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Abstract

Video caption refers to generating a descriptive sentence for
a specific short video clip automatically, which has achieved
remarkable success recently. However, most of the existing
methods focus more on visual information while ignoring the
synchronized audio cues. We propose three multimodal deep
fusion strategies to maximize the benefits of visual-audio res-
onance information. The first one explores the impact on
cross-modalities feature fusion from low to high order. The
second establishes the visual-audio short-term dependency
by sharing weights of corresponding front-end networks. The
third extends the temporal dependency to long-term through
sharing multimodal memory across visual and audio modal-
ities. Extensive experiments have validated the effectiveness
of our three cross-modalities fusion strategies on two bench-
mark datasets, including Microsoft Research Video to Text
(MSRVTT) and Microsoft Video Description (MSVD). It is
worth mentioning that sharing weight can coordinate visual-
audio feature fusion effectively and achieve the state-of-art
performance on both BELU and METEOR metrics. Further-
more, we first propose a dynamic multimodal feature fusion
framework to deal with the part modalities missing case. Ex-
perimental results demonstrate that even in the audio absence
mode, we can still obtain comparable results with the aid of
the additional audio modality inference module.

Introduction

Automatically describing video with natural sentences has
potential applications in many fields, such as human-
robot interaction, video retrieval. Recently, benefiting from
extraordinary abilities of convolutional neural networks
(CNN) (Simonyan and Zisserman 2014; Szegedy et al.
2015; 2016), recurrent neural networks (RNN) (Hochreiter
and Schmidhuber 1997) and large paired video language
description datasets (Xu et al. 2016), video caption has
achieved promising successes.

Most video caption frameworks can be simply split-
ted into a encoder stage and a decoder stage respectively.
Conditioned on a fixed length of visual feature represen-
tation offered by encoder, decoder can generate a corre-
sponding video description recurrently. To generate a fixed
length video representation, several methods are proposed,
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such as pooling over frames (Venugopalan et al. 2014),
holistic video representations (Gua ; Rohrbach et al. 2015;
2013), sub-sampling on a fixed number of input frames (Yao
et al. 2015) and extracting the last hidden state of recurrent
visual feature encoder (Venugopalan et al. 2015).

Those feature encoding methods mentioned above are
only based on visual cues. However, videos contain the vi-
sual modality and the audio modality. The resonance infor-
mation underlying them is essential for video caption gen-
eration. We believe that the lack of arbitrary modality will
result in the loss of information. For example, when a per-
son is lying on the bed and singing a song, traditional video
caption methods may generate an incomplete sentence, like
”a person is lying on the bed”, which may due to the loss
of resonance information underling audio modality. If au-
dio features can be integrated into video caption framework,
precise sentence ”a person is lying on the bed and singing”
will be expected to generate.

To thoroughly utilize both visual and audio information,
we propose and analyze three multimodal deep fusion strate-
gies to maximize the benefits of visual-audio resonance
information. The first one explores the impact on cross-
modalities feature fusion from low to high order. The second
establishes the visual-audio short-term dependency by shar-
ing weights of corresponding front-end networks. The third
extends the temporal dependency to long-term through shar-
ing multimodal memory across visual and audio modalities.
Furthermore, a dynamic multimodal feature fusion frame-
work is also proposed to deal with audio modality absent
problem during video caption generation.

The contributions of our paper include:

a. We present three multimodal feature fusion strategies, to
efficiently integrate audio cues into video caption.

b. We propose an audio modality inference module to handle
audio modality absent problem, through generating audio
feature based on the corresponding visual feature of the
video.

c. Our experimental results based on Microsoft Research-
Video to Text (MSR-VTT) and Microsoft Video Descrip-
tion (MSVD) datasets show that our multimodal feature
fusion frameworks lead to the improved results in video
caption.
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Related works

Video Caption

Early works concerning on video caption can be classified
into three groups.

