
DLPaper2Code: Auto-Generation of Code
from Deep Learning Research Papers

Akshay Sethi∗
IIIT Delhi

Anush Sankaran, Naveen Panwar,
Shreya Khare, Senthil Mani

IBM Research AI

Abstract

With an abundance of research papers in deep learning, re-
producibility or adoption of the existing works becomes a
challenge. This is due to the lack of open source implemen-
tations provided by the authors. Even if the source code is
available, then re-implementing research papers in a differ-
ent library is a daunting task. To address these challenges,
we propose a novel extensible approach, DLPaper2Code, to
extract and understand deep learning design flow diagrams
and tables available in a research paper and convert them
to an abstract computational graph. The extracted computa-
tional graph is then converted into execution ready source
code in both Keras and Caffe, in real-time. An arXiv-like
website is created where the automatically generated designs
is made publicly available for 5, 000 research papers. The
generated designs could be rated and edited using an intu-
itive drag-and-drop UI framework in a crowd sourced man-
ner. To evaluate our approach, we create a simulated dataset
with over 216, 000 valid deep learning design flow diagrams
using a manually defined grammar. Experiments on the simu-
lated dataset show that the proposed framework provide more
than 93% accuracy in flow diagram content extraction.

Introduction

The growth of deep learning (DL) in the field of artificial in-
telligence has been astounding in the last decade with about
63, 600 research papers being published since 20171. Keep-
ing up with the growing literature has been a real struggle
for researchers and practitioners. In one of the recent AI
conferences, NIPS 2016, the maximum number of papers
submitted (∼ 685/2500) were in the topic, “Deep Learning
or Neural Networks”. However, a majority of these research
papers are not accompanied by their corresponding imple-
mentations. In NIPS 2016, only 101/567 (∼ 18%) papers
made their source implementation available2. Implementing
research papers takes at least a few days of effort for soft-
ware engineers, assuming that they have limited knowledge
in DL (Sankaran et al. 2011).

∗Akshay Sethi interened at IBM Research, India during this
work.
Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1https://scholar.google.co.in/scholar?as ylo=2017&q=deep+
learning&hl=en&as sdt=1,5

2https://www.kaggle.com/benhamner/nips-papers

Another major challenge is the availability of various li-
braries in multiple programming languages to implement
DL algorithms such as Tensorflow (Abadi et al. 2016),
Theano (Bastien et al. 2012), Caffe (Jia et al. 2014),
Torch (et al 2011), MXNet (Chen 2015), DL4J (Gibson
2015), CNTK (Seide and Agarwal 2016) and wrappers such
as Keras (Chollet and others 2015), Lasagne (Dieleman
2015), and PyTorch (Chintala 2016). The public implemen-
tations of the DL research papers are available in various
libraries offering very little interoperability or communica-
tion across them. Consider a use-case for a researcher work-
ing in “image captioning”, where three of the highly referred
research papers for the problem of image captioning3 are:

1. Show and Tell (Vinyals et al. 2015): Original implemen-
tation available in Theano; https://github.com/kelvinxu/
arctic-captions

2. NeuralTalk2 (Karpathy and Fei-Fei 2015): Original
implementation available in Torch; https://github.com/
karpathy/neuraltalk2

3. LRCN (Donahue et al. 2015): Implementation available
in Caffe; http://jeffdonahue.com/lrcn/

As the implementations are available in different libraries,
a researcher cannot directly combine the models. Also, for
a practitioner having remaining of the code-base in Java
(DL4J) directly leveraging either of these public implemen-
tations would be daunting. Thus, we highlight two highly
overlooked challenges in DL:

1. Lack of public implementation available for existing re-
search works and thus, the time incurred in reproducing
their results

2. Existing implementations are confined to a single (or few)
libraries limiting portability into other popular libraries
for DL implementation.

