios to be
given in testing, while existing methods such as DeepSCN,
MTSSVM, MSSC, IBoW and DBoW all need this informa-
tion. This shows our method is practically feasible.

Table 1 also shows an interesting observation, which is the
improvement of our method over the runner-up method on
the Sports-1M datatset is slightly greater than the one on the
UCF-101 dataset. One possible reason is background infor-
mation in the Sports-1M dataset is more informative in the
beginning frames than that of UCF-101 dataset, and thus can
be utilized for discriminating various sports actions. There-
fore, the memory on the Sports-1M dataset works more ef-
fectively than the one on the UCF-101 dataset as it is ex-
pected to remember features from beginning frames.

Comparison with variants We compare our mem-LSTM
with several variants in order to show the effectiveness of
each module in our method. These variants are ResNet-18,
LSTM, Residual LSTM, and Bi-LSTM, flow LSTM, RGB
Bi-LSTM+Flow LSTM. All these variants only have RGB
stream. Comparison results with our mem-LSTM at obser-
vation ratio 0.5 and 1.0 are shown in Table 2.

Our method achieves significant improvement over all the
variant methods at observation ratios 0.5 and 1.0. The ben-
efit of using the memory module can be seen in the per-
formance difference between our method and the methods
without memory. The improvement is 5.21% and 4.69%
at observation ratio 0.5 and 1.0, respectively. This shows
that the memory in our method can still memorize some
of the challenging samples to be classified in the middle

Table 2: Comparison results of variants on UCF-101 dataset
given the beginning 50% of frames (observation ratio=0.5)
and all the frames in testing videos (observation ratio=1.0).
l = x means a network contains x LSTM layers.

Networks Stream ratio=0.5 ratio=1.0

ResNet-18 RGB N/A 69.13%
Vanilla LSTM (l=1) RGB 70.32% 71.37%
Vanilla LSTM (l=2) RGB 71.58% 73.15%

Residual LSTM (l=2) RGB 72.51% 74.64%
Bi-LSTM (l=2) RGB 72.74% 75.47%

Flow LSTM (l=1) Flow 70.20% 71.65%
Our method (without memory) Both 83.16% 85.80%

Our method Both 88.37% 90.49%

or late stage of videos, thereby creating complex classifica-
tion boundaries and improving the performance. The benefit
of using residual connections in LSTM can be seen from
the improvement of Residual LSTM over vanilla LSTM.
Adding the residual connections gain about 1% improve-
ment. Bi-LSTM outperforms vanilla LSTM by 2.19% and
3.27%, demonstrating the importance of using a backward
LSTM layer on top of the vanilla LSTM. The backward
LSTM layer transfers discriminative information from fu-
ture frames to current frames. Even though the features from
current observation may not be discriminative enough, the
transferred information can enrich the features, and thus en-
hance the prediction performance.

We also test the performance of the flow stream in this
experiment. A vanilla LSTM is run on a series of flow fea-
tures extracted using ResNet-18. Results show that the flow
stream achieves similar performance to RGB stream (vanilla
LSTM). We also test the performance of Bi-LSTM on flow
streams. However, its performance is relatively low, possibly
because noise from optical flow is transferred from future
frames to current frames.

Conclusion

In this paper, we have proposed a novel action prediction
network aiming at optimizing the performance at the be-
ginning stage of videos. We introduce a memory module,
which remembers hard-to-predict samples. By minimizing
the memory loss, the network updates memory keys by ei-
ther replacing a key with the query or averaging the key and
the query. This essentially allows us to learn complex clas-
sification boundaries, which is particularly useful for dif-
ferentiating features from beginning few frames. To further
enhance the discriminative power of the features, we pro-
pose to utilize information from future by a bi-directional
LSTM. We further add residual connections to the LSTM,
and regularize the hidden layers by adding a constraint to
the LSTM network. Extensive experiments on UCF-101 and
Sports-1M datasets show that our method achieves superior
prediction performance over state-of-the-art methods, espe-
cially when only few beginning frames are observed. Differ-
ent from most of existing action prediction approaches, our
method doesn’t need to know observation ratios of testing
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samples. This appealing feature makes our approach practi-
cal feasible.
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