The first category is template-based methods. They first
identified the semantic attributes hidden in videos and then
derived a sentence structure based on some predefined sen-
tence templates (Krishnamoorthy et al. 2013; Thomason et
al. 2014). Then, probabilistic graphical model was utilized
to collect the most relevant contents in videos to generate
the corresponding sentence. Although sentences generated
by these models seemed to be grammatically correct, they
were lack of richness and flexibility.

The second category treat video caption as a retrieval
problem. They tagged videos with metadata (Aradhye,
Toderici, and Yagnik 2009) and then clustered videos and
captions based on these tags. Although the generated sen-
tences were more naturally compared to the first group, they
were subject to the metadata seriously.

The third category of video caption methods directly map
visual representation into specific provided sentences (Venu-
gopalan et al. 2014; Yao et al. 2015; Pan et al. 2016a;
2016b), which take inspiration from image caption (Vinyals
et al. 2015; Donahue et al. 2015).

We argue that these video caption methods only rely on
visual information while ignoring audio cues, which will re-
strict the performance of video caption. To handle this prob-
lem, we explore to incorporate audio information into video
caption.

Exploiting Audio Information from Videos

Audio sequence underlying videos always carry meaning-
ful information. Recently, many researchers have tried to in-
corporate audio information into their specific applications.
In (Owens et al. 2016), Owens et al. adopted ambient sounds
as a supervisory signal for training visual models, their ex-
periments showed that units of trained network supervised
by sound signals carried semantic meaningful information
about objects and scenes. Ren et al. (Ren et al. 2016) pro-
posed a multimodal Long Short-Term Memory (LSTM) for
speaker identification, which referred to locating a person
who has the same identity with the ongoing sound in a cer-
tain video. Their key point was sharing weights across face
and voice to model the temporal dependency over these two
different modalities.

Inspired by (Ren et al. 2016), we propose to build
temporal dependency across visual and audio modalities
through sharing weights for video caption, aiming at ex-
ploring whether temporal dependency across visual and au-
dio modalities can capture the resonance information among
them or not.

Memory Extended Recurrent Neural Network

Internal memory in RNN can preserve valuable information
for specific tasks. However, it cannot well handle the tasks
which need long-term temporal dependency.

To enhance the memory ability of RNN, an external mem-
ory has been utilized to extend RNN in some works, such as

Neural Turing Machine(NTM) (Graves, Wayne, and Dani-
helka 2014), memory network (Weston, Chopra, and Bordes
2014), which is simply dubbed as memory enhanced RNN
(ME-RNN).

ME-RNNs have been widely applied in many tasks. Be-
sides handling single task which needs long temporal depen-
dency, such as visual question answering (Xiong, Merity,
and Socher 2016) and dialog systems (Dodge et al. 2015),
ME-RNNs have been adopted for multi-tasks to model long
temporal dependency across different tasks (Liu, Qiu, and
Huang 2016).

To explore whether long visual-audio temporal depen-
dency can capture the resonance information among two
modalities, we first try to build a visual-audio shared mem-
ory across visual and audio modalities for video caption.

Methods

In this section, we first introduce the basic video caption
framework that our work is based on. Then, three multi-
modal feature fusion strategies are depicted for video cap-
tion respectively. Meanwhile, dynamic multimodal feature
fusion framework and its core component AMIN are also
presented.

LSTM LSTM LSTM LSTM LSTMLSTM LSTMLSTM LSTM LSTM LSTM

<pad> <pad> <pad> <pad> <pad> <pad> <pad>

LSTM LSTM LSTM LSTM LSTMLSTM LSTMLSTM LSTM LSTM LSTM

<pad> <pad> <pad> <pad>
M0 M1 M2 M3 M4 M5

A Woman is Singing a Song <EOS>

<BOS>

Encoding Stage Decoding Stage

Figure 1: Basic pipeline of our video caption framework.

Basic Video Caption Framework

Our basic video caption framework is extended from
S2VT (sequence to sequence: video to text) model (Venu-
gopalan et al. 2015) and M3 (multimodal memory modeling)
model (Wang et al. 2016), which is shown in Figure 1.