We observed that most of the research papers explain the
DL model design either through a figure or a table. Thus,
in this research we propose a novel algorithm that automat-
ically parses a research paper to extract the described DL
model design. The design is represented as an abstract com-
putational graph which is independent of the implementa-
tion library or language. Finally, the source code is gener-
ated in multiple libraries from this abstract computational

3https://competitions.codalab.org/competitions/3221#results

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

7339



Figure 1: The architecture of the proposed system that extracts and understands the flow diagrams and tables from a deep
learning research paper and generates an execution ready deep learning code in two different platforms: Keras and Caffe.

graph of the DL design. The results are shown by automati-
cally generating the source code of 5, 000 arXiv papers both
in CAFFE (pyCaffe + prototxt) and Keras (python). How-
ever, evaluating the generated source code is debatable due
to the lack of ground truth. To overcome this challenge, we
simulated a large image dataset of 216, 000 valid DL model
designs in both Caffe and Keras. To generate the dataset, we
manually defined a grammar for DL models. As these vi-
sualizations are highly varying, they are comparable to the
figures present in research papers. The major research con-
tributions are:

1. a technique to automatically understand a DL model de-
sign by parsing the figures and tables in a research paper,

2. generate source code both in both Keras and Caffe from
the abstract computation graph of a DL design,

3. automatically generate design for 5, 000 arXiv papers and
build a UI system4 for editing in a crowd sourced way,

4. simulate a dataset of 216, 000 DL model visualizations
using a manually defined grammar, where the proposed
approach achieves more than 95% accuracy in automated
flow extraction.

The rest of the paper is organized as follows: Section 2
explains the entire proposed approach for auto generation of
DL source code from research paper, Section 3 talks about
the simulated dataset and the experimental performance of
the individual components of the proposed approach, Sec-
tion 4 discusses the experimental results on 5, 000 arXiv DL
papers, and Section 5 concludes this paper with some dis-
cussion on our future efforts.

DLPaper2Code: Proposed Approach

Consider a state-of-art paper DL paper (Szegedy et al. 2017)
published in AAAI 2017, which explains the DL design
model through figures, as shown in Figure 3(a). Similarly, in

4DARVIZ: https://darviz.mybluemix.net/

the AAAI 2017 paper by (Parkhi et al. 2015), the DL model
design was explained using a table, as shown in Figure 4.
Given the PDF of a research paper in deep learning, the
proposed DLPaper2Code architecture consists of five ma-
jor steps, as shown in Figure 1: (i) Extract all the figures
and tables from a research paper. Handling the figures and
tables are done independently, although they follow a simi-
lar pipeline, (ii) As there could be many descriptive images
and results tables in a paper, classify each figure or table if
whether it contains a DL model design. Also, perform a fine
grained classification on the class of figure or table used to
describe the DL model, (iii) Extract the flow and the text
information from the figures and tables, independently, (iv)
Construct an abstract computational graph which is agnostic
of the implementation library, and (v) generate source code
in both Caffe and Keras from the computational graph.

Characterizing Research Papers

We observed that in a research paper the DL design is mostly
explained using figures or tables. Thus, it is our assertion
that by parsing the figure, as an image, and the table con-
tent, the respective novel DL design could be obtained. The
primary challenges with the figures in research papers is that
the DL design figures typically do not follow any definition
and show extreme variations. Similarly, tables can have dif-
ferent structures and can entail different kind of information.

We manually observed more than 30, 000 images from
research papers and characterized the DL design flow dia-
grams images into five broad classes, as shown in Figure 2.
The five classes are: (i) Neurons plot: the classical repre-
sentation of a neural network with each rectangular layer
having circular nodes inside them, (ii) 2D Box: each hidden
layer is represented as a 2D rectangular box, (iii) Stacked2D
Box: each layer is represented as a stack of 2D rectangu-
lar boxes, describing the depth of the layer, (iv) 3D Box:
each hidden layer is represented as a 3D cuboid structure,
and (v) Pipeline plot: along with the DL model design, the
end-to-end pipeline and mostly some intermediate results of

7340



Figure 2: Characterizing the DL model designs available in research papers and grouping them into five different categories.

image/ text is shown as well. Similarly, based on the rep-
resentation, tables can be classified as, (i) row-major table:
where the DL model design flows along the row (Springen-
berg et al. 2014), and (ii) column-major table: where the DL
model design flows along the column (Parkhi et al. 2015).
It is essential to account for these variations in the proposed
pipeline, as they indicate the DL design flow represented in
the paper. Following our assumptions, proposed approach
does not identify a DL design flow that is neither in a table
nor in a figure.

