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Abstract

We address the problem of highlight detection from a
360◦ video by summarizing it both spatially and tempo-
rally. Given a long 360◦ video, we spatially select pleasantly-
looking normal field-of-view (NFOV) segments from unlim-
ited field of views (FOV) of the 360◦ video, and temporally
summarize it into a concise and informative highlight as a
selected subset of subshots. We propose a novel deep rank-
ing model named as Composition View Score (CVS) model,
which produces a spherical score map of composition per
video segment, and determines which view is suitable for
highlight via a sliding window kernel at inference. To evalu-
ate the proposed framework, we perform experiments on the
Pano2Vid benchmark dataset (Su, Jayaraman, and Grauman
2016) and our newly collected 360◦ video highlight dataset
from YouTube and Vimeo. Through evaluation using both
quantitative summarization metrics and user studies via Ama-
zon Mechanical Turk, we demonstrate that our approach out-
performs several state-of-the-art highlight detection methods.
We also show that our model is 16 times faster at inference
than AutoCam (Su, Jayaraman, and Grauman 2016), which is
one of the first summarization algorithms of 360◦ videos.

Introduction

User-generated 360◦ videos are flooding online, with emer-
gence of virtual reality and active support by major social
network platforms such as Facebook and YouTube. Since
360◦ videos provide panoramic views of the entire scene,
they free viewers not to get caught up in the intent of the
videographer. However, without proper guidance, viewer ex-
perience can be severely handicapped, due to difficulty of
understanding the entire content with limited human’s field-
of-view. Therefore, like normal user videos, the highlight
detection is also highly necessitated for much of online
360◦ content, to quickly browse the overview of the content.
One important difference of the 360◦ video highlight detec-
tion is that the video summarization should be achieved both
spatially and temporally. The spatial summarization selects
pleasantly-looking normal field-of-view (NFOV) segments
from unlimited field of views (FOV) of 360◦ videos. Next,
the temporal summarization generates a concise and infor-
mative highlight of a long video by selecting a subset of
subshots.
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Figure 1: The intuition of the proposed Composition
View Score (CVS) model for highlight detection from a
360◦ video. For each 360◦video segment, fully convolu-
tional CVS model generates a layered spherical score map to
determine which view is suitable for highlight. It learns the
fidelity of views from the professional videos of the same
topic (e.g. wedding) as reference, and at inference, a sliding
window kernel computes the composition scores of views.

We address the problem of highlight detection from a long
360◦ video by summarizing the video spatially and tem-
porally. That is, we aim at selecting a pleasantly-looking
NFOV within a 360◦ FOV, and at the same time producing
a concise highlight. To this end, we propose a novel deep
ranking neural network, named as Composition View Score
(CVS) model. Given a 360◦ video, the CVS model produces
a spherical score map of composition. Here we use the term
composition to refer to a unified index to determine which
view is suitable for highlight, considering all relevant prop-
erties such as the presence or absence of key objects, and
the framing of objects. Based on the composition score map,
we first perform spatial summarization by finding out a best
NFOV subshot per 360◦ video segment, and then temporal
summarization by selecting N top-ranked NFOV subshots
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as a highlight for the entire 360◦ video.
Our approach has several noteworthy characteristics.

First, to learn the notion of good visual composition for
highlight, we collect the online NFOV videos that are taken
and edited by professional videographers or general users
as positive reference. Second, to quantify the difference be-
tween good and bad views, our deep ranking model learns
the fidelity of views in the preference order of the profes-
sional NFOV video shots, normal users’ NFOV shots, and
randomly sampled NFOV shots from a 360◦ video. Third, to
reduce the time complexity of the algorithm, we directly ob-
tain a spherical score map for an entire 360◦ video segment.
It can substantially reduce redundant score computations
of highly overlapping adjacent NFOV candidates, com-
pared to other state-of-the-art spatial summarization meth-
ods of 360◦ videos (e.g. (Su, Jayaraman, and Grauman 2016;
Su and Grauman 2017)).

For evaluation, we use the existing Pano2Vid benchmark
dataset (Su, Jayaraman, and Grauman 2016) for spatial sum-
marization. We also collect a novel dataset of 360◦ videos
from YouTube and Vimeo for spatio-temporal highlight de-
tection. Our experiments show that our approach outper-
forms several state-of-the-art methods (Su, Jayaraman, and
Grauman 2016; Gygli, Song, and Cao 2016; Yao, Mei, and
Rui 2016) in terms of both quantitative summarization met-
rics (e.g. mean cosine similarity, mean overlap, and mAP)
and user studies via Amazon Mechanical Turk.