As in Figure 1, encoding stage encodes visual feature and
decoding stage generates visual description. Specifically, vi-
sual feature inputs are constructed by the top LSTM layer
(colored green). Intermediate mulitimodal memory (colored
cyan) layer is shared by visual and textual modalities. Lan-
guage is modeled by the bottom multimodal memory ex-
tended LSTM (colored red), which is conditioned on text
sequence input and information reading from mulitimodal
memory. <BOS> and <EOS> tags in Figure 1 indicate the
begin-of-sentence and end-of-sentence respectively. <pad>
hints that there is no input at the corresponding time step.
In addition, the colored blue/organge lines denote writ-
ing/reading information into/from memory.

Multimodal Feature Fusion strategies

Concatenating Visual and Audio Features In this sec-
tion, we propose two different concatenation ways and
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present them in Figure 2.
Specifically, one concatenation way is shown in Figure 2

(a). Before LSTM encoder, visual-audio feature pairs of cor-
responding video clips are directly concatenated together.
Then the concatenated features are sent to LSTM encoder.
The other concatenation way is presented in Figure 2 (b).
Visual-audio feature pairs are first separately sent to the cor-
responding LSTM encoders. Then the last hidden states of
these two LSTM encoders are concatenated together.

MFCC
Outputs

Feature 
Concatenation

CNN
 Outputs

Encoder
LSTM

Raw Audios

Raw FramesCNN
 Outputs

MFCC
Outputs

Feature 
Concatenation

Encoder
LSTM

Raw Audios

Raw Frames

(a) Concatenation executed before Encoder LSTM (b) Concatenation executed after Encoder LSTM

Figure 2: Visual and audio feature concatenation before and
after LSTM encoder.

Sharing Weights across Visual-Audio Modalities Al-
though concatenation is effective for visual and audio fea-
ture fusion, it can not capture the resonance information
across them well. To handle this problem, we propose a mul-
timodal LSTM via sharing weights across visual and audio
modalities for video caption. Framework of this multimodal
LSTM encoder is shown in Figure 3 (a) and formulated as:
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where it, ft, ot and c̃t are the input gate, forget gate, output
gate and the updated memory content separately, the super-
script s indexes visual and audio input sequences respec-
tively. When s = 0, (1)-(6) denotes the LSTM-based vi-
sual feature encoder and xs

t is the visual feature extracted
by CNNs. When s = 1, (1)-(6) indicates the LSTM-
based audio feature encoder and xs

t is the audio MFCC
(mel-frequency cepstral coefficients) feature. In addition,
W s(s = 0, 1) are weight matrices for inputting visual and
audio features respectively. U is the weight matrix shared by
hidden states of visual and audio encoders. bs(s = 0, 1) are
the corresponding biases.

Sharing Memory between Visual-Audio Modalities To
see whether long temporal dependency across visual and au-
dio modalities is beneficial to video caption, we first build
memory across visual and audio modalities. Concretely,
an external memory is attached between visual and audio
LSTM encoders. Framework of this multimodal memory en-
coder is presented in Figure 3 (b).

Basic procedures of our multimodal memory interac-
tions between visual and audio modalities can be realized
through the following steps: (1) read information from ex-
ternal memory. (2) fuse information from external memory
into internal memories of visual and audio encoder LSTMs
respectively. (3) update external memory.

CNN
 Outputs

MFCC
Outputs

Weights Shared
Encoder LSTM

Sharing  Weights

Raw Audios

Raw Frames

Sharing  Memory

CNN
 Outputs

MFCC
Outputs

Memory Shared
Encoder LSTM

M0 M1 Mt

Raw Audios

Raw Frames

(a) Fusing visual and audio features by sharing weights. (b) Fusing visual and audio features by sharing weights.

Figure 3: Visual and audio feature fusion via sharing weights
and memory.

a. External Memory External memory adopted in our pa-
per is defined as a matrix M ∈ RK×D, where K is the num-
ber of memory elements, and D is the dimension of each
memory element.

