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Abstract

Massive classification, a classification task defined over a
vast number of classes (hundreds of thousands or even mil-
lions), has become an essential part of many real-world sys-
tems, such as face recognition. Existing methods, including
the deep networks that achieved remarkable success in re-
cent years, were mostly devised for problems with a moderate
number of classes. They would meet with substantial difficul-
ties, e.g. excessive memory demand and computational cost,
when applied to massive problems. We present a new method
to tackle this problem. This method can efficiently and accu-
rately identify a small number of “active classes” for each
mini-batch, based on a set of dynamic class hierarchies con-
structed on the fly. We also develop an adaptive allocation
scheme thereon, which leads to a better tradeoff between per-
formance and cost. On several large-scale benchmarks, our
method significantly reduces the training cost and memory
demand, while maintaining competitive performance.

Introduction

Recent years have witnessed a wave of breakthroughs in AI
areas (Shakirov 2016), thanks to the advances in deep learn-
ing and the explosive growth of datasets. Along with this
trend, massive classification that involves an exceptionally
large number of classes emerges as an important task. Such
a task often arises in applications like face recognition (Sun,
Wang, and Tang 2014) or language modeling (Chen, Grang-
ier, and Auli 2015), when industry-level datasets are used.

Massive classification poses a number of new challenges,
among which, the computational difficulties in training are
perhaps the most prominent. Specifically, a contemporary
classifier often adopts a deep network architecture, which
typically comprises a series of transformation layers for fea-
ture extraction and a softmax layer that connects the top-
level feature representation with per-class responses. The
parameter size of this softmax layer is proportional to the
number of classes. When training such a classifier, for each
mini-batch of samples, the responses for all involved classes
will be computed by taking the dot products between the
class-specific weights and the extracted features. When there
is a huge number of classes, the algorithm as described
above will be faced with two significant difficulties: (1) The
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parameter size may go beyond the memory capacity, espe-
cially when the network is trained on GPUs with limited ca-
pacity. (2) The computational cost will be dramatically in-
creased, even to a prohibitive level.

Existing efforts to tackle such difficulties (Mnih and Teh
2012; Jean et al. 2015; Wu et al. 2016) mostly originate from
natural language processing, where one often needs to deal
with large vocabularies. A common idea adopted by these
methods is to focus on frequent words, based on prior statis-
tics collected from the training corpus. However, it is often
difficult to extend these methods along to other domains, as
they require an essential condition to work, namely, the fre-
quencies of different classes are highly imbalanced. This is
not the case for applications like face recognition.

We conduct an empirical study when exploring this prob-
lem (see Sec. 3). In this study, we have two important obser-
vations: (1) For most cases, the samples of a class can only
be confused with a small number of other classes. (2) When
a softmax loss is used, for each sample, the signals back-
propgated from this small subset of classes dominate the
learning process. These observations suggest that for each
mini-batch of samples, it suffices to perform the computa-
tion over a small fraction of classes, while excluding other
classes whose impact is negligible. Motivated by this study,
we explore a new approach to tackling the challenges of
massive classification. Our basic idea is to develop a method
that can identify a small number of active classes that can
yield significant signals for each mini batch of samples. This
method needs to be both accurate and efficient. To be more
specific, it should be able to correctly identify those classes
that are truly correlated with the given samples, but would
not incur too much overhead. Satisfying both requirements
at the same time is nontrivial.

Our efforts towards this goal consist of two stages. First,
we derive an optimal class selector. Through experiments,
we show that with optimal selection of active classes, the
learned network can achieve the same level of performance
with only 1% of classes selected at each iteration. How-
ever, the optimal selection requires computing responses for
all classes, which in itself is overly expensive. Then in the
second stage, we develop an efficient approximation of the
optimal selector based on dynamic class hierarchies. The
dynamic class hierarchies effectively capture the proximity
among classes, with which one can approximately identify
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the active classes for a mini-batch with dramatically lower
cost. Note that the class hierarchies are dynamically up-
dated based on the weight vectors associated with individual
classes. Hence, the selection of active classes takes into ac-
count both the sample features and the weight vectors. This
distinguishes our method from the aforementioned methods
that rely on prior statistics. Also, we observe that the aver-
age number of truly active classes tends to decrease as the
training proceeds, and thus develop an adaptive allocation
scheme accordingly, which leads to better tradeoff between
cost and performance.

On large-scale benchmarks, LFW (Huang et al. 2007),
IJB-A (Klare et al. 2015), and Megaface (Kemelmacher-
Shlizerman et al. 2016), our method can remarkably reduce
the training time and the memory demand.

