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Abstract

Video-based action recognition with deep neural networks
has shown remarkable progress. However, most of the ex-
isting approaches are too computationally expensive due to
the complex network architecture. To address these prob-
lems, we propose a new real-time action recognition architec-
ture, called Temporal Convolutional 3D Network (T-C3D),
which learns video action representations in a hierarchical
multi-granularity manner. Specifically, we combine a resid-
ual 3D convolutional neural network which captures com-
plementary information on the appearance of a single frame
and the motion between consecutive frames with a new tem-
poral encoding method to explore the temporal dynamics of
the whole video. Thus heavy calculations are avoided when
doing the inference, which enables the method to be capa-
ble of real-time processing. On two challenging benchmark
datasets, UCF101 and HMDB51, our method is significantly
better than state-of-the-art real-time methods by over 5.4% in
terms of accuracy and 2 times faster in terms of inference
speed (969 frames per second), demonstrating comparable
recognition performance to the state-of-the-art methods. The
source code for the complete system as well as the pre-trained
models are publicly available at https://github.com/tc3d.

1 Introduction

Video-based action recognition is to enable the comput-
ers to recognize the human actions automatically in real-
world videos. It has attracted considerable attention from
the academic community (Simonyan and Zisserman 2014;
Tran et al. 2015) to industry applications such as video
classification (Karpathy et al. 2014) and behavior analysis
in public security systems (Wang and Schmid 2013). The
task of human action recognition in videos, however, is still
very challenging due to several reasons. First, the video is
naturally an information-intensive media with a number of
complexities, e.g., scale variations, cluttered background,
viewpoint changes, camera motions, and so on. Second, un-
like action recognition in a still image, video-based action
recognition should have the ability of characterizing both
short-term small motions and long-term temporal evolutions
of appearances. Some actions can be reliably distinguished
through the motion computed from consecutive frames (i.e.,
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(a) Playing Piano and Archery

(b) High Jump and Long Jump

Figure 1: Example videos from four classes of UCF101.
Some actions can be reliably distinguished through the mo-
tion computed from consecutive frames. However, certain
similar actions require the overall features of the video to
identify since the short-term information on a clip is almost
the same. For example, in (a), we can identify the “Play-
ing Piano” and “Archery” with sequential frame. While in
(b), “High Jump” and “Long Jump” can be accurately rec-
ognized only when the overall information is obtained.

short-term motions), but there are also certain similar ac-
tions that require the overall features of long-term video
(i.e., long-term motions), where the short-term information
on short clips is almost the same.

To illustrate the above issues, we show some example
videos from UCF101 (Soomro, Zamir, and Shah 2012)
dataset in Figure 1. As shown in Figure 1, “Playing Pi-
ano” and “Archery” can be easily recognized through the
appearance information of a static frame or small motion be-
tween continual frames. However, sometimes short clips are
not sufficient for distinguishing similar classes (high jump
vs long jump). In this situation, the video-level representa-
tions must be taken into consideration. Therefore, it is im-
portant to exploit the complementary nature of the single
static image, the short and long-term temporal evolution, and
the video-level representations, which, however, is a great
challenge in video processing. Last but not least, due to the
highly complex nature of the videos, it often requires ex-
pensive computational cost to deal with a video. In practice,
this is often the most critical bottleneck for video-based ac-
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tion recognition, and most existing methods are hard to be
applied to large-scale datasets or real-time situations.

In the last decade, extensive research has been done
on video-based action recognition, which includes hand-
engineered descriptor-based methods and action represen-
tations with deep learning. The former mainly consists
of feature extraction, feature encoding, and classification,
which predominantly focuses on designing discriminative
and powerful video descriptors with local spatial-temporal
features. However, the performance of hand-crafted descrip-
tors is not satisfactory. Unlike the methods with hand-crafted
descriptors, most deep learning methods make use of con-
volutional neural networks (CNNs) to capture individual
image-level appearance and exploit the temporal character-
istic in videos. Unfortunately, most of the impressive deep
learning based approaches cannot be deployed for real-time
process due to their high computation burden (e.g., optical
flow).