At each time step t, an output hs
t and three vectors, in-

cluding key value keyst , erase vector est and add vector ast
are simultaneously emitted by visual and audio LSTM en-
coders respectively. They can be computed by

⎡
⎣
keyst

est
ast

⎤
⎦ =

⎡
⎣
tanh

σ

tanh

⎤
⎦ (W s

e h
s
t + bse), s = 0, 1 (7)

where W s
e , b

s
e(s = 0, 1) are the weights and bias for corre-

sponding terms respectively.

b. Reading Information from External Memory We de-
fine the procedure as:

rst = αs
tMt−1, s = 0, 1 (8)

where superscript s indexes the visual and audio input se-
quences, rst ∈ RD(s = 0, 1) indicate reading vectors for vi-
sual or audio streams respectively, αt ∈ RK denotes atten-
tion distribution over the elements of memory Mt−1, which
decides how much information will be read from the exter-
nal memory.

Each element αt,k in αt can be obtained via the following
calculation:

αs
t,k = softmax(g(Mt−1,k, key

s
t−1)), s = 0, 1 (9)

where g(.) is the similarity measure function, which is uti-
lized to calculate the similarity between each element of
memory and the key value keyst at time t. Here, we apply
cosine similarity metric function.

c. Fusing Information of External and Internal Memo-
ries After we obtain information from external memory
rt, deep fusion strategy proposed in paper (Liu, Qiu, and
Huang 2016) is utilized to comprehensively integrate rt into
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internal memories of visual and audio LSTMs respectively.
In detail, states hs

t of visual and audio LSTM encoders at
step t conditioned not only on internal memory cst , but also
on information rst reading from external memory, which can
be computed via

ht
s = ot

s � (ct
s + gt

s � (Wl
srst )), s = 0, 1 (10)

where Wl denotes the parameter matrix, gt indicates the fu-
sion gate, which controls how much information will flow
from external memory into fused memory and can be ob-
tained via

gt
s = σ(Wp

scst +Wq
srst ), s = 0, 1 (11)

where Wp and Wq are the corresponding parameter matri-
ces.

d. Updating Memory Memory is updated through the fol-
lowing procedures:

Mt
0 = M0

t−1[1− α0
t e

0
t ] + α0

ta
0
t (12)

Mt
1 = M1

t−1[1− α1
t e

1
t ] + α1

ta
1
t (13)

Mt = PMt
0 + (1− P )Mt

1 (14)
where e0t /e1t and a0t /a1t are the erase and add vectors emit-
ted by visual/audio encoder respectively. Final updating of
memory is the combination of updated memory from visual
and audio streams respectively. Parameter P is tuned on the
validation set.

Audio Modality Inference Framework

To still get benefits from audio features even when this
modality is absent, we develop an audio modality inference
framework (AMIN). AMIN is presented in Figure 4 (a).

AMIN can be formulated as follows:

ŷ = DAMIN (EAMIN (x, θ), ϑ) (15)
where x indicates the visual feature and ŷ denotes the gener-
ated corresponding audio feature. EAMIN /DAMIN demon-
strates the encoding/decoding function and θ/ϑ is the param-
eter set of the encodering/deconding stage.

We utilize �2 constraint as the training loss for AMIN
model, which is dubbed as LAMIN and formulated:

LAMIN = ‖y − ŷ‖2 (16)
where y is the ground truth audio MFCC feature.

Dynamic Feature Fusion Framework

When AMIN is trained well, a dynamic feature fusion
framework can be obtained by combining AMIN with our
proposed feature fusion strategies, which is presented in Fig-
ure 4 (b).

Concerning videos which own both visual and audio se-
quences, they can be directly sent to multimodal feature
fusion framework perform video caption (solid arrows). If
offered videos have only visual sequence, AMIN model is
adopted to generate audio features based on the correspond-
ing video clip, then the visual and generated audio features
are sent to multimodal feature fusion framework to perform
video caption (dotted arrows).

Visual 
Feature

Auditory 
Feature1024

512
1024

256 256 512

Encoder Decoder

Visual 
Feature

Generated 
Auditory Feature

Auditory  Feature

Multimodal Feature 
Fusion Encoder

AMIN

(a) Auditory modality inference framework(AMIN) (b) Dynamic multimodal feature fusion framework

Figure 4: Dynamic multimodal feature fusion framework.

