
Merge or Not? Learning to Group
Faces via Imitation Learning

Yue He,1* Kaidi Cao,1* Cheng Li,1 Chen Change Loy2

1SenseTime Group Limited, {heyue,caokaidi,chengli}@sensetime.com
2The Chinese University of Hong Kong, ccloy@ie.cuhk.edu.hk

Abstract

Face grouping remains a challenging problem despite the re-
markable capability of deep learning approaches in learning
face representation. In particular, grouping results can still
be egregious given profile faces and a large number of un-
interesting faces and noisy detections. Often, a user needs to
correct the erroneous grouping manually. In this study, we
formulate a novel face grouping framework that learns clus-
tering strategy from ground-truth simulated behavior. This
is achieved through imitation learning (a.k.a apprenticeship
learning or learning by watching) via inverse reinforcement
learning (IRL). In contrast to existing clustering approaches
that group instances by similarity, our framework makes se-
quential decision to dynamically decide when to merge two
face instances/groups driven by short- and long-term rewards.
Extensive experiments on three benchmark datasets show
that our framework outperforms unsupervised and supervised
baselines.

Introduction

Given a large number of unlabeled face images, face group-
ing aims at clustering the images into individual identities
present in the data. This task is an actively researched com-
puter vision problem due to its enormous potential in com-
mercial applications. It not only allows users to organize and
tag photos based on faces but also retrieve and revisit huge
quantity of relevant images effortlessly.

The performance of face grouping significantly ben-
efits from the recent emergence of deep learning ap-
proaches (Chen, Patel, and Chellappa 2016; Parkhi, Vedaldi,
and Zisserman 2015; Schroff, Kalenichenko, and Philbin
2015; Sun et al. 2014; Taigman et al. 2014; Wen et al. 2016).
Nevertheless, we still observe some challenges when we ap-
ply existing methods on real-world photo albums. In partic-
ular, we found that deeply learned representation can still
perform poorly given profile faces and false detections. In
addition, there is no obvious mechanism to disambiguate
large quantity of non-interested faces (e.g. faces in the back-
ground) that are captured under the same condition with the
person of interests.
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Figure 1: Cosine angle in a deep feature space. We mea-
sure the cosine angle between the deep feature vector of two
faces. It is noted that even for two men with significantly
different appearances, the angle between their profiles and
noise faces (gray dash lines with 0.39∼0.44) is much larger
than one’s frontal and his own profile (0.17 and 0.22).

We provide an illustrative example in Fig. 1, of which re-
sults were obtained from the Inception-v3 model (Szegedy
et al. 2015) fine-tuned with MS-Celeb-1M (Guo et al. 2016)
dataset. Despite the model achieves an accuracy of 99.27%
on LFW (Huang et al. 2007), which is on par with the accu-
racy reported by a state-of-the-art method (Wen et al. 2016),
its performance on the open-world face grouping task is
unsatisfactory. Learning such an open-world model is still
far from being solved due to highly imbalanced data (much
more frontal faces compared to profile instances in existing
datasets) and a large negative space to cover.

We human execute a visual grouping task in sequence
with intermediate decision to govern our next step, like play-
ing a jigsaw puzzle (Xie, Antle, and Motamedi 2008) with
pieces of varying visual complexity. First we will link pieces
with strong correlation and high confidence, then gain in-
sights and accumulate visual evidence from these stable
clusters. Consequently, a larger group can be formed through
merging ambiguous positives and discarding uninteresting
outliers. In the process, we may exploit contextual cues and
global picture considering other samples. The above intu-
ition motivates a novel face grouping framework. Our goal
is not to design a better deep representation, but learning



to make better merging/not-merging decision from expert’s
demonstration using existing representation. In particular,
we wish to introduce intermediate sequential decision be-
tween the clustering steps, i.e., when to merge two samples
or groups given the dynamic context. At each time step, an
agent will choose from two possible actions, i.e., to merge
or not to merge a pair of face groups. The process responds
at the next time step by moving to a new state and provides a
reward to the agent. A sequence of good actions would lead
to higher cumulative reward than suboptimal decisions.

Learning a decision strategy in our problem is non-trivial.
In particular, the decision process is adversely affected by
uninteresting faces and noisy detections. Defining a reward
function for face grouping is thus not straightforward, which
needs to consider the similarity of faces, group consistency,
and quality of images. In addition, we also need to consider
the operation cost involved, i.e., the manual human effort
spent on adding or removing a photo from a group. It is hard
to determine the relative weights of these terms a-priori. This
is in contrast to (first person) imitation learning of which the
reward is usually assumed known and fixed, e.g., using the
change of game score (Mnih et al. 2015).
Contributions. We make the following contributions to
overcome the aforementioned challenges:
1) We formulate a novel face grouping framework based
on imitation learning (IL) via inverse reinforcement learn-
ing (Ng, Russell, and others 2000). To our knowledge, this
is the first attempt to address visual clustering via inverse re-
inforcement learning. Once learned, the policy can be well
generalized to unseen photo albums with good performance.
2) We assume the reward as an unknown to be ascertained
through learning by watching an expert’s behavior, which
can be easily simulated from a set training photo albums
of which the ground-truth partition of the photos is known.
We formulate the learning such that both short- and long-
terms rewards are considered. The formal considers simi-
larity, consistency and quality of local candidate clusters;
whereas the latter measures the operation cost to get from an
arbitrary photos partition to the final ground-truth partition.
The reward system effectively handles the challenges of pro-
file, noisy, and uninteresting faces, and works well with con-
ventional face similarity under an open-world context.
3) We introduce a large-scale dataset called Grouping Faces
in the Wild (GFW) to facilitate the research of real-world
photo grouping. The new dataset contains 78, 000 faces
of 3, 132 identities collected from a social network. This
dataset is realistic, providing a large number of uninterest-
ing faces and noisy detections.