Extracting Figures and Tables

Extracting visual figures from a PDF document, especially
from a scholarly report is a well studied problem (Choud-
hury and Giles 2015). Common challenges include extract-
ing vector images as they are embedded in the PDF docu-
ment and extracting a large figure as a whole instead of mul-
tiple sub-figures. To this end, we have used a publicly exist-
ing tool called PDFFigures 2.05 (Clark and Divvala 2016)
for extracting a list of figures from a scholarly paper. How-
ever, none of the existing open source tools preserve the ta-
ble structure, which is essential for us. Thus, we built a PDF
table extraction tool combining PDFMiner6 and Poppler-
utils7. Poppler-utils provide high level information about the
document such as the text dump, while using PDFMiner cer-
tain low level document details such as vertical line spacing
are obtained. The table structure, along with the table cap-
tion, is retrieved by building the heuristics over the horizon-
tal and vertical line spacing.

Figure and Table Classification

The aim is to classify and retrieve only those figures and ta-
bles in a research paper that contains a DL design flow. Fur-
ther, a fine-grained classifier is required to classify the figure
into one of the identified five broad classes and classify the
table as a row-major or column-major flow.

In case of figures, the classifier is trained to perform the
prediction using the architecture shape and the flow. For ex-
ample, figures having result graphs and showing sample im-
ages from dataset has different shape compared to an archi-
tecture flow diagram. All the figures are resized to 224×224
and 4, 096 features (fc2) are extracted from a fully connected
layer of a popular deep learning model VGG19 (Simonyan
and Zisserman 2014) pre-trained on ImageNet dataset. We
have two classification levels: (i) Coarse classifier: a binary

5https://github.com/allenai/pdffigures2
6https://euske.github.io/pdfminer/
7https://poppler.freedesktop.org/

neural network (NNet) classifier trained on fc2 features to
classify if the figure contains a DL model or not, and (ii)
Fine-grained classifier: a five class neural network classi-
fier trained on fc2 features to identify the type of DL de-
sign, only for those figures classified positive by the coarse
classifier. Having a sequence of two classifiers provided bet-
ter performance as compared to a single classifier with six
classes (sixth class being no DL design flow).

In case of tables, a bag-of-words model is built using key-
words from the caption text as well as the table text. A co-
sine distance based classifier is used to identify if there is
a DL design flow in the given table as compared to tables
containing results. Further based on the number of rows and
columns in the table, as extracted in the previous section, the
table is classified as a row-major or column-major flow.

Content Extraction from Figure

Content extraction from figures has two major steps: (i) flow
detection to identify the nodes and the edges, and (ii) OCR
to extract the flow content. Identifying the flow is the chal-
lenges, as there is a huge variation in the type of DL design
flow diagrams. In this section, we explain the details of the
approach for a 2D Box type, as shown in Figure 3, while
similar approach could be extended to other classes, as well.
Flow detection involves identifying the nodes first, followed
by the edges connecting the nodes. As the image is usually
of high resolution and quality, they are directly binarized us-
ing an adaptive Gaussian thresholding and a Canny edge de-
tection approach is used to identify all the lines. An iterative
region grown algorithm is adopted to identify closed con-
tours in the figure, as they represent the nodes as shown in
Figure 3(b). All the detected nodes are masked out from the
figure and the contour detection algorithm is applied again
to detect the edges, as shown in Figure 3(d). The direction
of the edge flow is obtained by analyzing the pixel distribu-
tion within each edge contour. The node and edge contours
are then sorted based on the location and direction to obtain
the flow of the entire DL model design. As shown in Fig-
ure 3, the proposed approach could also handle branchings
and forking in a design flow diagram.

Once the flow is extracted, the text in each node/ layer
is obtained through OCR using Tesseract8.Based on our
manual observation, we assume that the a layer description
would be available within the detected node. A dictionary of
possible DL layer names is created to perform spell correc-
tion of the extracted OCR text.

8https://github.com/tesseract-ocr/

7341



Figure 3: Illustration of the proposed flow detection ap-
proach from complex figures (Szegedy et al. 2017) (AAAI
2017) involving (b) node/ layer detection, and (d) edge de-
tection.

Figure 4: An example table showing the DL design flow as
explained in tabular format in (Parkhi et al. 2015).

Figure 5: An illustration for a Pooling2D layer showing the
rule base of the inference engine, converting the abstract
JSON format into Caffe protobuf and Keras python code.

Content Extraction from Table

In a row major table, every row corresponds to a layer in the
DL design flow, as shown in Figure 4. Similarly, in a column
major table, every column corresponds to a layer along with
other parameters of the layer. The layer name is extracted by
matching it with a manually created dictionary. Further, the
parameters are extracted by mapping the corresponding row
or column header with a pre-defined list of parameter names
corresponding to the layer. Thus, sequentially the entire DL
design flow is extracted from a table.