To solve the above issues, we seek to take the advantages
of a deep 3-dimensional convolutional neural network (3D-
CNN) to represent both the image-level information and
motion information between consecutive frames. Therefore,
our method can significantly reduce the computational com-
plexity compared to the two-stream based methods since
it avoids extracting the optical flow. Furthermore, we use
the entire video information to distinguish the similar ac-
tions by a temporal encoding method. Owing to this en-
coding method, our approach obtains fast inference speed
and achieves high performance compared to other 3D-CNN
based methods. Lastly, we explore many alternatives for our
T-C3D to build up the good architecture for action recog-
nition. In this step, we also gain some interesting findings
that might benefit future research on the related subjects.
For example, we observe that pre-training the 3D-CNN on
a clean but small dataset is more critical than a large but
noisy dataset to improve the performance. Experiments on
two challenging datasets demonstrate that T-C3D signifi-
cantly boost the performance and obtain comparable per-
formance with the state-of-the-art action recognition meth-
ods under the real-time requirement. More specially, our
proposed method achieves 91.8% and 62.8% accuracy on
UCF101 and HMDB51, respectively, at the speed of 969 fps.

The contributions of this paper are as follows:

• We propose a real-time 3D-CNN based action recognition
architecture to learn video representation at a multitude
of granularity. The learned features are able to model not
only the temporal evolution of appearance between short
clips but also the overall temporal dynamics of the entire
video.

• We propose a temporal encoding technique with aggre-
gation functions to model characteristics of the entire
video, which considerably improves the recognition per-
formance.

• We only employ RGB frames as the input of CNN to pro-
cess action recognition at real-time while achieving com-
parable performance to the state-of-the-art methods.

2 Related Work

Action recognition has been widely explored in the last
decade. We briefly group previous works related to ours into
two categories: 1) action recognition with hand-engineered
features, and 2) CNNs for action recognition.

To depict the temporal motion in videos for action recog-
nition, many works try to devise effective features. Early re-
searches propose some video representations which are de-
rived from the image domain and extended to measure the
temporal dimension of 3D volumes, such as 3D Histogram
of Gradient (HOG3D) (Klaser, Marszałek, and Schmid
2008) and 3D Scale-Invariant Feature Transform (SIFT-3D)
(Scovanner, Ali, and Shah 2007). Besides, several works fo-
cus on designing local spatio-temporal features. In particu-
lar, Wang et al. (Wang and Schmid 2013) propose a state-
of-the-art hand-crafted feature named Improved Dense Tra-
jectories (IDT), which extracts several descriptors (HOG,
HOF and MBH) and tracks them in a dense optical flow
field. However, some features designed by human beings are
not discriminative enough to model the video. Part of them
are too computationally expensive to process at real-time de-
spite the impressive performance.

Since deep CNN brings significant progress in image
recognition, researchers extend CNN for action recognition
in video (Piergiovanni, Fan, and Ryoo 2017; Michael et al.
2017; Liu et al. 2015; Gan et al. 2016a). According to differ-
ent convolutional architectures, neural networks for action
recognition fall into two types: one-stream based methods
and two-stream architecture approaches.

As to the one-stream CNNs, networks always pay more
attention to spatial information. Several works (Tran et al.
2015; 2017; Varol, Laptev, and Schmid 2017) employ 3D
convolution operator with the input of a short clip to model
the temporal motion in video. However, this kind of methods
have not yet significantly outperformed the traditional meth-
ods for action recognition in video. This is partly due to lack
the capacity to model long-term features utilizing 3D-CNN.
The other reason might be underachieving large-scale video
datasets comparable in size and variety to ImageNet. The
appearance of large-scale and well-labeled video datasets,
like Sports-1M (Karpathy et al. 2014) and Kinetics (Kay et
al. 2017), bring the opportunities to promote researches in
this area. Motivated by above observations, we extend 3D-
CNN with temporal encoding framework to model the entire
video character and pre-train the network on a large-scale
and clean dataset to fully unleash the potential of 3D-CNN.