Training and Inference

Assume the number of training video caption pairs (xi, yi)
are N and the length of caption yi is li, the averaged log-
likelihood over the whole training dataset integrates a regu-
larization term is treated as our objective function.

L(θ) =
1

N

N∑
i=1

li∑
j=1

log ρ(yij |yi1:j−1, x
i, θ) + λ‖θ‖22 (17)

where yij is adopted to represent the input word, λ indicates
the regularization coefficient and θ denotes all parameters
needed to be optimized in the model.

Just as most LSTM language models, a softmax layer
is employed to model the probability distribution over the
whole vocabulary of the next generated word.

mt = tanh(WxXt +Whht +Wyyt−1 + bh) (18)

ηt = sofmax(Upmt + bη) (19)

where Wx, Wh, Wy , Up, bh and bη are the parameters
needed to be optimized. Depending on the probability dis-
tribution ηt, word sequence yt can be recursively sampled
until encountering the end of symbol in the vocabulary.

Concerning caption generation, a beam search strategy is
chosen to generate word sequence (Yu et al. 2016).

Experiments

Data Representation and Video Caption Datasets

For a given video, we first sample it with a fixed number of
frames/clips, then the pre-trained 3D CNNs are utilized to
extract frame features. Meanwhile, MFCC features of each
audio clip are extracted. Visual and audio feature represen-
tations can be denoted as xs = {x1, x2, ..., xn}, s = 0, 1,
where s indexes visual and audio feature representations re-
spectively and n is the number of sampled frames/clips.

To validate the performance of our model, we utilize the
Microsoft Research-Video to Text Dataset (MSR-VTT) and
Microsoft Video Description Dataset (MSVD) (Chen and
Dolan 2011). Their split method can be found in (Xu et al.
2016) and (Yao et al. 2015) respectively.
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Table 1: Comparison results of different models for video
caption with C3D frame features.

Models B@3 B@4 METEOR
M3 0.472 0.351 0.257
audio 0.370 0.268 0.192
Visual 0.473 0.363 0.257
V-CatL-A 0.480 0.369 0.258
V-CatH-A 0.485 0.374 0.258
V-ShaMem-A 0.493 0.375 0.259
V-ShaWei-A 0.494 0.383 0.261

Experimental Setup

During model training, start and end tags are added to each
sentence respectively. Words that not existed in vocabu-
lary are replaced with UNK token. Furthermore, masks are
added to sentences, visual and auditory features separately
for better batch training. Parameters are set as follows, beam
search size, word embedding dimension and LSTM hid-
den state dimension are 5, 468 and 512 respectively. Size
of visual-auditory and visual-textual shared memories are
64 × 128 and 128 × 512 respectively. To avoid overfitting,
dropout (Srivastava et al. 2014) with 0.5 rate are utilized on
both the output of fully connected layer and the output layers
of LSTM, but not on the intermediate recurrent transitions.
In addition, gradients are clipped into range [-10,10] to pre-
vent gradient explosion. Optimization algorithm utilized for
our deep feature fusion frameworks is ADADELTA (Zeiler
2012).

Concerning auditory modality supplemental network, it
contains 3 fully connected layers for encoder and decoder
respectively. Units’ numbers of encoder hidden layers are
1024, 512 and 256 separately and 256, 512, 1024 for decoder
hidden layers.

Evaluation of Multimodal Feature Fusion Models

Evaluation the Performance of Various Multimodal Fea-
ture Fusion Frameworks To validate the effectiveness of
integrating audio modality into video caption framework,
we develop several feature fusion models and denote them
as follows: V-CatL-A/V-CatH-A: Concatenating features of
visual and audio modalities before/after encoder LSTM. V-
ShaWei-A/V-ShaMem-A: Sharing weights/memeory across
visual and audio modalities during encoding stage.

We compare our feature fusion models with several video
caption models, including M3 (Wang et al. 2016), Visual
model (our basic video caption model), Audio model (our
basic video caption model with audio features instead of
visual features) respectively. Comparison results based on
C3D visual features are shown in Table 1.