Related Work

Existing methods to tackle the challenges of massive classi-
fication primarily focus on reducing the cost of the softmax
layer, as it constitutes the computational bottleneck. These
methods roughly fall into three categories below.

Approximated softmax An important idea explored pre-
viously is to devise approximations to the softmax function
to reduce the computational cost. The Hierarchical Softmax
(HSM) (Goodman 2001) is an early attempt along this line.
HSM reformulates the multi-class classifier into a hierarchy
of binary classifiers. During training, given a sample, it only
has to traverse along a path from the root to the correspond-
ing class, and thus the cost is reduced. This method has two
limitations. First, it requires a prior distribution of the classes
to build the hierarchy. More importantly, the resultant tree
does not necessarily help discrimination, as the prior pro-
vides no information as to the proximity among classes.

Frequency-based methods Another idea is to focus on
the most frequent words, which is commonly seen in lan-
guage modeling context. Schwenk proposed a continuous-
space coding of words (2007), which prunes the output layer
by just retaining a shortlist of the most frequent words. Le
et al. proposed a structured output layer for neural network
language models (2011), where the most frequent words are
directly connected to the hidden layer while others are via
binary trees. Jean et al. proposed to uses a predined proposal
distribution to sub-sample classes in the softmax layer 2015.
Chen, Grangier, and Auli proposed Differentiated softmax
(D-Softmax) (2015), which partitions the words into differ-
ent subsets based on frequencies. The words that occur more
frequently will be associated with parameters of higher di-
mensions. Recently, Grave et al. proposed Adaptive Soft-
max (2016), which utilizes a short list to keep the most fre-
quent words in the root of a two-layer tree. This method can
notably reduce the training time with rare words excluded
from a considerable part of the computation.

All the methods above exploit the imbalanced distribu-
tion of classes (e.g. the words in language models) to re-
duce computation. This, however, is not always the case in
real-world applications. For example, in face recognition, all

classes are equally important in general. For such problems,
these methods are not suited.

Noise contrastive learning For softmax computation, the
major cost lies in computing the normalization constant,
which has to sum over all classes. Gutmann and Hyvärinen
proposed Noise Contrastive Estimation (NCE) (2010), an al-
ternative way to estimate probabilistic distributions that cir-
cumvents the normalization issue. The basic idea is to re-
place the original maximum-likelihood objective by a bi-
nary logistic regression. NCE has been applied to cope
with large vocabularies in language models (Mnih and Teh
2012; Mnih and Kavukcuoglu 2013; Vaswani et al. 2013).
Word2Vec (Mnih and Teh 2012) also adopts this approach
and obtains promising results. However, it has been repeat-
edly shown in previous work that promoting the contrast
among classes is crucial for discriminative learning (Sun,
Wang, and Tang 2014; Sun et al. 2014). Turning multi-
class classification to binary logistic regression may result in
weaker discriminative power and thus inferior performance.

Key differences Whereas the proposed method adopts the
idea of sub-sampling classes, it differs from previous work
in several key aspects: (1) It does not rely on an imbal-
anced distribution of classes. Instead, it exploits the proxim-
ity among them and explicitly promotes the contrast among
similar classes. This distinguishes it from both frequency-
based methods and NCE-based methods. (2) The sampling
is guided by dynamic hierarchies, which are adaptively up-
dated on the fly during training, rather than being fixed in
advance.

Problem Statement

As a core topic in machine learning, classification has been
extensively studied. In recent years, due to the remarkable
success of deep learning (Schmidhuber 2015), deep net-
works have become very popular in classifier formulations.
A classification pipeline typically consists of two stages, fea-
ture extraction and feature-based classification, as:

p = σ (Wx) , with x = F (o;θ) ∈ R
D. (1)

Here, o denotes the observed input for a sample, x =
F (o;θ) the extracted feature, and θ the parameter of the
feature extractor. Given a feature vector x ∈ R

D, the linear
transform Wx turns it into per-class responses. Let N be
the number of classes, then W is a matrix of size N × D,
where each row wi is the weight vector for the i-th class.

Following the practice in the seminal work (Krizhevsky,
Sutskever, and Hinton 2012), classification models usually
uses a softmax function σ to transform Wx into p ∈ R

N ,
a vector of posterior probabilities. The learning objective is
often defined to be maximizing the joint probability of the
ground-truth classes. Specifically, the softmax function is de-
fined as σ(y) = [σ1(y), . . . , σN (y)], where

σi(y) = eyi/
N∑
j=1

eyj . (2)
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The major cost in this computation lies in the linear trans-
form Wx. Both the time complexity and the space complex-
ity increases linearly as the number of classes N increases.