The two-stream architecture is proposed in (Simonyan
and Zisserman 2014) where spatial net captures single RGB
image appearance and temporal net depicts the motion
among a short clip with the input of ten optical flow maps.
This might be the first work demonstrates that the deep
model is more accurate than hand-engineered features, such
as dense trajectories-based representation. Recently several
attempts (Girdhar et al. 2017; Wang et al. 2016) have been
made to improve the two-stream network from different as-
pects. Very recently, Kar et al. (Kar et al. 2017) describe
an adaptive temporal pooling method that learns to pool
discriminative and informative frames and discards major-
ity of the redundant and non-discriminative frames in the
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Figure 2: The proposed T-C3D architecture for real-time video action recognition.

video. The approach proposed in (Girdhar et al. 2017) pro-
vides an end-to-end trainable architecture for spatiotemporal
video feature aggregation, where the inherent visual vocab-
ularies (VLAD) are learned directly from the loss function.
Despite good performance, all of two-stream based methods
are too computationally expensive to meet the real-time re-
quirement due to the heavy calculation of optical flows.

For real-time action recognition, Zhang et al. (Zhang et al.
2016) replace the optical flow with motion vectors to deploy
the algorithm at real-time. This method transfers knowl-
edge from high quality optical flow to motion vector en-
coding representation. While this work accelerates the speed
of deep learning methods for action recognition, it is cum-
bersome owing to the calculation of optical flow during the
training phase. Besides, the performance is not really supe-
rior. Compared with it, our approach totally avoids calculat-
ing the optical flow and only requires RGB frames to train
the network. Meanwhile, our model can achieve a superior
recognition performance and a faster speed.

3 Temporal 3D Convolutional Network

Figure 2 illustrates the framework of the proposed T-C3D
network. Each input video is firstly divided into S parts.
Then several frames are selected from each part to make
up a clip. Next, S clips represented the entire video are fed
into the 3D-CNNs respectively. The 3D-CNN extends the
2D-CNN at the temporal dimension, which is more suitable
for capturing the three-dimensional data feature of video.
The 3D-CNNs on all clips share the same weights. Further-
more, the feature maps or class scores of different clips are
fused by an aggregation function to yield segmental consen-
sus, which is a video-level prediction. Compared with previ-
ous works, T-C3D calculates the loss value with the video-
level score rather than the clip-level or single frame predic-
tion. The weight parameters are also updated and optimized
by the video-level loss. Thus, T-C3D can model the overall
video information. In summary, the pipeline mainly includes
the following steps: 1) generating the clips of a video, 2)

feeding the clips to 3D network, and 3) obtaining the video-
level final scores by aggregating the features of the clips.
The overall process is end-to-end trainable. Next, we will
describe the proposed temporal encoding model and each
part in detail.

3.1 Temporal Encoding Model

Videos are naturally hierarchical structured media because a
video can be decomposed into spatial static single frames,
temporal parts consisting of short temporal between con-
secutive frames, and long-term temporal evolution of entire
videos. Motivated by this observation and given the real-
time requirement, we design a novel real-time architecture
for action recognition. First, we replace heavy calculation
features (e.g., optical flow and IDT) with 3D-CNN to model
the short-term temporal motion, making the framework ex-
tremely faster owing to the only requirement of RGB frames.
Then, the temporal encoding method is introduced to char-
acterize the overall information of an entire video, which can
dramatically boost the classification accuracy.

To characterize the overall video feature, we introduce
the temporal encoding method. Formally, given a video V ,
we uniformly divide it into S parts {P1, P2, P3, ..., Ps } in
temporal dimension. Then, a sequence of frames are chosen
from Pi to form the a clip Ci. Next, S feature maps are ob-
tained by feeding forward the 3D-CNN with each clip. Com-
bining S clips features with aggregating functions gains the
video-level features. Finally, video-level features derive the
ultimate class scores. Different from previous works, T-C3D
optimizes and updates its parameter through the video-level
score rather than the clip-level prediction. The process can
be formulated as Equation 1:

Yv = H(Q(F (C1;W );F (C2;W ); ...;F (Cs;W ))), (1)

in which Yv represents the final class score of the video
v, F (Cs,W ) is the function describing the 3D-CNN with
weights W , and yields feature map of clip Cs, such as last
convolutional layer, fully connected layer, and probability of
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all action categories. The aggregation function Q fuses the
output from multiple clips to obtain a discriminative repre-
sentation of the entire video. Based on this representation,
the prediction function H produces the probability values of
each action category for the whole video. Specially, in our
work, the output of F is the last fully connected layer while
H is the widely used softmax function. Multiple alternatives
of aggregation function Q are exploited in the Section 4.4.