Extensive experiments are conducted on three datasets,
namely, LFW simulated albums, ACCIO dataset (Harry Pot-
ter movie) (Ghaleb et al. 2015), and the GFW introduced
by us. We show that the proposed method can be adapted
to a variety of clustering algorithms, from the conventional
k-means and hierarchical clustering to the more elaborated
graph degree linkage (GDL) approach (Zhang et al. 2012).
We show that it outperforms a number of unsupervised and
supervised baselines. Our codes and data are released1 to fa-

1https://github.com/bj80heyue/Learning-to-Group

cilitate future studies.

Related Work

Face Grouping. Traditional face clustering methods (Cao
et al. 2015; Li and Tang 2004; Otto, Klare, and Jain 2015;
Zhu, Wen, and Sun 2011) are usually purely data-driven and
unsupervised. They mainly focus on finding good distance
metric between faces or effective subspaces for face rep-
resentation. For instance, Zhu et al. (Zhu, Wen, and Sun
2011) propose a rank-order distance that measures the sim-
ilarity between two faces using their neighboring informa-
tion. Zhang et al. (Zhang et al. 2012) propose agglomera-
tive clustering on a directed graph to better capture global
manifold structures of face data. There exist techniques that
employ user interactions (Tian et al. 2007), extra informa-
tion on the web (Berg et al. 2004) and prior knowledge
of family photo albums (Xia, Pan, and Qin 2014). Deep
representation is recently found effective for face cluster-
ing (Schroff, Kalenichenko, and Philbin 2015), and large-
scale face clustering has been attempted (Otto, Wang, and
Jain 2016). Beyond image-based clustering, most existing
video-based approaches employ pairwise constraints de-
rived from face tracklets (Wu et al. 2013; Xiao, Tan, and
Xu 2014; Zhang et al. 2016) or other auxiliary informa-
tion (El Khoury, Senac, and Joly 2010; Tang et al. 2015;
Zhou et al. 2015) to facilitate face clustering in video.
The state-of-the-art method by Zhang et al. (Zhang et al.
2016) adapts DeepID2+ model (Sun, Wang, and Tang 2015)
to a target domain with joint face representation adapta-
tion and clustering. In this study, we focus on image-based
face grouping without temporal information. Our method
differs significantly to existing deep learning-based meth-
ods (Zhang et al. 2016) although we use deep representation
too. Specifically, our method learns from experts to make
sequential decision on grouping considering both short- and
long-term rewards. It is thus capable of coping with uninter-
esting faces and noisy detections effectively.
Clustering with Reinforcement Learning. There exist
some pioneering studies that explored clustering with RL.
Likas (Likas 1999) models the decision process of assigning
a sample from a data stream to a prototype, e.g., cluster cen-
ters produced by on-line K-means. Barbakh and Fyfe (Bar-
bakh and Fyfe 2007) employ RL to select a better initializa-
tion for K-means. Our work differs to the aforementioned
studies: (1) (Barbakh and Fyfe 2007; Likas 1999) are unsu-
pervised, e.g., their loss is related to the distance from data
to a cluster prototype. In contrast, our framework guides an
agent with a teacher’s behavior. (2) We consider a decision
that extends more flexibly to merge arbitrary instances or
groups. We also investigate a novel reward function and new
mechanisms to deal with noises.

Overview

An illustration of the proposed framework is given in Fig. 2.
We treat grouping as a sequential process. In each step dur-
ing test time, two candidate groups Ci and Cj are chosen.
Without loss of generality, a group can be formed by just
a single instance. Given the two groups, we extract mean-
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Figure 2: Face grouping by the proposed framework.

ingful features to characterize their similarity, group consis-
tency, and image quality. Based on the features, an agent will
then perform an action, which can be either i) merging the
two groups, or ii) not merging the two groups. Once the ac-
tion is executed accordingly, the grouping proceeds to select
the next pair of groups. The merging stops when there are no
further candidate groups can be chosen, e.g., the similarity
between any groups is higher than a pre-defined threshold.
Next, we define some key terminologies.

Recommender. At each time step we pick and consider the
merging of two face groups. The action space is large with
a complexity of O(N2), where N is the number of groups.
This adds hurdles to both learning and test stages. To makes
our approach scalable, we employ a recommender, M ,
which recommends two candidates cluster Ci and Cj at each
time step. This reduces the O(N2) action space to a binary
problem, i.e., to merge or not to merge a pair of face groups.
A recommender M can be derived from many classic clus-
tering algorithms especially agglomerative-based algorithm
like hierarchical clustering (HC), ranked-ordered cluster-
ing (Zhu, Wen, and Sun 2011) and GDL approach (Zhang et
al. 2012). For instance, hierarchical clustering-based M al-
ways suggest two clusters that are nearest by some distance
metric. In the experiment section, we perform rigorous eval-
uations on plausible choices of a recommender.