The major contributions of this work are as follows.
(1) To the best of our knowledge, our work is the first at-

tempt to summarize 360◦ videos both spatially and tempo-
rally for highlight detection. To this end, we develop a novel
deep ranking model and collect a new dataset of 360◦videos
from YouTube and Vimeo.

(2) We propose Composition View Score (CVS) model,
which produces a spherical composition score map of com-
position per video segment of 360◦videos, and determines
which view is suitable for highlight via a sliding window
kernel at inference. Our framework is significantly faster at
inference by reducing the redundant computation of adja-
cent NFOV candidates, which has been a serious problem in
existing 360◦video summarization models.

(3) For both Pano2Vid benchmark dataset (Su, Ja-
yaraman, and Grauman 2016) and our newly collected
360◦highlight video dataset, our approach outperforms sev-
eral state-of-the-art methods in terms of both quantitative
metrics and user evaluation via Amazon Mechanical Turk.

Related Work

360◦ video summarization. There has been very few stud-
ies for summarization of 360◦ user videos, except the Au-
toCam framework proposed by Su et al. (Su, Jayaraman,
and Grauman 2016; Su and Grauman 2017) and the deep
360 pilot proposed by Hu et al. (Hu et al. 2017). Com-
pared to the AutoCam and deep 360 pilot method, our model
has the following novelties in three respects. First, in terms
of problem definition, our work aims to summarize a 360-
degree video both spatially and temporally, whereas the Au-
toCam and deep 360 pilot performs spatial summarization

only. Second, in the algorithmic aspect, the AutoCam uses a
logistic regression classifier and the deep 360 pilot exploits
recurrent neural networks to determine where to look at
each segment; on the other hand, our model employs a deep
fully-convolutional network. Third, our CVS model outper-
forms the AutoCam in terms of performance and computa-
tion time, which will be more elaborated in our experiments.
For instance, our model greatly reduces the number of rec-
tilinear projections and subsequent convolutional operations
per score computation from 198 to 12 at the inference time.

Temporal video summarization. Temporal video sum-
marization provides a compressed abstraction of the orig-
inal video while maintaining its key content (Truong and
Venkatesh 2007). There are many criteria for determin-
ing key content, such as visual attention (Ejaz, Mehmood,
and Baik 2013; Borji and Itti 2013), importance or in-
terestingness (Gygli et al. 2014; 2013; Fu et al. 2014)
and diversity/non-redundancy (Liu, Hua, and Chen 2010;
Zhao and Xing 2014). Recently, many approaches use web-
image priors for selecting informative content, assuming that
images of the same topic often capture key events in high
quality (Kim, Sigal, and Xing 2014; Khosla et al. 2013;
Song et al. 2015). As another direction, several methods
use supervised-learning dataset including human-annotated
summaries (Gong et al. 2014; Gygli, Grabner, and Van Gool
2015) to learn balanced score functions between interesting-
ness and diversity.

Video highlights. Rather than capturing a variety of
events, video highlight models mainly focus on the im-
portance or interestingness to summarize videos. To mea-
sure the interestingness, several methods use hand-crafted
features from various low-level image features, such as
aesthetic quality, camera following, and close-ups of
faces (Gygli et al. 2014; Lee, Ghosh, and Grauman 2012).
Another group of approaches exploit category-specific in-
formation to better define highlights (Sun, Farhadi, and
Seitz 2014; Potapov et al. 2014). However, the scalability
of domain-specific models is limited by the difficulty of
collecting raw footages and their corresponding annotated
videos. Some methods, meanwhile, attempt to deal with in-
herent noise in the web crawling dataset. Gygli et al. (Gygli,
Song, and Cao 2016) train a model to learn the difference
between a good and a bad frame. Sun et al. (Sun, Farhadi,
and Seitz 2014) train a latent linear ranking model to gener-
ate a summary of a raw video using its corresponding edited
video available online.