Generating Source Code

Overall, after detecting DL design flow, an abstract com-
putational graph is represented in JSON format, as shown
in Figure 5. Two rule based converters are written to con-
vert the abstract computational graph extracted in the previ-

ous step to either (i) Keras code (Python) or (ii) Caffe code
(pyCaffe + prototxt). An inference engine acts as the con-
verter to map the abstract computational graph to the gram-
mar of the library. The inference engine consists of a com-
prehensive list of templates and dictionaries built manually
for both Keras and Caffe. Template based structures transfer
each component from the abstract representation to a plat-
form specific structure using the dictionary mappings. Fur-
ther, another set of templates, consisting of a set of asser-
tions, are designed for translating each layer’s parameters.
The inference engine is highly flexible allowing easy exten-
sion and addition of new layer definitions. An example of
the inference engine’s dictionary mapping for a Pooling2D
layer is shown in Figure 5.

Thus for a given research paper, by processing both the
figure and table content, the DL model design flow is ob-
tained which is converted to execution ready code in both
Keras and Caffe.

Evaluation on Simulated Dataset

The aim of this process is to simulate and generate ground
truth deep learning designs and their corresponding flow
visualizations figures. Thus, the proposed pipeline of DL
model design could be quantitatively evaluated. To this end,
we observed that both Keras and Caffe have an in-built visu-
alization routine for a DL design model. Further, both Keras
and Caffe have their internal DL model validator and a visu-
alization can be exported only when the simulated design is
deemed valid by the validator.

Grammar for DL Design Generation

To be able to generate meaningful and valid DL design mod-
els, we manually defined a grammar for the model flow as
well as for the hyper-parameters. We considered 10 unique
layers for our dataset simulation - {Conv2D, MaxPool2D,
AvgPool2D} for building convolution neural network like
architectures, {Embed, SimpleRNN, LSTM} for building re-
current neural network like architectures, {Dense, Flatten,
Dropout, Concat} as the core layers. The use of Concat en-
ables our designed models to be non-sequential as well as
with a combination of recurrent and convolution architec-
tures. This allows us to create random, complex, and highly
varying DL models. Also, RNN and LSTM layers have an ad-
ditional binary parameter of return seq, which when set true
returns the output of every hidden cell, otherwise, returns the
output of only the last hidden cell in the layer. Table 1 ex-
plains the proposed grammar for generating DL design mod-
els. The grammar defines the set of all possible next layers
for a given current layer. This is determined by the shape
of the tensor flowing through each of the layer’s operation.
For example, a Dense layer strictly expects the input to be
a vector of shape n × 1. Thus, the Dense cannot appear af-
ter a Conv2D layer without the presence of a Flatten layer.
The proposed grammar further includes the set of possible
values for each hyper-parameter of a layer, as explained in
Table 2. While hyper-parameter values beyond the defined
bounds are possible, the table values indicate the assumed
set of values in the model simulation process.

7342



Current
Layer

Dense Conv2D Flatten Dropout MaxPool AvgPool Concat Embed RNN RNN
(seq)

LSTM LSTM
(seq)

Input � � �
Dense � � � �
Conv2D � � � � � �
Flatten � � � �
Dropout Same as previous layer
MaxPool � � � � � �
AvgPool � � � � � �
Concat If input is one dimensional, same as Dense layer; else same as previous layer
RNN � � � �
RNN
(seq)

� � � � � � �

LSTM � � � �
LSTM
(seq)

� � � � � � �

Table 1: The proposed grammar for creating valid deep learning design models defining the list of possible next layers for a
given current layer.

Layer Hyper-parameters

Dense #nodes - {[5:5:500]}
Dropout probability - {[0:0.1:1]}
Conv2D #filters - {[16:16:256]}

filter size - {[1:2:11]}
MaxPool stride - {[2:1:5]}

filter size - {[1:2:11]}
AvgPool stride - {[2:1:5]}

filter size - {[1:2:11]}
Embed embed size - {64, 100, 128, 200}

vocab - {[10000, 20000, 50000, 75000]}
SimpleRNN #units - {[3:1:25]}

LSTM #nodes - {[3:1:25]}

InputData

MNIST - {28, 28, 1}
CIFAR-10 - {32, 32, 3}

ImageNet - {224, 224, 3}
IMDB Text

Table 2: The set of hyper-parameter options considered for
each layer in our simulated dataset generation. The parame-
ters [a:b:c] is a list of values from a to c in steps of b.