State. Each state st = (ht, Ht) ∈ S , contains the current
grouping partition ht and recommender history Ht, at time
step t. In each discrete state, the recommender M will rec-
ommend a pair of cluster (Ci, Cj) = M(s) based on the
current state.

Action. An action is denoted as a. An agent can execute two
possible actions, i.e., merge two groups or not. That is the
action set is A = {merge, not merge}, and a ∈ A.

Transition. If a merging action is executed, candidate
groups Ci and Cj will be merged. The corresponding parti-
tion is updated as ht+1 ← {ht\{Ci, Cj}}∪{Ci∪Cj}. Oth-
erwise, the partition remains unchanged, ht+1 ← ht. The
candidate information will be appended to the history Ht+1

so that the same pair would not be recommended by M . The
transition is thus represented as st+1 = T (st, a), where T (·)
denotes the transition function, and st+1 = (ht+1, Ht+1)
and st = (ht, Ht).

Learning Face Grouping by Imitation

The previous section explains the face grouping process at
test time. To learn an agent with the desired behavior, we
assume access to demonstrations by an expert. In our study,
we obtain these demonstrations from a set training photo al-
bums of which the ground-truth partition of the photos is
known. Consequently, given any two candidate groups, Ci

and Cj , we know if merging them is a correct action or not.
These ground-truth actions {aGT} represent the pseudo ex-
pert’s behavior.

Towards the goal of learning an agent from the expert’s
behavior, we perform the learning in two stages: (1) we find
a reward function to explain the behavior via inverse rein-
forcement learning (Ng, Russell, and others 2000), (2) with
the learned reward function we find a policy that maximizes
the cumulative rewards.

Formally, let R : S×A → R denotes the reward function,
which rewards the agent after it executes action a in state s.
And T is a set of state transition probabilities upon taking
action a in state s. For any policy π, a value function V π

evaluates the value of a state as the total amount of reward
an agent can expect to accumulate over the future, starting
from that state, s1,

V π(s1) = E
[∑∞

t=0
γt−1R(st, at|π)

]
, (1)

where γ is a discount factor.
An action-value function Qπ is used to judge the value of

actions, according to

Qπ(s, a) = R(s, a) + γV π(s′|s′ = T (s, a)), (2)

where the notation s′ = T (s, a) represents the transition to
state s′ after taking an action a at state s. Our goal is to first
uncover the reward function R from expert’s behavior, and
find a policy π that maximizes Qπ(s, a).
Rewards. In our study, the reward function that we wish to
learn consists of two terms, denoted as

R = Rshort + βRlong. (3)

The first and second term corresponds to short- and long-
term rewards, respectively. The parameter β helps balance
the scale of the two terms. The short-term reward is multi-
variate. It considers how strong two instances/groups should
be merged locally based on face similarity, group consis-
tency, and face quality. A long-term reward captures more
far-sighted clustering strategy through measuring the opera-
tion cost to get from an arbitrary photos partition to the fi-
nal ground-truth partition. Note that during the test time, the
long-term reward function is absorbed in our learned action-
value function for a policy π, thus no ground-truth is needed
during testing. We provide explanations on the short- and
long-term rewards as follows.

Short-Term Reward

Before a human user decides a merge between any two face
groups, he/she will determine how close the two groups are
in terms of face similarity. In addition, he/she may consider
the quality and consistency of images in each group to pre-
vent any accidental merging of uninteresting faces and noisy



detections. We wish to capture such a behavior through
learning a reward function. The reward is considered short-
term since it only examines the current groups’ partition.
Specifically, we compute the similarity between two groups,
the quality for each group and photos consistency in each
group as a feature vector φ(s), and we project this feature
into a scalar reward,

Rshort(s, a) = y(a)
(
wTφ(s) + b

)
, (4)

where y(a) = 1 if action a = merge, and y(a) = −1 if
a = not merge. Note that we assume the actual reward
function is unknown and (w, b) should be learned through
IRL. We observe that through IRL, a powerful reward func-
tion can be learned. An agent can achieve a competitive re-
sult even by myopically deciding based on one step’s reward
function rather than multiple steps. We will show that opti-
mizing (w, b) is equivalent to learning a hyperplane in sup-
port vector machine (SVM) in the ‘Finding the Reward and
Policy’ section.

Next, we describe how we design the feature vector φ(s),
which determines the characteristics an agent should exam-
ine before making a group merging decision. A feature vec-
tor is extracted considering the candidate groups, all faces’
representation X in the groups, and current partition h, that
is φ(s) = ψ (Ci, Cj ,X, h).