YouTube/Vimeo Dataset

We build a new dataset for the 360◦ highlight detection
task from YouTube and Vimeo. Its key statistics are out-
lined in Table 1. The professional and casual categories in-
dicate NFOV videos by professional videographers and nor-
mal users, respectively. We select two popular topics: wed-
ding and music video, which involve a large volume of both
360◦ videos and NFOV videos that share the common sto-
rylines. Furthermore, the videos of these topics include mul-
tiple concurrent events, and thus are more interesting for
spatio-temporal summarization.
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Figure 2: The overall framework for generating a spatio-temporal highlight using the Composition View Score (CVS) model.

Table 1: Statistics of our new 360◦ video highlight dataset.

Video Topic Type # video Total mean
(hour) (minute)

360 ◦ wedding 360◦ 62 54.8 53.1
video MV 53 17.2 19.5

wedding professional 755 87.1 6.9
NFOV casual 664 104.5 9.4
video MV professional 333 3.3 4.4

casual 654 47.5 0.6

Video Format

We sample every video into 5 frames per second (fps). We
then segment every video into a sequence of subshots (or
segments) by using the content-based subshot boundary de-
tection of the PySceneDetect1 library.

In a 360◦ video, there can be infinitely many view points
at each time t, each of which can be determined from the
latitude and longitude coordinates (θ, φ) in the spherical co-
ordinates. Once we define a pair of (θ, φ), we can generate
an NFOV subshot from the 360◦ video by a rectilinear pro-
jection with the viewpoint as a center. We set the size of each
subshot to span a horizontal angle of 90◦ with a 4:3 aspect
ratio. The default display format for a 360◦ video is usually
obtained by equirectangular projection (e.g. 2D world maps
from the spherical Earth). This projection maps the meridi-
ans to vertical straight lines of constant spacing, and circles
of latitude to horizontal straight lines of constant spacing.
The resulting x, y coordinates in the equirectangular format
are: x = (φ − φ0) cos θ1,y = (θ − θ1) where θ is the lati-
tude, θ1 is the standard parallels, φ is the longitude, and φ0

is the central meridian of the map.
Following (Su, Jayaraman, and Grauman 2016), we use

the term spatio-temporal glimpses (or simply glimpses) as a
five-second NFOV video clip sampled from a 360◦ video,
from the camera principal axis direction (θ, φ) at time t.

1https://github.com/Breakthrough/PySceneDetect.

Therefore, the spatial summarization reduces to selecting a
best ST-glimpses for a sequence of 360◦ video segments.

Approach

Figure 2 illustrates the overall framework to generate a
spatio-temporal highlight for a long 360◦ video. The in-
put of our framework is a long 360◦ video in a form of
a sequence of video segments V = {v1, · · · , vT }, where
each segment vt consists of spherical frames of 5 seconds.
The output is a sequence of highlight NFOV video subshots
S = {s1, · · · , sN}, where each video subshot si consists of
video frames of 5 seconds, and N is a user parameter to set
the length of the final highlight video.

The Composition View Score Model

Model architecture. The Composition View Score (CVS)
model is the key component of our framework. It computes
a composition score for any NFOV spatio-temporal glimpse
x sampled from a 360◦ video. As shown in Figure 2(b), the
model is fully convolutional; it consists of feature extractors
followed by a learnable deep convolutional decoder.

We represent a spatio-temporal glimpse x using two fea-
ture extractors, C3D (Tran et al. 2015) pretrained on the
UCF-101 (Soomro, Zamir, and Shah 2012) for motion de-
scription, and Inception-v3 (Szegedy et al. 2016) pretrained
on the ImageNet dataset (Russakovsky et al. 2015) for frame
description. For C3D features, we obtain the conv4b feature
map xm ∈ R

14×14×512 using a 112×112 resized glimpse.
For Inception-v3 features, we use the mixed 6c feature map
xf ∈ R

14×14×768 from a 260×260 sized glimpse. Finally,
we stack xm and xf to be xs ∈ R

14×14×1280, which is the
input of our deep convolutional decoder.