Simulated Dataset

A model simulation starts with an Input layer, where
there are four possible options - MNIST, CIFAR, ImageNet,
IMDBText. From the set of all possible next layers for the
given Input layer, a completely random layer is decided. For
the given next layer, a random value is picked for every pos-
sible hyper-parameter. For example, for MNIST being the in-
put layer, Conv2D could be picked as the random next layer.
For Conv2D the hypar-parameters are determined randomly
as 32 filters, 5 × 5 filter size with a stride of 2. The design
always ends with a Dense layer with number of nodes equal
to the number of classes of the corresponding Input layer.

The number of layers in between the Input layer and the
final Dense layer denotes the depth of the DL model. For
our simulation, we generated 3, 000 DL models for each
depth unique between 5 and 40, creating a total dataset of

Observation Train Validation Test

#DataPoints 195, 296 48, 824 48, 824
Naive Bayes 98.29% 98.30% 98.39%
Decision Tree 100% 99.57% 99.55%
Logistic Regression 100% 99.98% 99.99%
RDF 100% 99.72% 99.68%
SVM (RBF Kernel) 100% 99.89% 99.83%
Neural Network 100% 99.93% 99.94%

Table 3: The performance of various binary classifiers to
distinguish KerasCaffeVisulizations vs. other often occuring
images in research papers.

108, 000 models. Each model contains the Keras JSON rep-
resentation, Keras image visualization, Caffe protobuf files,
and Caffe image visualization, resulting in a total of 216, 000
DL model design visualizations. These models are valid by
construct since they follow a well-defined grammar. How-
ever, these models need not be the best from an execution
perspective, or with respect to their training performance.
Also, the visualizations from Caffe and Keras are very sim-
ilar to the one found in research papers (covering more than
70% of the visualizations actually found in research papers).

Figure Type Classification Performance

In this experiment, a binary NNet classifier with two hid-
den layers of size [1024, 256] is trained on fc2 features of
VGG19 model to differentiate 216, 000 simulated DL visu-
alizations from a set of 28, 120 other kind of diagrams often
available in research papers (scraped from PDF). The whole
dataset is split as 60% for training, 20% for validation, and
20% for testing, making it a total of 195, 296 images for
training and validation, and 48, 824 images for testing. The
performance of the NNet classifier is compared with six dif-
ferent classifiers as shown in Table 3. As it can be observed
most of the classifier provide a classification accuracy of
100%, showing that from a set of figures obtained from a
research paper, it would be possible to distinguish only the

7343



Figure 6: Box plots showing the performance accuracy of
flow detection in Keras and Caffe visualizations.

deep learning design flow diagrams. All the classifiers use
default parameters as provided by the scikit-learn package.

Computational Graph Extraction Performance

In this experiment, the performance of flow and content ex-
traction from the 216, 000 Keras and Caffe visualizations is
evaluated against the ground truth. By performing OCR, on
the extracted flow, the unique layer names are obtained and
two detection accuracies are reported,

1. blob (or layer) detection accuracy: evaluates the perfor-
mance of blob detection and layers identified using OCR
and is computed as the ratio of correct blobs detected per
model (in percent)

2. edge detection accuracy: evaluates the performance of the
detected flow and is computed as the ratio of correct edges
detected per model (in percent)

Figure 6 is the box plot showing the performance of the pro-
posed computational graph extraction pipeline in both Keras
and Caffe. As it can be observed, the proposed pipeline pro-
vides on an average 100% accuracy in layer extraction and
more than 93% accuracy in extracting the edges. As the
edges can be curved and can be of any length, even con-
necting the first with the last layer, the variations caused a
reduction in performance.

Results on Deep Learning Scholarly Papers

5, 000 papers were downloaded from arXiv.org using “deep
learning” as the input query. 30, 987 figures were extracted
from these downloaded papers, out of which 28, 120 figures
did not contain a DL design flow while the remaining 2, 867
contained. These represent typically found figures in a deep
learning research paper that does not contain a design flow.

Observation Train Validation Test

#DataPoints 18, 592 6, 197 6, 198
Naive Bayes 77.29% 64.39% 62.56%
Decision Tree 99.96% 76.67% 74.35%
Logistic Regression 99.96% 86.17% 85.27%
RDF 99.96% 83.72% 82.94%
SVM (RBF Kernel) 99.96% 86.89% 85.25%
Neural Network 99.96% 87.93% 86.25%

Table 4: The performance of coarse level binary classifier to
distinguish DL design flow figures from other figures that
usually appear in a research paper.