The proposed feature vector contains three kinds of fea-
tures, so as to capture face similarity, group consistency, and
image quality. All face representation are extracted from
Inception-v3 model (Szegedy et al. 2015) fine-tuned with
MS-Celeb-1M (Guo et al. 2016). More elaborated features
can be considered given the flexibility of the framework.
Face Similarity. We compute a multi-dimensional similarity
vector to describe the relationship between two face groups
Ci and Cj . Specifically, we first define the distance be-
tween the representation of two arbitrary faces xu

i ∈ Ci,
and xv

j ∈ Cj as d(xu
i ,x

v
j ). The subscript on x indicates its

group. In this study, we define the distance function as an-
gular distance. We then start from Ci: for a face xu

i in Ci,
we compute its distance to all the faces in Cj and select a
median from the resulting distances. That is

dmed(x
u
i , Cj) = median

{
d(xu

i ,x
1
j ), . . . , d(x

u
i ,x

nj

j )
}
,
(5)

where nj = |Cj |. We select η number of instances with
the shortest distances from {dmed(x

u
i , Cj), ∀u} to define the

distance from Ci to Cj . Note that the distance is not sym-
metric. Hence, we repeat the above process to obtain another
η shortest distances from

{
dmed(Ci,x

v
j ), ∀v

}
to define the

distance from Ci to Cj . Lastly, these 2η distances are con-
catenated to form a 2η-dimensional feature vector.
Group Consistency. Group consistency measures how close
the samples in a group to each other. Even two groups have
high similarity in between their respective members, we may
not want to merge them if one of the group is not consis-
tent, which may happen when there are a number of non-
interesting faces inside the group. We define the consistency
of a group as the median of pairwise distances between faces
in the group itself. Given a group Ci:

consistency(Ci)=median {d(xu
i ,x

v
i ), u �=v, ∀(u, v)∈Ci} .

(6)
Consistency is computed for the two candidate groups, con-
tribute a two-dimensional feature vector to φ(s).
Face Quality. As depicted in Fig. 1, profile faces and
noises could easily confuse a state-of-the-art face recogni-
tion model. To make our reward function more informed on
the quality of the images, we train a linear classifier by using
annotated profile and falsely detected faces as negative sam-
ples, and clear frontal faces as positive samples. A total of
100k face images extracted from movies is used for training.
The output of the classifier serves as the quality measure.
Here, we concatenate the quality values of the top η faces
in each of the two groups to form another 2η-dimensional
features to φ(s).

Long-Term Reward

While the short-term reward Rshort captures how likely two
groups should be merged given the current partition, the
long-term reward Rlong needs to encapsulate a more far-
sighted clustering strategy.

To facilitate the learning of this reward, we introduce the
term ‘operation cost’, which measures the efforts needed to
manipulate the images in the current partition to approach
to ground-truth partition. Formally, given a partition h ∈ V
and ground-truth partition g ∈ V . A sequence of operations
oi ∈ O : V → V can be executed to gradually modify the
partition h to g. The cost function c : O → R>0 maps each
type of operations into a positive time cost. then we define
Op(h, g) as the minimal cost for this change:

Op(h, g) = min
Γ,o1...oΓ

∑Γ

t=1
c (ot) ,

s.t. g = oΓ · . . . · o2 · o1 · h
ot ∈ O

(7)

where Γ is the number of steps needed to get from h to g.
The cost function c(·) can be obtained from a user study.

In particular, we requested 30 volunteers and show them a
number of randomly shuffled images as an album. Their task
is to reorganize the photos into a desired groups’ partition.
We recorded the time needed for three types of operations:
(1) adding a photo into a group, (2) removing a photo from
a group, and (3) merging two groups. The key results are
shown in Fig. 3. It can be observed that the ‘removing’ op-
eration takes roughly 6× longer than the ‘adding’ operation.
The ‘merging’ operation is almost similar to ‘adding’. Con-
sequently, we set the cost for these three operations as 1,
6, 1, respectively. The validity is further confirmed by the
plot in Fig. 3 that shows a high-correlation between the time
consumed and the computed operation cost.

Given Eqn. (7), we define the long-term reward as:

Rlong = −ΔOp(K) = −(Op(ht−K , g)−Op(ht, g)), (8)

which encodes the operation cost changes in K steps. The
key benefit brought by Rlong is that it provides a long-term
reward for the grouping process. For any action that can
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Figure 3: A user study on operation cost.

Algorithm 1: Reward function learning via IRL.

input : Training albums Ω = {ω(i)}, ground-truth
partition {g(i)}

output: Binary classifier (w, b) for Rshort

Initialization w ← w0, b ← b0, L ← ∅;
repeat

for ω(i) ∈ Ω do
t = 0;
Initialize partition ht with each photo as a single

group;
Initialize history Ht ← ∅;
repeat

M recommends candidate groups (Cj , Ck);
Compute action a = argmaxa Rshort(s, a);
Obtain ground-truth action aGT based on g(i);
if a �= aGT then

Add (φ(s), aGT) into L
end
if a = aGT then

ht+1 ← {ht\{Cj , Ck}} ∪ {Cj ∪ Ck}
end
Append (Cj , Ck, a) into Ht+1;
t = t+ 1;

until end of grouping;
Retrain (w, b) on L;

end

until all albums are successfully partitioned;

hardly be decided (e.g., merging two noisy groups or merg-
ing a clean group with a noisy group), this term provides a
strong evidence to the action-value function.