The decoder consists of five convolutional layers, as
shown in Table 2. It produces a set of k2 score maps wx =

{w1
x,w

2
x · · · ,wk2

x } ∈ R
k×k×k2

, whose (k× i+ j) channel
wk×i+j

x encodes the composition for the (i, j) position in a
k × k grid. We divide x into k × k bins by a regular grid,
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Table 2: The architecture of the composition decoder. We set
k to 5, and use stride 1 and no zero-padding for all layers.

layer name output size kernel size / # of channels
conv1 12×12×512 3 × 3 / 512
conv2 10×10×512 3 × 3 / 512
conv3 8×8×1024 3 × 3 / 1024
conv4 5×5×2048 4 × 4 / 2048

pos map 5×5×25 1 × 1 / 25

i.e. , x = {x1,1, · · · , xi,j , · · · , xk,k}, and aggregate all of
position-wise scores using a Gaussian position-pooling:

f(x) =
∑

i,j

∑

l,m

κ(l − i)κ(m− j) wc(k,l,m)
x (i, j|M), (1)

where κ(u) =
exp(−u2/2h2)√

2πh
, c(k, l,m) = k × l +m,

for i, j, l,m ∈ {0, 1, · · · , k − 1}. Here, κ is a Gaussian ker-
nel, h is the kernel bandwidth, and M denotes all the CVS
model parameters. We set default k to 5.

It is partly inspired by the position-pooling of R-FCN (Li
et al. 2016). However, our position-pooling softly encodes
all score maps according to their relative position in the
k × k grid using the Gaussian kernel, while R-FCN pools
only over the (i, j)-th score map. This enhances the scale
invariance of our model, and produces a better score by con-
sidering the surrounding context within the regular grid.

Training with video triplets. We pose the 360◦ high-
light detection as a ranking problem, in which the CVS
model selects the NFOV glimpse x with the highest compo-
sition view score f(x) of Eq.(1), from many possible NFOV
glimpses in a 360◦ frame. It is different from the AutoCam
(Su, Jayaraman, and Grauman 2016) formulating as a bi-
nary classification problem using logistic regression, which
is limited to rank a large number of candidates finely.

Our goal is to learn the CVS architecture that assigns a
higher score to a view with good composition suitable for
highlight. Rather than defining the goodness of composi-
tion with hand-crafted heuristics based on cinematography
rules (Arev et al. 2014; Heck, Wallick, and Gleicher 2000;
Gleicher, Heck, and Wallick 2002; Heck, Wallick, and Gle-
icher 2007), we leverage a data-driven approach; we collect
professional NFOV videos and normal users’ casual NFOV
videos for the same topic, and use them as positive refer-
ences of view selection. Since there are not many profes-
sional videos, we also exploit normal users’ videos, although
they are not as good as professional ones. During data col-
lection, we observe that the quality gaps between profes-
sional videos and normal users’ casual videos are significant.
Thus, as highlight exemplars, we rank professional NFOV
videos higher than the casual ones to correctly quantify the
quality differences among the positive samples. Assuming
that a randomly selected view is likely to be framed badly,
we regard a randomly cropped glimpse from a 360◦ video
as negative samples. As a result, we define the ranking con-
straints over the training dataset D, which consists of video
triplets of three different classes as shown in Figure 3 as fol-

Wedding

Music Video

Professional, Casual, Random,

Professional, Casual, Random, 

Figure 3: Examples of ranking order for professional, casual,
and random NFOV glimpses about Wedding and MV topics.

lows:

f(pi) � f(ci) � f(ni), ∀ (pi, ci, ni) ∈ D, (2)

where pi, ci, ni indicate a professional, casual, and negative
sample (i.e. a video segment), respectively.

To impose the ranking constraints, we train the CVS
model using the following loss. In particular, we assign dif-
ferent weights to different type pairs of video classes:

Li = αmax(0, f(ci)− f(pi) + 1) (3)
+ (1− α)max(0, f(ni)− f(ci) + 1),

where α ∈ [0, 1] is a hyperparameter; we set α = 0.3 in our
implementation. The final objective is the total loss over the
dataset D combined with a l2 regularization term:

L =
∑

i

Li + λ||M||2F . (4)

where λ is a regularization hyperparameter.

Inference

The goal of inference is to select a best NFOV glimpse for
a given 360◦ video segment. By repeating this process and
connecting the selected glimpses, we can construct a high-
light summary. For efficient inference, we first compute a
360◦composition score map for each 360◦video segment us-
ing the learned CVS model. We then perform sliding win-
dow search over the 360◦score map to select a highlight
view.

360◦composition score maps. Note that there has been
proposed no CNN architecture that takes a 360◦ video seg-
ment as input and produces a 360◦ score map as output.
Therefore, we first propose an approximate procedure to
obtain a spherical score map for a 360◦video segment vt
at time t as follows. We divide vt into 12 spatio-temporal
glimpses Xt by discretizing viewpoints at longitudes φ ∈
Φ = {0◦, 90◦, 180◦, 270◦} and at latitudes θ ∈ Θ =
{0◦,±67.5◦}. Since each glimpse spans 90◦ in the latitude
axis with a 4:3 aspect ratio, Xt does not nearly overlap with
one another while covering the entire spherical view.