The differentiability of temporal encoding method al-
lows T-C3D to be easily optimized using back propaga-
tion. Based on standard categorical cross-entropy loss, the
final loss function regarding the segmental consensus G =
Q(F (C1;W );F (C2;W ); ...;F (Cs;W )) is formulated as

L(y,G) =
N∑

i=1

yi(Gi − log
N∑

j=1

expGj), (2)

where N is the number of action classes and yi is the ground
truth label concerning class i. S is a hyperparameter and we
perform hyperparameter search to evaluate the effects of the
value of S in next section. More importantly, the aggrega-
tion function Q is of significant importance because it not
only integrates the clips’ information into video-level fea-
ture but also determines the differentiability of the whole
pipeline. In our experiments, we extensively study multi-
ple differentiable aggregation function alternatives, such as
mean pooling, max pooling, and attention pooling. Differen-
tiable aggregation functions allow us to realize the multiple
clips to jointly update the network weights W with standard
back-propagation algorithms. In the back-propagation pro-
cess, the gradients of network weights W concerning to the
loss value L can be formed as

∂L(y,G)

∂W
=

∂L

∂W

S∑

s=1

∂Q

∂F (Cs)

∂F (Cs)

∂W
, (3)

where S is number of clips adopted by T-C3D. In Equation
3, the weights are optimized through the segmental consen-
sus G derived from all clip-level prediction. Updated param-
eters in this manner, T-C3D learns network weights from the
overall video rather than a single clip. Next, we will intro-
duce the implementation of the model in detail.

3.2 Video Components Generation

Different from the still images, videos are dynamic and with
varying sequences. To exploit the good manners to model
the overall video, we first uniformly divide the video into
several parts in the temporal dimension. Then a clip is con-
stituted by sampling several frames from each part with two
popular sample schemes. The first scheme uniformly divides
the video snippet generated in the previous step into a certain
number of fragments and randomly selects one frame from
each fragment to constitute the final clip. The second method
randomly chooses a certain number of consecutive frames
from the snippet to construct the final clip. In essence, the
first sampling approach randomly selects non-consecutive
frames distributed evenly throughout the video to represent
the whole video. The second method uniformly chooses S
clips from the entire video and each clip consists of a certain

number of sequential frames. In next section, we give the
comparison on classification accuracy of these two different
down-sampling methods.

3.3 3D Convolutional Neural Network

Different from 2D-CNN’s outstanding achievement on var-
ious visual tasks in still images, 3D-CNN is likely to fit for
the videos which can be considered as the expansion of im-
ages in the temporal dimension. Convolutional 3D Network
(C3D) (Tran et al. 2015) is one of the typical works that em-
ploy the 3D-CNN to extract both the spatial information and
temporal cues with the input of sixteen raw RGB frames.
However, sixteen raw RGB frames cannot model the long-
term information. Then, Long-term Temporal Convolutions
(LTC) (Varol, Laptev, and Schmid 2017) improve the C3D
by feeding 3D-CNN with longer continuous RGB frame se-
quences and corresponding optical flow maps, ranging from
20 to 100 frames. All above works demonstrate that 3D-
CNN is a promising direction for video-based action recog-
nition. In our work, we extend the aforementioned 3D-CNN
works from the following aspects.

Firstly, inspired by the amazing image classification accu-
racy obtained by the deep residual CNN, we adopt a deeper
3D-CNN network with residual block. More specially, we
employ the 3D ResNet with 17 convolutional layers and one
fully connected layer according to previous work on Con-
vNet architecture search (Tran et al. 2017). Experiments
demonstrate that the deeper residual 3D-CNN can extract
richer and stronger spatio-temporal feature hierarchies from
the given multiple frames.