Finding the Reward and Policy

We assume the availability of a set training photo albums of
which the ground-truth partition of the photos is known. Let
Ω = {ω(i)} denotes a set of albums in a training set. The
ground-truth partition for albums ω(i) is given as g(i), from
which we can derive the ground-truth actions {aGT} as an
expert’s behavior. Our goal is to find a reward function based
on this behavior. We perform the learning in two steps to
ease the convergence of our method: (1) We employ IRL to
find the reward function with a myopic or short-sighted pol-
icy. (2) We then use the ε-greedy algorithm (Watkins 1989)
to find the optimal policy.
Step 1: Algorithm 1 summarizes the first step. Specifically,

we set γ = 0 in Eqn. (2) and β = 0 in Eqn. (3). This leads to
a myopic policy Qπ(s, a|π)= Rshort(s, a) that considers the
current maximal short-term reward. This assumption greatly
simplifies our optimization as (w, b) of Rshort (Eqn. (4)) are
the only parameters to be learned. We solve this using a bi-
nary RBF-kernel SVM with actions as the classes. We start
the learning process with an SVM of random weights and
an empty training set L =∅. We execute the myopic pol-
icy repeatedly on albums. Once the agent chooses the wrong
action w.r.t. the ground-truth, the representations of the in-
volved groups and the associated ground-truth will be added
to the SVM training set. Different albums constitute differ-
ent games in which SVM will be continually optimized us-
ing the instances that it does not perform well. Note that
the set L is accumulated, hence each time we use samples
collected from over time for retraining (w, b). The learning
stops when all albums are correctly partitioned.
Step 2: Once the reward function is learned, finding the
best policy π becomes a classic RL problem. Here we ap-
ply the ε-greedy algorithm (Watkins 1989). ε-greedy policy
is a way of selecting random actions with uniform distri-
bution from a set of available actions. Using this policy ei-
ther we can select random action with ε probability and we
can select an action with 1 − ε probability that gives max-
imum reward in a given state. Specifically, we set γ = 0.9
in Eqn. (2) and β = 0.8 in Eqn. (3). We first approximate
the action-value function Qπ in Eqn. (2) by a random for-
est regressor Q(φ(s), a) (Pyeatt, Howe, and others 2001).
The input to the regressor is (φ(s), a) and the output is the
associated Qπ value. The parameters of the regressor are
initialized by φ(s), a, and Qπ value, which are obtained
in the first step (Algorithm 1). After the initialization, the
agent selects and executes an action according to Q, i.e.,
a = argmaxa Q(φ(s), a), but with a probability ε the agent
will act randomly so as to discover a state that it has never
visited before. At the same time the parameters of Q will
be updated directly from the samples of experience drawn
from the algorithm’s past games. At the end of learning, the
value of ε is decayed to 0, and Q is used as our action-value
function for policy π.

Experiments
Training Data. We assume the availability of a set train-
ing photo albums of which the ground-truth partition of the
photos is known. From the known partitions we can derive
ground-truth actions as an expert’s behavior. The learned
policy can be applied to other datasets for face grouping.
Here we employ 2, 000 albums simulated from MS-Celeb-
1M (Guo et al. 2016) of 80k identities as our training source
and generalize it to various test data below.
Test Data. We evaluate the proposed approach on three
datasets of different scenarios exclusive from the training
source. Example images are provided in Fig. 4.
1) LFW-Album: We construct a challenging simulated al-
bums from LFW (Huang et al. 2007), MS-Celeb-1M (Guo
et al. 2016), and PFW (Sengupta et al. 2016), with a good
mix of frontal, profile, and non-interested faces. We prepare
20 albums and with exclusive identities. The MS-Celeb-1M
samples used here are exclusive from the training data.
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Figure 4: Overview of test datasets.

2) ACCIO Dataset: This dataset (Ghaleb et al. 2015) is com-
monly used in the studies of video face clustering. It con-
tains face tracklets extracted from series of Harry Potter
movie. Following (Zhang et al. 2016), we conduct experi-
ments on the first instalment of the series, which contains
3243 tracklets from 36 known identities. For a fair compar-
ison, we do not consider uninterested faces in this dataset
following (Zhang et al. 2016). We discard the temporal in-
formation and used only the frames in our experiments.
3) Grouping Face in the Wild (GFW): To better evaluate
our algorithm for real-world application, we collect 60 real
users’ albums with permission from a Chinese social net-
work portal. The size of an album varies from 120 to 3600
faces, with a maximum number of identities of 321. In to-
tal, the dataset contains 84,200 images with 78,000 faces
of 3,132 different identities. All faces are automatically de-
tected using Faster-RCNN (Ren et al. 2015). False detec-
tions are observed. We annotate all detections with iden-
tity/noise labels. The images are unconstrained, taken in var-
ious indoor/outdoor scenes. Faces are naturally distributed
with different poses with spontaneous expression. In addi-
tion, faces can be severely occluded, blurred with motion,
and differently illuminated under different scenes.