Table 1 reveals that performances of our visual and au-
dio feature fusion models, including V-CatL-A, V-CatH-
A, V-ShaMem-A and V-ShaWei-A models, are uniformly
better than those of models which only conditioned on vi-
sual or audio features. Moreover, performance of V-CatH-A
is better than that of V-CatL-A, which indicates concate-
nating visual and audio features in higher layer is more

efficient than that in low layer. In addition, results of V-
ShaMem-A and V-ShaWei-A models are superior to those of
V-CatL-A and V-CatH-A models, which hints the temporal
dependency across visual and audio modalities can further
boost the performance of video caption. Moreover, perfor-
mances of V-ShaWei-A model surpass those of V-ShaMem-
A model, demonstrating short temporal dependency is more
efficient. It may be because that short temporal dependency
can capture the resonance information among visual and au-
dio modalities more efficiently.

Our best model can make a great improvement over M3

by 38.3−35.1
35.1 = 9.1% in BLUE@4 score and by 26.1−25.7

25.7 =
1.5% in METEOR score based on C3D feature.

Evaluation of the Generated Sentences of Various Mul-
timodal Feature Fusion Strategies Figure 5 presents
some sentences generated by different models and human-
annotated ground truth based on the test set of MSR-VTT.
We can see that audio model always generates wrong sen-
tences, which may be because the absence of visual modal-
ity leads to serious information loss. On the other hand, V-
ShaWei-A model can generate sentences with more related
objects, actions and targets.

Concerning the first video, sentence generated by Visual
model focuses more on visual cues while ignores audio in-
formation. As a result, it generates wrong content (”to a
man” vs. ”news”). V-Cat-A model generates accurate ob-
ject ”a man” and action ”talking” while lossing the con-
tent ”news”. It is because that directly concatenating visual
and audio features may lead to the collapse of information.
Both V-ShaMem-A and V-ShaWei-A models can generate
more related sentences with the help of audio cues. Concern-
ing V-ShaMem-A model, it focuses more on the summation
of longer period of information, which blurs the resonance
among visual and audio modalities and offers a more ab-
stract word ”something”. Concerning V-ShaWei-A model, it
pays more attention to the event in a finer granularity which
real matters, indicating it can capture the resonance infor-
mation among two modalities effectively.

Concerning the second video, all models can generate the
related action ”swimming” and target ”in the water”. While
only V-ShaWei-A model generates precise object (”fish” vs.
”man” and ”person”). Reason is that V-ShaWei-A model
can capture both motion and sound sensitive object (the
resonance information among visual and audio modalities),
other than static object which looks like a man.

Concerning the third video, only V-ShaWei-A model gen-
erates more related action (”showing” vs. ”playing”), which
indicates V-ShaWei-A model can capture the nature of an
action.

Concerning the forth video, V-Cat-A and V-ShaWei-A
model can generate more related actions (”knocking on a
wall”, ”using a phone”) with the aid of audio information.
However, V-ShaMem-A model focus more on global event
and generates a sentence ”lying on bed”. Moreover, Visual
model pays more attention on visual information and also
generates description ”lying on bed”.

Concerning the fifth video, event happened in this video is
more related to visual information. Consequently, Visual, V-
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Generated Sentence: Reference Sentence:

1. a man with a blue shirt is talking
2. a man talks about matters of science
3. a man in a suit is talking about psychological 

Aduio:               a man is showing how to make a dish
Visual:              a man in a suit is talking to a man
V-Cat-A: a man is talking
V-ShaMem-A: a man in a suit is talking about something
V-ShaWei-A: a man in a suit talks about the news

Generated Sentence:

Generated Sentence:

Generated Sentence:

Generated Sentence:

Reference Sentence:

Reference Sentence:

Reference Sentence:

Reference Sentence:

1. gold fishes are swimming in the blue water
2. fish swimming in the fish tank
3. some red and white fish are swimming in a tank