Secondly, pre-training the parameters of CNN (Gan et
al. 2015; 2016b; Liu, Liu, and Ma 2017; Ma 2017) on a
large-scale dataset has been proven greatly crucial for var-
ious visual tasks, e.g., object detection, image classification,
semantic segmentation, and so on. For 3D-CNN, previous
works such as LTC have shown that 3D models pre-trained
on Sprots-1M achieve higher classification accuracy than the
models trained from scratch. In this paper, we first follow
the strategy introduced in C3D and pre-train our model on
Sports-1M. Although Sports-1M has over than one million
videos, it contains amounts of noise since it is not manually
labeled. Very recently, Kay (Kay et al. 2017) et.al propose a
large-scale and clean dataset, called Kinetics, which covers
400 human action categories with at least 400 video clips
for each action. To activate the neuron in the 3D-CNN as
much as possible, we make efforts to train the 3D-CNN on
Kinetics with the temporal encoding method. Experiments
show that pre-training on Kinetics significantly boosts the
performance.

3.4 Aggregation Functions

As mentioned above, aggregation functions is a very curial
component in the T-C3D framework. In this subsection, we
provide a detailed description and insightful analysis of four
aggregation functions, including average pooling, max pool-
ing, weighted pooling, and attention pooling.

Average Pooling. In this aggregation function, we adopt
average pooling to fuse the 3D-CNN output of the sampled
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clips, i.e., gi = 1
S

S∑
s=1

F i
s , where F i

s is the ith element of

Fs = F (Cs;W ). The basic assumption of average pooling
is to utilize the activations of all clips for action recogni-
tion and employ their mean responses as the overall video
prediction. From this perspective, average pooling is able to
jointly depict sequences of clips and obtain the visual fea-
ture from the entire video. However, some videos may con-
tain noisy sequences that are irrelevant with the actions, in
this case, averaging over these noisy clips cannot accurately
model the action character, possibly leading to degradation
of the recognition performance.

Maximum Pooling. Another widely used aggregation
method is maximum pooling, where we perform a max-
imum operation over these clip-level outputs, i.e., gi =
max i∈{1,2,...,S} F i

s . The basic intuition of max pooling is to
select the most discriminative clip for every action category
and represent the whole video with this strongest response.
Intuitively, it focuses on a single clip without taking the ac-
tivations of other clips into consideration. In some cases, a
single clip is not discriminative enough to capture the en-
tire video information. To some degree, T-C3D degrades to
the previous works which train the network with one clip
per video when employing the max pooling. Therefore, this
aggregating function drives the T-C3D to represent the en-
tire video just with single clip, which violates the T-C3D’s
assumption of modeling overall video.

Weighted Pooling. The goal of this aggregation func-
tion is to produce a set of linear weights to perform an
element-wise weighted linear fusion among the outputs of
each clip. Specifically, the aggregation function is defined

as
S∑

s=1
ωs F

i
s , where ωs is the weight for the sth clip. In

our experiments, both the network weights W and the fu-
sion weights ω are optimized simultaneously. We introduce
this aggregation function based on the fact that action al-
ways consists of several phases and these different phases
may have different influences in identifying action classes.
This function combines the merits of both maximum pool-
ing and evenly pooling, having ability of jointly depicting
sequences of relevant clips while decreasing the bad effects
of noisy clips. Specially, we adopt a convolutional layer with
the kernel of S × 1 to implement the function.