Observation Train Validation Test

#DataPoints 1, 720 573 574
Naive Bayes 40.42% 54.30% 52.84%
Decision Tree 99.65% 50.57% 49.13%
Logistic Regression 99.65% 69.98% 68.47%
RDF 99.65% 68.72% 66.02%
SVM (RBF Kernel) 99.65% 72.94% 69.68%
Neural Network 100% 74.93% 71.60%

Table 5: The performance of fine level five class classifier to
identify the type of DL design flow figure obtained from the
research paper.

Figure Type Classification Accuracy

To evaluate the coarse level binary classification, a two hid-
den layer NNet was trained on the fc2 features obtained
from the 30, 987 images extracted from research papers. The
whole dataset is split as 60% for training, 20% validation,
and 20% for testing and the results are computed for seven
different classifiers as shown in Table 4. More than 86% av-
erage accuracy is obtained on binary classification.

Further, to evaluate the fine level, five-class, figure type
classification, the 2, 867 DL design flow diagrams were
manually labeled. The distribution of figures were as fol-
lows: (i) Neurons plot: 586 figures, (ii) 2D box: 1, 204, (iii)
Stacked2D box: 407, (iv) 3D box: 561, and (v) Pipeline plot:
109. A 60 − 20 − 20 train, validation, and test split is per-
formed to train the NNet classifier in comparison with six
other classifiers, to perform this five class classification. The
results are in Table 5. The results show that even on highly
varying DL flow design images, identifying the exact class
of DL flow is more than 71% accurate.

Crowd sourced Improvement of Extracted Designs

Using the proposed DLPaper2Code framework, we ex-
tracted the DL design model flow diagrams for all the 5, 000
downloaded papers. However, quantitatively evaluating the
extracted design flow would be challenging due to the lack
of a ground truth. Hence, we created an arXiv-like website9,
as shown in Figure 7, where the papers, the corresponding
design, and the generated source code is available. The com-
munity could rate the extracted designs which acts as a feed-
back or performance measure of our automated approach.

9https://darviz.mybluemix.net/

7344



Figure 7: An arXiv-like website where DL papers along with
their extracted design, and generated source code in Caffe
and Keras is made available.

Figure 8: An intuitive drag-and-drop UI based framework to
edit the extracted DL model designs and make them publicly
available.

Further, an intuitive drag-and-drop based UI framework is
generated for the community to edit the generated DL flow
design, as shown in Figure 8. Ideally the respective papers’
author or the DL community could edit the generated de-
signs, wherever an error was found. The edited design could
be further made publicly available for other researcher to re-
produce the design. Further our system could generate the
source code of the edited design in both Keras and Caffe,
in real-time. Thus, we have a two-fold advantage through
this UI system: (i) the public system could act as a one-stop
repository for any DL paper and it’s corresponding design
flow and source code, (ii) the community feedback would
enable us to continuously learn and improve the system.

Conclusion and Discussion

Thus using this research work, the DL model design ex-
plained in a research paper could be automatically extracted.
Using an intuitive drag-and-drop based UI editor, developed
as a part of this research, the extracted design could be man-
ually edited and perfected. Further, for an extracted DL de-
sign, the source code could be generated in Keras (Python)
and Caffe (pyCaffe + prototxt), in real-time. The proposed
DLpaper2Code framework extracts both figure and table in-

formation from a research paper and converts it into source
code. Currently, an arXiv-like website is created that con-
tains the DL design and the source code for 5, 000 research
papers. To evaluate our approach, we simulated a dataset of
108, 000 unique deep learning designs validated by a pro-
posed DL model grammar and their corresponding Keras
and Caffe visualizations. On a total dataset of 216, 000 deep
learning model visualization flow diagrams and 28, 120 di-
agrams that appeared in deep learning research papers and
did not contains a model visualization, the proposed binary
classification using NNet classifier obtained 99.9% accu-
racy. The performance of extracting information from com-
putational graph figures using the proposed pipeline is more
than 93% accurate. The system and DLPaper2Code feature
is found at: https://darviz.mybluemix.net/

While this research could have a high impact in the re-
producibility of DL research, we have planned for plenty of
possible extensions for the proposed pipeline:

1. The proposed pipeline detects only the layers (blobs) and
the edges from the diagram. It could be extended to detect
and extract the hyper-parameter values of each layer, to
make the computational graph more content rich.