Given the limited space, we exclude results on traditional
grouping datasets like Yale-B (Georghiades, Belhumeur, and
Kriegman 2001), MSRA-A (Zhu, Wen, and Sun 2011),
MSRA-B (Zhu, Wen, and Sun 2011) and Easyalbum (Cui et
al. 2007). Yale-B were captured in controlled condition with
very few profile faces and noises. The number of albums is
limited in the other three datasets.
Implementation Details. All face representation are ex-
tracted from Inception-v3 model (Szegedy et al. 2015) fine-
tuned with MS-Celeb-1M (Guo et al. 2016). We set β = 0.8
in Eqn. (3) to balance the scales of short- and long-term re-
wards. We fixed the number of faces η = 5 to form the
similarity and quality features. The five shortest distances is
a good trade-off between performance and feature complex-
ity. If a group has fewer than five faces (to the extreme only
one face exists), we pad the distance vector with the farthest
distance.
Evaluation Metrics. We employ multiple metrics to eval-
uate the face grouping performance, including the B-cubed
precision, recall, and F1 score suggested by (Zhang, Kalash-
nikov, and Mehrotra 2013) and (Zhang et al. 2016). Specif-
ically, B-cubed recall measures the average fraction of face

pairs belonging to the ground truth identity assigned to the
same cluster. And B-cubed precision is the fraction of face
pairs assigned to a cluster with matching identity labels. The
F1 score measures the harmonic means of these two metrics.
We also use operation cost introduced in the ‘Long-Term
Reward’ section. To facilitate comparisons across datasets
of different sizes, we compute the operation cost normalized
by the number of photos as our metric, i.e., Op = Op/N .
We believe that this metric is more important than the others
since it directly reflects how much effort per image a user
needs to spend to organize a photo album.

Comparison with Unsupervised Methods

We compare our method with classic and popular clus-
tering approaches: 1) K-means, 2) Graph Degree Linkage
(GDL) (Zhang et al. 2012), 3) Hierarchical Clustering (HC),
and 4) Affinity Propagation (AP) (Frey and Dueck 2007).
Note that we also compare with (Zhang et al. 2016) on its
reported precision, recall, and F1 scores on the ACCIO-1
dataset. Note that these baselines use the same features as
our approach. To verify if the proposed imitation learning
(IL) framework helps existing clustering methods, we adapt
K-means, GDL and HC into IL-K-means, IL-GDL and IL-
HC to equip them with the sequential decision capability.
This is achieved by using the respective algorithm as the rec-
ommender.

Table 1 summarizes the results on three datasets. We ob-
served that imitation learning consistently improves the dif-
ferent clustering baselines. For instance, on LFW-Album,
the F1 score and Op of HC improves from 76.6% and 0.35
to 91.1% to 0.14. Notably, IL-HC outperforms other variants
based on the proposed IL, although our framework is not
specifically developed to work only with hierarchical clus-
tering. Qualitative results are provided in the supplementary
material, showing that imitation learning is capable of yield-
ing more coherent face groupings with exceptional robust-
ness to outliers.

Comparison with Supervised Methods

We compare our framework with two supervised baselines,
namely a SVM classifier and a three-layer Siamese network.
The three layers of the Siamese network have 256, 64, 64
hidden neurons, respectively. A contrastive loss is used for
training. To train the baselines, each time we sample two
subsets of identities from MS-Celeb-1M as the training data.
SVM and the Siamese Network are used to predict if two
groups should be merged or not. Features are extracted fol-
lowing the method presented in the methodology section.
These supervised baselines are thus strong – the features in-
clude face similarity vector that is derived from Inception-
v3 face recognition model fine-tuned with MS-Celeb-1M
dataset. The deep representation achieves 99.27% on LFW,
which is better than (Sun et al. 2014) and on-par with (Wen
et al. 2016). The results of the baseline are presented in Ta-
ble 1. It is observed that the IL-based approach outperforms
the supervised baselines by a considerable margin.
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Table 1: Face grouping results on LFW-Album, ACCIO-1, and GFW.
Dataset LFW-Album ACCIO-1 GFW
Metric P(%) R(%) F1(%) Op P(%) R(%) F1(%) Op P(%) R(%) F1(%) Op

K-means 73.6 86.6 79.3 1.12 72.2 34.4 46.6 0.65 66.6 35.7 41.1 1.47
GDL (Zhang et al. 2012) 66.5 92.2 76.4 1.21 18.1 91.1 30.2 3.51 67.4 59.4 55.9 1.30
HC 74.2 80.8 76.6 0.35 17.1 91.9 28.9 3.28 77.5 22.3 15.0 0.81
AP (Frey and Dueck 2007) 76.7 71.1 73.7 1.07 82.2 9.6 17.1 0.59 69.7 25.3 32.7 0.86
Deep Adaptation (Zhang et al. 2016) - - - - 71.1 35.2 47.1 - - - - -
IL-Kmeans 76.7 87.8 81.6 0.95 82.8 34.1 48.3 0.54 53.4 43.6 43.3 1.17
IL-GDL 79.9 90.1 84.5 0.54 88.6 46.3 60.8 0.78 78.4 76.2 74.5 0.68
IL-HC 97.8 85.3 91.1 0.14 90.8 78.6 84.3 0.52 96.6 53.7 67.3 0.17

SVM + Deep Features 82.7 87.4 85.0 0.45 89.0 61.3 72.6 0.74 84.3 46.4 56.3 0.33
Siamese Network + Deep Features 87.1 87.6 87.3 0.44 59.7 88.1 71.2 0.79 49.9 92.3 62.8 0.33

Random Recommender
HC Recommender

Training Iteration (# of Simulated Cluster Game)

��
��
��
�	

�
�

�

�

Figure 5: The F1 score on using different recommenders
along with different training iterations. The red curve is ob-
tained by using Hierarchical Clustering (HC) as the recom-
mender, while the blue curve is obtained by using the ran-
dom recommender.