Attention Pooling. This aggregation function has the
same goal as the weighted pooling method. It borrows the
memory attention mechanism of a kind of end-to-end train-
able memory network (Sukhbaatar et al. 2015) for our fea-
ture aggregation. The intuition therein is to employ a neu-
ral model to read external memories through a differentiable
addressing/attention scheme. In our work, we consider the
outputs of each clip as the memory and cast feature weight-
ing as a memory addressing procedure. Formally, let F s be
the 3D-CNN feature map of sth clip, then the aggregation
module filters them with a kernel q via dot product, produc-
ing a sequence of corresponding weights es. Then a softmax
function operates on them to generate positive parameters

ωs with
S∑

s=1
ωs = 1. These two steps can be formulated as

the Equation 4 and Equation 5 respectively

es = qTFs, (4)

ωs =
exp es
S∑

j=1

exp ej

. (5)

Obviously, this aggregation module essentially chooses one
point inside of the convex hull spanned by all the feature
maps.

4 Experiments

In this section, we first describe the benchmark datasets and
implementation details of the proposed framework: T-C3D.
Then, we compare the performance and speed of our method
with the state-of-the-art methods. After this, we explore var-
ious alternatives for learning T-C3D networks, such as gen-
erating snippets strategy, aggregation function, and weight
initialization scheme.

4.1 Datasets and Evaluation Protocol

We empirically evaluate our T-C3D approach on the two
public benchmark datasets for action recognition: UCF101
(Soomro, Zamir, and Shah 2012) and HMDB51 (Kuehne et
al. 2011). The UCF101 dataset is a widely used benchmark
which consists of 101 action categories with 13,320 videos
in about 27 hours. The majority of video clips in UCF101
have the 320 × 240 pixels spatial resolution and 25 frames
per second (FPS) frame rate. Each action class has at least
100 video samples. HMDB51 dataset is a large collection
of realistic videos from various sources, such as web videos
and movies. This dataset is composed of 51 action categories
with 6,766 video clips in all. A split in HMDB51 includes
3,570 training and 1,530 test instances, while each split in
UCF101 contains around 9,500 training and 3,700 test video
samples. For both datasets, we adopt the three standard train-
ing/testing splits provided in original works as the evaluation
scheme and report the mean accuracy over these three splits.
Following (Li et al. 2016), the exploration study for training
T-C3D is only conducted on the first split of UCF101. As
for speed evaluation, we adopt FPS as metric and conduct
experiments on a CPU (E5-2640 v3) and a K40 GPU.

4.2 Implementation Details

For both datasets, each video is sampled to generate the clips
to feed the network. Following (Tran et al. 2017), every clip
contains eight frames and each frame in the clip is resized to
128 × 171 from the original spatial resolution. Then every
frame subtract the mean value of the training data to center
the input data. Moreover, to reduce the effect of severe over-
fitting and learn powerful features from T-C3D, we adopt
two types of data augmentation techniques. Firstly, we hori-
zontally flip frames with 50 probability. Secondly, we extend
the random crop with scale jittering and aspect ratio jittering
techniques that are commonly used in still image classifica-
tion. Specially, we randomly select the width and height of
the cropped region on three scales 1, 0.875, and 0.75, gener-
ating more training instances. Then all the cropped regions
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are resized into 112 × 112. Namely, the network employs
an 8 × 112 × 112 input, the largest that can fit within GPU
memory limits and maintain a large enough mini-batch.

The network parameters are learned in an end-to-end fash-
ion with the mini-batch stochastic gradient descent algo-
rithm, where the momentum is set to 0.9 and the batch size
is set to 8. The pre-trained models on Sport-1M and Kinetics
are utilized to initialize network weights. We randomly ini-
tialize the last fully connected layer and add a dropout layer
after the global pooling layer with high dropout ratio (set
to 0.8 in experiments) to prevent over-fitting. On UCF101,
the initial learning rate is 0.005 and decreased to its 1/10
every 8,000 iterations. The whole optimization procedure
is stopped at 20,000 iterations. For HMDB51, the training
scheme is the same as that of UCF101, except that the itera-
tion numbers are adjusted according to the number of train-
ing instances.

During the testing phase, to balance the speed and classifi-
cation accuracy, we investigate both multi-scale testing strat-
egy and only a single center crop to predict the action cate-
gory. More specifically, the feed forward process of CNN is
performed by GPUs when evaluating the speed.