2. Currently, we have two independent pipelines for gener-
ating abstract computational graphs from tables and fig-
ures. Combining the information obtained from the multi-
modal sources could enhance the accuracy of the ex-
tracted DL design flow.

3. The entire DLPaper2Code framework could be extended
to support additional libraries, apart from Keras and
Caffe, such as Torch, Tensorflow

4. The broader aim would be to propose a standard definition
of representing DL model design in research papers and
better readability. Further, authors of future papers could
also release their design in the created website for easy
accessibility to the community.

References

Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen,
Z.; Citro, C.; Corrado, G. S.; Davis, A.; Dean, J.; Devin,
M.; et al. 2016. Tensorflow: Large-scale machine learn-
ing on heterogeneous distributed systems. arXiv preprint
arXiv:1603.04467.
Bastien, F.; Lamblin, P.; Pascanu, R.; Bergstra, J.; and Good-
fellow, I. J. e. a. 2012. Theano: new features and speed
improvements. Deep Learning and Unsupervised Feature
Learning NIPS 2012 Workshop.
Chen, T. e. a. 2015. Mxnet: A flexible and efficient ma-
chine learning library for heterogeneous distributed systems.
arXiv preprint arXiv:1512.01274.
Chintala, S. 2016. Pytorch. https://github.com/pytorch/
pytorch.
Chollet, F., et al. 2015. Keras. https://github.com/fchollet/
keras.
Choudhury, S. R., and Giles, C. L. 2015. An architecture
for information extraction from figures in digital libraries.
In WWW (Companion Volume), 667–672.

7345



Clark, C., and Divvala, S. 2016. Pdffigures 2.0: Mining
figures from research papers. In Digital Libraries (JCDL),
2016 IEEE/ACM Joint Conference on, 143–152.
Dieleman, S. 2015. Lasagne: First release.
Donahue, J.; Anne Hendricks, L.; Guadarrama, S.;
Rohrbach, M.; Venugopalan, S.; Saenko, K.; and Darrell, T.
2015. Long-term recurrent convolutional networks for vi-
sual recognition and description. In Computer vision and
pattern recognition, 2625–2634.
et al, R. C. 2011. Torch7: A matlab-like environment for
machine learning. In BigLearn, NIPS Workshop.
Gibson, A. 2015. Dl4j. https://github.com/deeplearning4j/
deeplearning4j.
Jia, Y.; Shelhamer, E.; Donahue, J.; Karayev, S.; Long, J.;
Girshick, R.; Guadarrama, S.; and Darrell, T. 2014. Caffe:
Convolutional architecture for fast feature embedding. In
ACM international conference on Multimedia, 675–678.
Karpathy, A., and Fei-Fei, L. 2015. Deep visual-semantic
alignments for generating image descriptions. In Computer
Vision and Pattern Recognition, 3128–3137.
Parkhi, O. M.; Vedaldi, A.; Zisserman, A.; et al. 2015. Deep
face recognition. In BMVC, volume 1, 6.
Sankaran, A.; Aralikatte, R.; Mani, S.; Khare, S.; Panwar,
N.; and Gantayat, N. 2011. DARVIZ: Deep abstract rep-
resentation, visualization, and verification of deep learning
models: Nier track. In International Conference on Software
Engineering, 804–807.
Seide, F., and Agarwal, A. 2016. Cntk: Microsoft’s
open-source deep-learning toolkit. In Proceedings of the
22Nd ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD ’16, 2135–2135.
New York, NY, USA: ACM.
Simonyan, K., and Zisserman, A. 2014. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556.
Springenberg, J. T.; Dosovitskiy, A.; Brox, T.; and Ried-
miller, M. 2014. Striving for simplicity: The all convolu-
tional net. arXiv preprint arXiv:1412.6806.
Szegedy, C.; Ioffe, S.; Vanhoucke, V.; and Alemi, A. A.
2017. Inception-v4, inception-resnet and the impact of resid-
ual connections on learning. In AAAI, 4278–4284.
Vinyals, O.; Toshev, A.; Bengio, S.; and Erhan, D. 2015.
Show and tell: A neural image caption generator. In Com-
puter Vision and Pattern Recognition, 3156–3164.

7346