Next, we transform every spatio-temporal glimpse x ∈
Xt to an NFOV using rectilinear projection, and feed it into
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the learned CVS model to compute its score map. How-
ever, one issue here is that since the CVS is convolutional,
the information loss occurs near the boundaries of adjacent
glimpses. Likewise padding in the CNN, we adopt the fol-
lowing simple trick; when transforming every glimpse x
to an NFOV using rectilinear projection, we enlarge it by
1/k over the original size, in order to create a score map
wx′ ∈ R

(k+2)×(k+2)×k2

. Later when we stitch these 12
score maps wX,t to make a single 360◦ sphere score map
wS,t, we cut out the padded boundary scores and use only
wx ∈ R

k×k×k2

in the center. In this way, all the position
scores are seamlessly wrapped in a sphere score map and
without information loss around glimpse boundaries.

Sliding window search. After generating the spherical
score map wS,t, we find the best fitted highlight position us-
ing a flexible sliding window kernel. As the sliding window
scans on the score map, the composition score at the window
location is calculated by cropping the score map w of the
area from wS,t. With a fixed aspect ratio of 4:3, the sliding
window can change its scale by varying its horizontal size,
whose can be any θscale ∈ [60◦, 110◦]. In our experiments,
we test three scales of sliding windows with the horizontal
sizes of (65.5◦, 90◦, 110◦), and find the maximally scored
position and scale.

Execution time comparison. One critical issue of exist-
ing models for spatial summarization is time complexity at
the inference stage. For example, AutoCam (Su, Jayaraman,
and Grauman 2016) computes capture-worthiness scores for
a fixed number of overlapping 198 glimpses per 360◦ video
segment, and chooses the best glimpse with the highest
score. In this process, AutoCam performs severely over-
lapped convolutional operations and too many rectilinear
projections. This exhaustive approach requires high compu-
tation time; for example, 3 hours per 1 minute 360◦ video
as reported in (Su, Jayaraman, and Grauman 2016). To over-
come this issue, our approach is to first precompute a non-
overlapping 360◦ score map, and then use a flexible slid-
ing window to find a highlight NFOV at inference. This
approach greatly reduces the number of iterative rectilinear
projections and CNN computations from 198 to 12, which
subsequently curtails the processing time from 178 min to
11 min. The comparison on actual execution time will be
reported in Table 6 in our experiments.

Spatio-Temporal Summarization

Since our framework is a ranking model, it is straightforward
to extend our CVS model to spatio-temporal summarization.
That is, rather than selecting a glimpse at every time step, we
can rank all the glimpses over the entire video. We first build
a candidate set of glimpses, each of which is selected from
every video segment of 5 seconds by using the composition
view score and the smooth-motion constraint (Su, Jayara-
man, and Grauman 2016), which enforces that the latitude
and longitude difference between consecutive glimpses must
be less or equal than 30◦: |θt−θt−1|, |φt−φt−1| ≤ 30◦. We
then choose top-N glimpses with the highest composition
scores, and connect them as a final highlight. N is a user
parameter for the highlight length. Since the professional

videos that our CVS model uses as training reference are
often highlights edited by professional videographers, high-
ranked glimpses become excellent highlight candidates.

Implementation Details

We initialize all training parameters using the Xavier ini-
tialization (Glorot and Bengio 2010) and insert the batch
normalization (Ioffe and Szegedy 2015) prior to all convo-
lutional layers. We optimize the objective in Eq.(4) using
vanilla stochastic gradient descent with a mini-batch size of
16. Experimentally, we use leaky ReLU (Maas, Hannun, and
Ng 2013) as non-linear activation, and set our initial learning
rate as 0.001 and divide it by 2 at every 8 epochs.

Experiments

We evaluate the performance of the proposed CVS model
with two datasets. First, using the Pano2Vid dataset (Su,
Jayaraman, and Grauman 2016), we show that the CVS
model improves the spatial summarization performance
compared to several baseline methods. Second, using our
novel 360◦ video highlight dataset, we demonstrate that our
framework achieves the state-of-the-art performance of gen-
erating spatio-temporal video highlights.