Ablation Study

Further Analysis on Recommender. In previous experi-
ment, we tested three different recommenders based on dif-
ferent clustering methods, namely K-means, GDL, and HC.
In this experiment, we further analyze the use of a random
recommender that randomly chooses a pair to recommend.
Figure 5 shows the F1 score comparisons between a Hierar-
chical Clustering (HC) recommender and a random recom-
mender. In comparison to the recommender based on HC,
which always recommends the nearest groups, the random
recommender exhibits a slower convergence and poorer re-
sults. It is worth pointing out that the random recommender
still achieves a F1 score of 61.9% on GFW, which outper-
forms the unsupervised baseline, which only achieves 15%.
The results suggest the usefulness of deploying a recom-
mender.
Reward Function Settings. We evaluate the effect of two
reward terms in the reward function defined in Eqn. (3).
1) Rshort & Rlong: The full reward setting with β 	= 0.
2) w/o Rlong: Without the long-term reward based on oper-
ation cost, i.e., β = 0.
3) w/o Rshort: In this setting, we discarded Rshort learned by
IRL, and redefined it to take a naı̈ve ±1 loss, i.e., Rshort =
(a = aGT), where (·) is an indicator function that outputs

1 if the condition is true, and -1 if it is false.
The results reported in Table 2 shows that both short- and

long-term rewards are indispensable to achieve good results.
Comparing the baselines “w/o Rshort” against the full re-
ward, we observed that IL learned a more powerful short-
term reward function than the naı̈ve ±1 loss. Comparing the

Table 2: Different settings of reward function. We use IL-HC
in this experiment.

Dataset LFW-Album GFW
Metric F1(%) Op F1(%) Op

Rshort & Rlong 91.1 0.14 67.3 0.17
w/o Rlong 90.7 0.14 62.6 0.17
w/o Rshort 73.0 0.54 17.1 0.65

IL-HC IL-HC
(w/o ����� )

HCGround-Truth

Merge Not-Merge

Candidate Groups

FN

FP FP

FP

Figure 6: Example of merging decisions made by different
algorithms. Each image represents a group they belong to.
It is observed that IL-HC w/o Rlong tends to produce false
negative (FN) and false positive (FP) mistakes in compari-
son to IL-HC with full reward.

baselines “w/o Rlong” against the full reward, albeit remov-
ing Rlong only reduces the F1 score slightly, the number of
false positive and false negative merges actually increase for
noisy and hard cases. Figure 6 shows some representative
groups that were mistakenly handled by IL-HC w/o Rlong.

Discard the Face Quality Feature. If we remove the face
quality feature from the feature vector φ(s), the F1 score
achieved by IL-HC of LFW-Album, ACCIO-1, and GFW
will drop from 91.1%, 84.3%, and 67.3%, to 89.5%, 65.0%,
and 48.4%, respectively. The results suggest that the impor-
tance of quality measure depends on the dataset. Face qual-
ity feature is essential on the GFW dataset but less so on
others, since GFW consists more poor-quality images.
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Conclusion

We have proposed a novel face grouping framework that
makes sequential merging decision based on short- and long-
term rewards. With inverse reinforcement learning, we learn
powerful reward function to cope with real-world grouping
tasks with unconstrained face poses, illumination, occlusion,
and abundant of uninteresting faces and false detections. We
have demonstrated that the framework benefits many exist-
ing agglomerative-based clustering algorithms.
Acknowledgement. This work is supported by SenseTime
Group Limited and the General Research Fund sponsored
by the Research Grants Council of the Hong Kong SAR
(CUHK 14241716, 14224316. 14209217).