4.3 Comparison with The-State-of-The-Art
Methods

Table 1 shows the comparison of our architecture with cur-
rent state-of-the-art methods including:

1) Hand-engineered feature methods: IDT encoded with
Fisher Vector (Wang and Schmid 2013), DT encoded
with Multi-view super vector (MVSV) (Cai et al. 2014),
and Motion Vector (MV) encoded with Fisher Vector;

2) One-stream methods: C3D (Tran et al. 2015), Res3D
(Tran et al. 2017), Slow Fusion (Karpathy et al. 2014),
and Temporal Segment Network (TSN) with input RGB
(Wang et al. 2016);

3) Two-stream methods: original two-stream method (Si-
monyan and Zisserman 2014) with shallow and deep
CNN models, Two-stream+LSTM (Yue-Hei Ng et al.
2015), LTC (Varol, Laptev, and Schmid 2017), AdaS-
can (Kar et al. 2017), ActionVLAD (Girdhar et al. 2017),
TDD+FV (Wang, Qiao, and Tang 2015) and TSN (Wang
et al. 2016), and Enhanced MV (Zhang et al. 2016).

Compared with hand-crafted features-based methods, T-
C3D outperforms the most discriminative hand-engineered
feature (IDT) encoded with the robust encoder (FV). More-
over, it achieves the best accuracy among one-stream meth-
ods that use only RGB input on both datasets. TSN (RGB)
and Slow Fusion belong to 2D-CNN based approaches.
They are both inferior to T-C3D since 2D-CNN might be
unsuitable for extracting the spatial-temporal information of
videos. Although TSN can achieve more impressive perfor-
mance of 87.3% at real-time on split 1 of UCF101 when
using RGB and RGB Difference, it still obtain lower ac-
curacy and the higher computational cost compared with
our method. Finally, T-C3D attains higher accuracy than
the two-stream methods with very deep CNN architectures.
More specially, it achieves competitive performance to the

Table 1: Comparison of performance and speed with the
state-of-the-art methods on UCF101 and HMDB51 (mean
accuracy across 3 splits). TS stands for Two-stream archi-
tecture methods.

Method UCF101 HMDB51 FPS

Hand-crafted
Feature

IDT+FV 85.9 57.2 2
DT+MVSV 83.5 55.9 N/A

MV+FV 78.5 N/A 133

One-stream
(RGB)

C3D 82.3 51.6 314
C3D(3nets) 85.2 N/A <314
Slow Fusion 65.8 N/A N/A

Res3D 85.8 54.9 N/A
TSN(RGB) 85.1 51.0 N/A

Two-stream
(Based)

TS(VGG-M) 88.0 59.4 14
TS(Resnet50) 91.7 61.2 <14

TS+LSTM 88.6 N/A <14
LTC 91.7 64.8 <14

AdaScan 89.4 54.9 <14
ActionVLAD 92.7 66.9 <14

TDD+FV 90.3 63.2 <14
TSN 94.2 69.4 5

Enhanced MV 86.4 N/A 390

T-C3D
Ours(Sports1M) 89.4 58.6 220
Ours(Kinetics) 92.5 62.4 220

Ours(Fast) 91.8 62.8 969

Table 2: Comparison of sampling methods on split 1 of
UCF101 dataset.

Sampling Methods Accuracy
Consecutive Sampling 89.5
Non-Consecutive Sampling 89.2

state-of-the-art methods or even outperforms some recently
proposed extended works of two-stream framework when
per-training on the Kinetics dataset. Despite superior per-
formance on both datasets, TSN is computational expensive
(5 fps) and far from the real-time requirements. Note that
the improved algorithm of two-stream also can be applied to
further enhance T-C3D. For speed evaluation, it should be
noticed that T-C3D beats all the real-time models on the ac-
curacy by a large margin while achieving the fastest speed.
Our fast version can achieve the 969 FPS.

4.4 Exploration Study

In this subsection, we conduct exploration study of the T-
C3D from the following four aspects: 1) sampling methods
for generating snippets, 2) the number of snippets sampled
from a video, 3) aggregation functions, and 4) parameter ini-
tialization schemes. In this empirical study, we conduct all
experiments on the split 1 of UCF101 dataset with the pro-
posed framework.