Evaluation Metrics

In the Pano2Vid dataset, human annotators provide multiple
edited videos per 360◦ video, in which they label the center
coordinates of the selected glimpses in the camera principal
axes (i.e. latitude and longitude) at each video segment. Us-
ing the labeled coordinates as groundtruth, we compare the
similarity between the human-made view trajectories and
predicted trajectories. We use the metrics of mean cosine
similarity and mean overlap as proposed in the Pano2Vid
benchmark.

To quantify the highlight detection performance (i.e.
spatio-temporal summarization) in our dataset, we compute
the mean Average Precision (mAP) (Sun, Farhadi, and Seitz
2014). As groundtruths, we add three different highlight an-
notations to each of 25 randomly sampled 360◦test videos
per topic. Four human annotators watch full 360◦ videos and
select top-N salient glimpses as video highlight subshots,
with at least a distance of 5 seconds between choices.

Baselines

For performance comparison with our CVS model, we se-
lect (i) three simple baselines of spatial summarization used
in (Su, Jayaraman, and Grauman 2016), (ii) AutoCam (Su,
Jayaraman, and Grauman 2016) proposed for the original
Pano2Vid task, and (iii) two state-of-the-art pairwise rank-
ing model of deep neural networks for normal video sum-
marization, RankNet (Gygli, Song, and Cao 2016) and TS-
DCNN (Yao, Mei, and Rui 2016). All baselines share the
same video feature representation by the C3D model (Tran
et al. 2015) pretrained on the UCF-101 (Soomro, Zamir, and
Shah 2012), except the TS-DCNN as described below.

We do not consider the deep 360 pilot method (Hu et al.
2017) as a baseline, because it is a supervised method that
requires a center viewpoint per frame as a label for training.
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Table 3: Experimental results of spatial summarization on
the Pano2Vid (Su, Jayaraman, and Grauman 2016) dataset.
Higher values represent better performance in both metrics.

Methods Frame Frame
cosine sim overlap

Center 0.572 0.336
Eye-Level 0.575 0.392
Saliency 0.387 0.188
AutoCam (w/o stitching) 0.541 0.354
AutoCam-stitch 0.581 0.389
RankNet 0.562 0.398
TS-DCNN 0.578 0.441
CVS-C3D 0.656 0.554
CVS-Inception 0.642 0.545
CVS-Fusion 0.701 0.590
CVS-C3D-stitch 0.774 0.646
CVS-Inception-stitch 0.768 0.666
CVS-Fusion-stitch 0.800 0.677

Table 4: Comparison of trajectory similarity after applying
the stitch algorithm in (Su, Jayaraman, and Grauman 2016).

Cosine sim Overlap
Trajectory Frame Trajectory Frame

AutoCam-
stitch

0.304 0.581 0.255 0.389

CVS-C3D-
stitch

0.524 0.774 0.503 0.646

CVS-Fusion 0.563 0.800 0.530 0.677

Center, Eye-level (Su, Jayaraman, and Grauman 2016).
These two baselines are stochastic models tested in the
Pano2Vid benchmark, that select spatio-temporal glimpses
at each segment with the following preferences. The Center
method samples the glimpses at θ = 0, φ = 0, and then per-
forms a random motion with a Gaussian distribution. The
Eye-Level method samples the glimpses at θ = 0 with a
fixed set of φ ∈ {0◦, 20◦, 40◦, · · · , 340◦}.

Saliency (Su, Jayaraman, and Grauman 2016). This base-
line uses the graph-based saliency score (Harel et al. 2006)
to classify capture-worthy glimpses, and join the selected
glimpses using the motion constraint that AutoCam uses.

AutoCam (Su, Jayaraman, and Grauman 2016). With
C3D video features (Tran et al. 2015), AutoCam uses the
logistic regression to classify which glimpses are worth to
capture. It generates a summary video in the following two
steps: (i) sampling the best scored glimpses at each video
segment, and (ii) stitching the glimpses based on both the
capture-worthiness scores and a smooth motion constraint.
We denote the AutoCam using the both steps as AutoCam-
stitch, while the one with the first step only as AutoCam.

RankNet (Gygli, Song, and Cao 2016). RankNet is a
deep pairwise ranking model used in Video2GIF task (Gygli,
Song, and Cao 2016). Unlike our fully convolutional model,
RankNet predicts a single score from the C3D features
through additional consecutive fully connected layers. We
train the RankNet with the adaptive Huber loss as proposed
in (Gygli, Song, and Cao 2016).