References

Barbakh, W., and Fyfe, C. 2007. Clustering with reinforcement
learning. In IDEAL.
Berg, T. L.; Berg, A. C.; Edwards, J.; Maire, M.; White, R.; Teh,
Y.-W.; Learned-Miller, E.; and Forsyth, D. A. 2004. Names and
faces in the news. In CVPR.
Cao, X.; Zhang, C.; Fu, H.; Liu, S.; and Zhang, H. 2015.
Diversity-induced multi-view subspace clustering. In CVPR.
Chen, J.-C.; Patel, V. M.; and Chellappa, R. 2016. Uncon-
strained face verification using deep CNN features. In WACV.
Cui, J.; Wen, F.; Xiao, R.; Tian, Y.; and Tang, X. 2007. Easyal-
bum: an interactive photo annotation system based on face clus-
tering and re-ranking. In ACM SIGCHI.
El Khoury, E.; Senac, C.; and Joly, P. 2010. Face-and-clothing
based people clustering in video content. In ICMIR.
Frey, B. J., and Dueck, D. 2007. Clustering by passing messages
between data points. Science.
Georghiades, A. S.; Belhumeur, P. N.; and Kriegman, D. J. 2001.
From few to many: Illumination cone models for face recogni-
tion under variable lighting and pose. TPAMI 23(6):643–660.
Ghaleb, E.; Tapaswi, M.; Al-Halah, Z.; Ekenel, H. K.; and
Stiefelhagen, R. 2015. Accio: A data set for face track retrieval
in movies across age. In ICMR.
Guo, Y.; Zhang, L.; Hu, Y.; He, X.; and Gao, J. 2016. MS-Celeb-
1M: A dataset and benchmark for large scale face recognition.
In ECCV.
Huang, G. B.; Ramesh, M.; Berg, T.; and Learned-Miller, E.
2007. Labeled faces in the wild: A database for studying face
recognition in unconstrained environments. Technical Report
07-49, University of Massachusetts, Amherst.
Li, Z., and Tang, X. 2004. Bayesian face recognition using
support vector machine and face clustering. In CVPR.
Likas, A. 1999. A reinforcement learning approach to online
clustering. Neural computation 11(8):1915–1932.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness, J.;
Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fidjeland, A. K.;
Ostrovski, G.; et al. 2015. Human-level control through deep
reinforcement learning. Nature 518(7540):529–533.
Ng, A. Y.; Russell, S. J.; et al. 2000. Algorithms for inverse
reinforcement learning. In ICMR.
Otto, C.; Klare, B.; and Jain, A. K. 2015. An efficient approach
for clustering face images. In ICB.

Otto, C.; Wang, D.; and Jain, A. K. 2016. Clustering millions
of faces by identity. arXiv preprint arXiv:1604.00989.
Parkhi, O. M.; Vedaldi, A.; and Zisserman, A. 2015. Deep face
recognition. In BMVC.
Pyeatt, L. D.; Howe, A. E.; et al. 2001. Decision tree function
approximation in reinforcement learning. In ISAS.
Ren, S.; He, K.; Girshick, R.; and Sun, J. 2015. Faster R-
CNN: Towards real-time object detection with region proposal
networks. In NIPS.
Schroff, F.; Kalenichenko, D.; and Philbin, J. 2015. Facenet: A
unified embedding for face recognition and clustering. In CVPR.
Sengupta, S.; Chen, J. C.; Castillo, C.; Patel, V. M.; Chellappa,
R.; and Jacobs, D. W. 2016. Frontal to profile face verification
in the wild. In WACV.
Sun, Y.; Chen, Y.; Wang, X.; and Tang, X. 2014. Deep learning
face representation by joint identification-verification. In NIPS.
Sun, Y.; Wang, X.; and Tang, X. 2015. Deeply learned face
representations are sparse, selective, and robust. In CVPR.
Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; and Wojna, Z.
2015. Rethinking the inception architecture for computer vision.
arXiv preprint arXiv:1512.00567.
Taigman, Y.; Yang, M.; Ranzato, M.; and Wolf, L. 2014. Deep-
face: Closing the gap to human-level performance in face verifi-
cation. In CVPR.
Tang, Z.; Zhang, Y.; Li, Z.; and Lu, H. 2015. Face clustering in
videos with proportion prior. In IJCAI.
Tian, Y.; Liu, W.; Xiao, R.; Wen, F.; and Tang, X. 2007. A
face annotation framework with partial clustering and interactive
labeling. In CVPR.
Watkins, C. J. C. H. 1989. Learning from delayed rewards.
Ph.D. Dissertation, University of Cambridge England.
Wen, Y.; Zhang, K.; Li, Z.; and Qiao, Y. 2016. A discriminative
feature learning approach for deep face recognition. In ECCV.
Wu, B.; Zhang, Y.; Hu, B.-G.; and Ji, Q. 2013. Constrained
clustering and its application to face clustering in videos. In
CVPR.
Xia, S.; Pan, H.; and Qin, A. 2014. Face clustering in photo
album. In ICPR.
Xiao, S.; Tan, M.; and Xu, D. 2014. Weighted block-sparse low
rank representation for face clustering in videos. In ECCV.
Xie, L.; Antle, A. N.; and Motamedi, N. 2008. Are tangibles
more fun?: Comparing children’s enjoyment and engagement
using physical, graphical and tangible user interfaces. In In-
ternational conference on tangible and embedded interaction,
191–198. ACM.
Zhang, W.; Wang, X.; Zhao, D.; and Tang, X. 2012. Graph
degree linkage: Agglomerative clustering on a directed graph.
In ECCV.
Zhang, Z.; Luo, P.; Loy, C. C.; and Tang, X. 2016. Joint face
representation adaptation and clustering in videos. In ECCV.
Zhang, L.; Kalashnikov, D. V.; and Mehrotra, S. 2013. A unified
framework for context assisted face clustering. In ICMR, ICMR
’13, 9–16. New York, NY, USA: ACM.
Zhou, C.; Zhang, C.; Fu, H.; Wang, R.; and Cao, X. 2015. Multi-
cue augmented face clustering. In ACM MM.
Zhu, C.; Wen, F.; and Sun, J. 2011. A rank-order distance based
clustering algorithm for face tagging. In CVPR.

6909