Evaluation on sampling methods. We investigate the
effects of two sampling methods described in Section 3.2.
Table 2 summarizes the results. We can observe that sam-
pling consecutive frames is more suitable for learning the
3D-CNN parameters than sampling frames evenly from the
whole video. The latter methods can get the whole video
information with non-consecutive frames, the two adjacent
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Table 3: Exploration of different aggregation functions for
T-C3D on split 1 of UCF101 dataset.

Aggregation Functions Accuracy
Max pooling 88.1
Average pooling 89.4
Weighted pooling 89.1
Attention pooling 89.5

Figure 3: Recognition accuracy (%) on split 1 of UCF101.
The performance is improved when increasing the number
of clips sampled from the video.

frames sampled by this method might last across a long pe-
riod of time. The 3D-CNN possibly lacks the capability of
capturing the large motion features.

Evaluation on aggregation functions. The results of dif-
ferent aggregation functions are summarized in Table 3.
The attention aggregation function achieves the best per-
formance, and average pooling obtains quite similar per-
formance. This conclusion possibly suggests that on clean
datasets with fewer scale variations and cluttered back-
ground, the simple aggregation module can result in bet-
ter recognition accuracies. In this sense, we exploit average
pooling for the aggregation function in later experiments.

Evaluation on snippets number. We study extensively
the impact of the number of clips sampled from one video.
Figure 3 obviously shows that increasing the number of
clips can result in better performance. Note that the model
weights are updated without the temporal encoding method
when the number of clips is 1. It is easily concluded that
temporal encoding method is benefit for increasing the clas-
sification accuracy. Besides, when the number of clips in-
creases from 4 to 6 or 8, the performance saturates. Given
the trade-off between training time and accuracy, we set the
number of clips to 3 as the default setting.

Evaluation on parameter initialization. In Table 4, we
find that pre-training the weight parameters of T-C3D on a
large-scale dataset can get better performance. Sports-1M
with the ground truth is not well labelled has less accuracy,
although it have more training samples and more categories.
Thus, the quality seems to be more important than quantity
when choosing the datasets to initialize the parameter.

Evaluation on the balance between speed and accu-
racy. We also make efforts to find the trade-off between

Table 4: Evaluation of different parameter initialization
schemes for T-C3D on split 1 of UCF101 dataset.

Parameter Initialization Accuracy
Training on scratch 68.3
Pre-train on Sports-1M 89.5
Pre-train on Kinetics 92.5

Table 5: Comparison of speed and accuracy based on dif-
ferent clip numbers and multi-scale strategies for T-C3D on
split 1 of UCF101 dataset.

Parameter Initialization Accuracy FPS
All clips per video (multi-scale) 92.8 45
S clips per video (multi-scale) 92.2 197
All clips per video 92.5 220
S clips per video 91.8 969

the performance and the speed. According to Table 5, feed-
ing forward the network with 5 crops and mirror (multi-
scale) brings a slight improvement on performance but a se-
rious deceleration. Aggregating all clips of a video is a good
choice which balances the accuracy and computational cost.
Moreover, sampling S clips per video also obtains an im-
pressive performance in an extremely fast speed. S is num-
ber of clips adopted by T-C3D.

5 Conclusion

We present T-C3D, an end-to-end trainable framework to
take advantage of the temporal encoding method and deep
3D-CNN to learn the overall temporal information of a
video. By feeding consecutive frames to network, T-C3D ex-
tracts the complementary information on spatial information
from a single image and motion features between sequen-
tial frames. T-C3D captures the overall temporal dynamics
of the whole video through the temporal encoding method.
Owing to the capacity to model multiple granularity features
of videos, our approach achieves competitive performance
to the state-of-the-art methods. Furthermore, T-C3D does
not require heavy computational process so that it processes
videos in a speed of very faster than real-time, which makes
it possible to deploy action recognition algorithms on mobile
devices. In the future, we will extend T-C3D for online pro-
cessing where the system performs recognition as the frames
are received instead of presenting the entire video.
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