Table 5: Results of highlight detection on our 360◦ video
highlight dataset. Higher mAPs indicate better performance.

Methods Wedding MV
Center 7.88 5.90
RankNet 11.98 11.65
TS-DCNN 13.23 12.28
CVS-C3D 16.32 12.15
CVS-Inception 16.13 12.38
CVS-Fusion (pairwise) 14.34 12.56
CVS-Fusion 17.96 14.92

Table 6: Comparison of computational costs between our
CVS model and AutoCam (Su, Jayaraman, and Grauman
2016). The projected area is the total area of glimpses, ex-
pressed as multiples of the sphere area of a 360◦frame.

Processing
time

# of
ST-glimpses

Projected
area

AutoCam 178 min 198 × 4.5479
CVS 11 min 12 × 1.96

Two-Stream DCNN (Yao, Mei, and Rui 2016)). The
TS-DCNN is a recent pairwise ranking model of spatio-
temporal deep CNNs for ego-centric video highlight de-
tection. The spatial component using AlexNet (Krizhevsky,
Sutskever, and Hinton 2012) represents scenes and objects in
the video by frame appearance, while the temporal counter-
part using C3D (Tran et al. 2015) conveys the motion dy-
namics. Overall TS-DCNN is similar to the RankNet, al-
though they use both spatial and temporal representation.
Thus, it can be good comparison to our CVS-Fusion model.

Evaluation of the Pano2Vid Task

For training of our CVS model, we use HumanCam posi-
tive samples pi and randomly cropped negative samples ni

from panoramic videos in the Pano2Vid dataset. We use a
simple max-margin loss Li = max(0, f(ni) − f(pi) + 1)
instead of Eq.(3), because the training data are divided into
two classes only (i.e. positive and negative). As an ablation
study, we test our CVS model with three different configura-
tions of video representation: (i) C3D only, (ii) Inception-v3
only, and (iii) both of C3D and Inception-v3. We also eval-
uate the variants of our method that use the smooth motion
constraint, denoted by (*)-stitch.

Table 3 shows the experimental results in terms of frame
cosine similarity and overlap region metrics, which are of-
ficial measures of the Pano2Vid task. Our method CVS-
Fusion-stitch outperforms all the baseline methods by a sub-
stantial margin in both metrics. The smooth motion con-
straint helps better summarization as the variants denoted
by (*)-stitch outperforms those without the constraint. Even
without the smooth motion constraint, the CVS models per-
form better than any baseline, regardless of which features
the model uses.

Computational cost. Table 6 compares the computation
costs between our CVS and AutoCam. Due to the redun-
dant computation of overlapping glimpses as shown in Fig-
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(a) Dense projection 
for grid scores 

(Autocam, RankNet, TS-DCNN)  

(b) Sparse projection 
for our scoremap

(CVS model)

Figure 4: The visualization of (a) dense projection (198
glimpse) and (b) sparse projection (12 glimpse) by CVS
score maps.

CVS-Fusion vs Wedding MV
Center 68.0 % (117/150) 57.3 % (86/150)
RankNet 67.3 % (101/150) 65.3 % (98/150)
TS-DCNN 64.0 % (96/150) 58.0 % (87/150)

Table 7: AMT results for 360◦ highlight detection. We show
the percentages of turkers’ votes for our method (CVS-
Fusion) over baselines.

ure 4, AutoCam performs rectilinear projection on ×4.55
of the actual area of the view sphere, while our frame-
work projects ×1.96 of the sphere area. Since the projection
time is the bottleneck in practice, the computation time of
our framework is significantly lower than that of AutoCam.
We compare the average of processing time for one-minute
360◦ video: 178 min of AutoCam and 11 min of CVS. We
experiment on a machine with one Intel Xeon processor E5
2695 v4 (18 core) and GTX Titan X Pascal GPU.