Aduio:               a man is swimming
Visual:               a person is swimming in the water
V-Cat-A: a man is swimming in the water
V-ShaMem-A: a man is swimming in the water
V-ShaWei-A: a fish is swimming in the water

1. person shows of disney merchandising
2. a person shows off a wallet
3. someone is showing some art

Aduio: someone is playing with toys
Visual:               a person is playing a video game
V-Cat-A: a person is playing with toys
V-ShaMem-A: a person is playing a video game
V-ShaWei-A: a person is showing with toys

1. a girl in bed knocking on the wall
2. a girl is knocking on the wall
3. a girl lays in bed and uses her phone 

Aduio: a person is knocking
Visual:                a girl is laying on bed
V-Cat-A: a girl is using a phone
V-ShaMem-A: a woman is laying on a bed
V-ShaWei-A: a girl is knocking on a wall

1. cartoon characters dance in the rain
2. animated characters are dancing in the rain
3. a bunch of anime and cartoon character are dancing

Aduio: someone is playing a game
Visual:            a cartoon character is dancing
V-Cat-A: a girl is singing
V-ShaMem-A: a group of people are dancing
V-ShaWei-A: a group of cartoon characters are dancing

Figure 5: Descriptions generated by Visual, audio, V-Cat-A, V-ShaMem-A, V-ShaWei-A models and human-annotated ground
truth based on the test set of MSR-VTT.

ShaMem-A and V-ShaWei-A models all generate more pre-
cise actions (”dancing” vs. ”playing” and ”singing”). More-
over, V-ShaMem-A and V-ShaWei-A models offer more pre-
cise number of objects (”a group of” vs. ”a girl”, ”a cartoon
character” and ”someone”), indicating temporal dependency
across visual and audio modalities is helpful for the identifi-
cation of the object. Moreover, V-ShaWei-A model provides
more accurate object (”cartoon characters” vs. ”people”),
which validates short temporal dependency is more effective
in capturing resonance information among two modalities.

Evaluation of Dynamic Multimodal Feature Fusion

Evaluation of Supplemental Audio Modality based on
MSR-VTT To validate whether the supplemental audio
modality has comparable effects with the original one, we
compare models V-ShaMem-GA (similar with V-ShaMem-
A model except utilizing generated audio features instead
of original audio features), V-ShaMem-Zero (similar with
V-ShaMem-A model except utilizing zeros to replace audio
features) and Visual model based on MSR-VTT dataset. V-
ShaWei-GA, V-ShaCatH-GA, V-ShaWei-Zero, V-ShaCatH-
zero share the similar meanings with corresponding terms.

Comparison results are shown in Table 2. Models with vi-
sual and generated audio features (V-CatH-GA, V-ShaMem-
GA and V-ShaWei-GA), are superior to corresponding mod-
els with visual and zero filled audio features (V-CatH-Zero,
V-ShaMem-Zero and V-ShaWei-Zero) and Visual model,
which indicates supplemental audio features convey useful
information.

Table 2: Comparison results of different models for video
caption with C3D frame features based on MSR-VTT.

Models B@3 B@4 METEOR
Visual 0.473 0.363 0.257
V-CatH-Zero 0.447 0.343 0.241
V-CatH-GA 0.479 0.372 0.255
V-ShaMem-Zero 0.450 0.338 0.251
V-ShaMem-GA 0.479 0.374 0.256
V-ShaWei-Zero 0.463 0.354 0.252
V-ShaWei-GA 0.487 0.379 0.259

Evaluation of Supplemental Audio Modality based on
MSVD To further verify the effectiveness of supplemental
audio features, we evaluate video caption based on MSVD
dataset which has no audio cues. Audio features are first gen-
erated by audio modality inference network (AMIN), then
these features are fused with visual information through our
multimodal featuree fusion frameworks for video caption.