Evaluation of Highlight Detection

Quantitative results. Table 5 shows the results of high-
light detection (i.e. spatio-temporal summarization) on our
360◦ video highlight dataset. We set N = 15 as the high-
light length for all algorithms. We do not test the AutoCam
method, because it has no mechanism to generate a tem-
poral summary; instead, we compare with pairwise rank-
ing models, such as RankNet and TS-DCNN. Our CVS-
Fusion achieves the best performance in terms of mAP. As
with observed performance drops, every key element of the
CVS-Fusion model (i.e. two different features and the triplet
ranking loss) is critical to the performance. Specifically, the
triplet ranking loss significantly improves the performance
of our model than the pairwise ranking loss, by provid-
ing a clearer guideline for a better composition. For exam-
ple, in terms of mAP for Wedding and MV datasets, our
CVS model learned by the triplet ranking loss shows per-
formance improvements by (5.98, 3.27), (4.73, 2.64), (3.62,
2.36), compared to RankNet, TS-DCNN, and CVS-Fusion-
pairwise learned by the pairwise loss (i.e. professional and
casual as positives and random as negatives), respectively.

User studies via Amazon Mechanical Turk. We per-
form AMT tests to observe general users’ preferences on the
highlights detected by different algorithms. We randomly
sample 20 test videos per topic from our 360◦ video high-

light dataset. At test, we show an original video and two
sequences of highlight subshots generated by our model and
one baseline method in a random order. Turkers are asked to
pick a better one without knowing which comes from which
method. We collect answers from three different turkers per
test example. We compare our best method (CVS-Fusion)
with three baselines: Center, RankNet, and TS-DCNN.

Table 7 shows the results of AMT tests. It validates that
general turkers prefer the output of our approach to those of
baselines. Note that our method using the triplet ranking loss
is more preferred than the models using the pairwise ranking
loss, RankNet and TS-DCNN. These results coincide with
quantitative results in Table 5.

Qualitative Results. Figure 5 shows qualitative examples
of spatio-temporal glimpses that our CVS model chooses as
highlights. We also depict the composition score map, com-
puted by Gaussian position-pooling, over the input video of
the equirectangular projection (ERP) format. We observe
that high scores are often distributed to main characters,
while relatively low scores are assigned to the regions with
little saliency (e.g. sky in the background).

Figure 6 illustrates the position score maps for (a) a pro-
fessional, (b) a casual, and (c) a randomly sampled glimpses.
In the example (a), our framework correctly assigns high
scores to actual highlights of a music video characterized
by the group dance with a good framing. In the example
(b), our model attaches flat scores to the frames that cap-
ture proper content of the input video, but show a mediocre
framing, shifted to the right. This may be due to low scores
(depicted in blue) in the left vacant parts of the example
{w0, w5, w10, w15, w20}. This tendency is an incentive to
move the view selection to the right to increase the score. In
the negative sample (c), all fitness scores are very low for
the incorrect camera view.

Figure 7 shows an example of highlight detection on
a 360◦ test video of our dataset. Our model success-
fully detects the main events labeled by human annota-
tors, especially in top-6 scored glimpses. Compared to TS-
DCNN (Yao, Mei, and Rui 2016), the CVS model can suc-
cessfully assign higher scores to the frames containing cen-
tral events. By using both spatial and temporal features, our
model can discover dynamic movements of main characters
as highlights like a guitarist head-banging in MV, or impor-
tant moments such as a couple kissing in Wedding.

Conclusion

We addressed a problem of 360◦ video highlight detection
via both spatial and temporal summarization. We proposed
a novel deep ranking model named Composition View Score
(CVS), which produces a spherical score map of composi-
tion per video segment to determine which view is suitable
for highlight. Using the spherical position score maps, our
model is much faster at inference than existing methods. In
our experiments, we showed that the CVS model outper-
formed state-of-the-art methods not only for spatial summa-
rization in the Pano2Vid dataset, but also for highlight de-
tection task in our newly collected video highlight dataset.

Acknowledgments. We thank Jinyoung Sung for the
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Figure 5: Examples of view selection. For a given spatio-temporal glimpse (left), we show the composition view score map
(middle), and the projected NFOV with the highest score (right). The higher the view score is, the whiter it appears on the map.

39849183

(a) Professional (b) Casual (c) Random

Figure 6: Examples of 25 position score maps wx for (a) a professional, (b) a casual, and (c) a random glimpse in our Music
Video (MV) highlight dataset. Our model successfully assigns higher scores to better views for the highlight.

Human annotation (Groundtruth)

TS-DCNN

CVS-fusion

Figure 7: An example of highlight detection on a 360◦ test video. We show human-annotated groundtruth highlight (top), and
compare top-6 scored glimpses by TS-DCNN (middle) and our CVS model (bottom). Green boxes indicate true-positives.
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