To validate whether supplemental audio features contain
useful information or not, we compare models V-ShaWei-
GA, V-ShaMem-GA with Visual model. In addition, to
verify whether pretraining based on a big dataset MSR-
VTT dataset will further boost the performance or not, V-
ShaWei-GA-Pre, V-ShaMem-GA-Pre models (similar with
V-ShaWei-GA and V-ShaMem-GA models respectively, ex-
cept that before training on MSVD dataset, models are first

6899



Generated Sentence: Reference Sentence:

1. a kid is playing a violin
2. a boy plays a violion
3. a boy is playing the violin on stage

     GA: a man is playing a guitar
Visual:              a man is playing a Piano  
V-ShaWei-GA: a man is playing a violin

Generated Sentence:

Generated Sentence:

Reference Sentence:

Reference Sentence:

1. someone is pouring tomato sauce from a 
can into a saucepan containing meat pieces 

2. a person pours tomato sauce in a pot
3. a man pours tomato sauce into a pan with meat

  GA:                    a man is pouring water
  Visual:               the person is cooking the something

V-ShaWei-GA: a man is pouring sauce into a pot

1. a girl is horseback riding through a course
2. a girl is riding a horse
3. a woman is riding a horse

  GA:                    a girl is riding a horse
  Visual:                a man is riding a horse  
  V-ShaWei-GA:   a girl is riding a horse

Figure 6: Descriptions generated by Visual, Generated audio (GA), V-ShaWei-GA models and human-annotated ground truth
based on the test set of MSVD.

pretrained based on MSR-VTT) are utilized as comparisons.
Comparison results are presented in Table 3.

Among Table 3, performances of V-ShaWei-GA mod-
els are better than those of Visual model (M3, state-of-art
Visual model), which again verifies that supplemental au-
dio features carry meaningful information for video cap-
tion. In addition, models with pretraining obtain best perfor-
mance, which demonstrates knowledge learned from other
big dataset can further enhance our specific task.

Evaluation of the Generated Sentences of Dynamic Mul-
timodal Feature Fusion Framework Figure 6 presents
some sentences generated by GA (models with only gener-
ated audio features), M3 (Wang et al. 2016), V-ShaWei-GA
models and human-annotated ground truth based on the test
set of MSVD.

Concerning the first video, sentence generated by Visual
model focuses more on visual cues. Consequently, it gen-
erates wrong content ”piano”, which is because the object
behind the boy is like a piano and takes a large space in the
image. V-ShaMem-GA model equipped with generated au-
dio cues captures more related object ”violin”, which further
verifies that the supplemental audio modality is useful and
the V-ShaWei-GA model can capture temporal related vi-
sual and audio cues. GA model generates more similar term
”guitar” than ”piano”, compared to the precise term ”violin”,
which validates the effectiveness of generated audio cues.

Concerning the second video, V-ShaWei-GA model can
generates more accurate action (”pouring sauce into a pot”
vs. ”cooking the something”), which reveals that the V-
ShaWei-GA model can capture the resonance information
underlying visual and audio modalities effectively. Similar
with V-ShaWei-GA model, GA model also generates pre-
cise action ”pouring”, further demonstrating that the gener-
ated audio features is meaningful.

Concerning the third video, V-ShaWei-GA and GA model
can generate more related object (”girl” vs. ”man”).

Conclusions

In this paper, we propose three multimodal feature fusion
strategies to integrate audio information into models for en-

Table 3: Comparison results of different models for video
caption with C3D frame features based on MSVD.

Models B@3 B@4 METEOR
M3 (Wang et al. 2016) 0.563 0.455 0.299
GA 0.482 0.381 0.281
V-ShaMem-GA 0.569 0.467 0.304
V-ShaMem-GA-Pre 0.570 0.471 0.307
V-ShaWei-GA 0.571 0.468 0.307
V-ShaWei-GA-Pre 0.584 0.479 0.309

hanced video caption. Each of these three strategies can uni-
formly boost the performance of video caption, which de-
notes the valuableness of audio cues underlying videos. In
addition, fusion models via sharing weights across visual
and audio modalities can well model the reason information
among them and obtains the best results. Moreover, based
on our multimodal feature fusion model, we propose a dy-
namic multimodal feature fusion framework to handle audio
modality absent problem. It can generate promising audio
features based on the corresponding visual features when the
audio modality is missing.
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