This may not be a significant issue for problems of mod-
erate scale. However, as machine learning techniques are
increasingly used in the context with large-scale data, the
problem of massive classification emerges and even be-
comes a critical issue in certain applications. An important
example is face recognition. As shown in (Sun, Wang, and
Tang 2014), training on a dataset with a massive number of
classes is crucial for obtaining strong performance. Large
datasets released recently even comprise nearly a million
classes (Kemelmacher-Shlizerman et al. 2016).

Such datasets post significant computational challenges.
On one hand, training on datasets as such requires huge com-
puting power. Therefore, GPU acceleration is needed. On
the other hand, current GPUs only come with limited mem-
ory capacity, e.g. the memory capacity of Tesla P100 is up to
16 GB. When training a network on multiple GPUs, this is-
sue is even more severe – synchronizing the massive weight
matrix W would incur significant communication overhead,
thus adversely affecting the overall efficiency.

An Empirical Study of Softmax

To explore an effective way to reduce the cost of the softmax
layer for massive classification, we conduct an empirical
study. In particular, we hypothesize that for each given sam-
ple, it may yield positive responses for only a small number
of classes, even when the total number is very large. To ver-
ify this, we introduce a quantity called top-K cumulative
probability, which is defined as the sum of predicted proba-
bilities, i.e. the probability values produced by softmax, for
top K classes:

CPK(x) �
∑

i∈TK(y)

σi(y), with y = Wx, (3)

where TK(y) is the set of those K classes with highest re-
sponses. A high value of CPK indicates that the predicted
probabilities concentrate on top K classes. Fig 1(a) shows
the change of average CPK along with the training epochs,
obtained on MS-Celeb-1M, a large dataset for face recogni-
tion that contains about 87K classes (Guo et al. 2016). We
can see that as the training proceeds, the probabilities gradu-
ally become more and more concentrated. Particularly, after
23 epochs, over 95% of the probability mass fall onto the
top-1000 classes, which is only 1.15% out of all.

On the other hand, the softmax loss provides feedback
signals via gradients. For a training sample from class c, the
gradient at wi, the i-th row of W, is given by

gi :=
∂(− log σc(Wx))

∂wi
=

{
σi(y)x i �= c,

(σi(y)− 1)x otherwise.
(4)

We can see that it is proportional to σi(y) (for i �= c), the
predicted probability for i. Hence, if the predicted proba-
bilities concentrate on the top K classes, then the gradients
should also concentrate on those classes.

We verify this empirically. Specifically, we introduce an-
other quantity called normalized top-K cumulative gradient

Figure 1: The curves of (a) average CPK values and (b)
average NCGK values vs. the number of elapsed training
epochs. The values are obtained on MS-Celeb-1M.

energy, which is defined as:

NCGK(x) = (
gT ĝ

||g|| · ||ĝ|| )
2 with ĝi = gi1i∈TK(y), (5)

It measures how much the gradients are concentrated on
the top K classes. Fig. 1(b) shows the change of average
NCGK along with the training epoches. It demonstrates
that the gradients are highly concentrated on a small frac-
tion of top classes. These observations suggest that we can
still effectively learn the classifier if we restrict the softmax
loss to those top classes that dominate the probabilities and
gradients. In what follows, we refer to them as the active
classes.

Methodology

The basic idea of our method is to select a small number of
active classes for each mini-batch of samples and compute
a selective softmax and the gradients based on them. In this
section, we first provide an overview of the entire pipeline,
and then proceed with a detailed discussion of how to se-
lect active classes. Particularly, we begin with an optimal
but costly scheme, and then develop an efficient approxi-
mation based on dynamic class hierarchies. Futhermore, we
introduce an adaptive allocation scheme, which adjusts the
algorithmic parameters as the network status changes, so as
to strike a better balance between performance and cost. Fi-
nally, we will present useful details in our implementation.

Selective Softmax

The empirical study in previous section shows that a small
number of active classes dominate not only the predicted
probabilities but also the gradients for backpropagation. In-
spired by this, we propose a variant of softmax, called selec-
tive softmax, to approximate the full softmax. The selective
softmax is defined as follows:

ES(x)

[
σS(x)(W̃x)

]
, with W̃ = FS(x)(W). (6)

Here, S(x) denotes the set of active classes selected for the
given sample x. Given S(x), the computation proceeds in
several steps, as follows: (1) Derive a sub-matrix W̃ from
the current weight matrix W, which contains the rows cor-
responding to the classes in S(x). Let M be the number of
selected classes, then W̃ ∈ R

M×D. The notation FS(x) in-
dicates this operation. (2) Compute W̃x, the responses for
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the selected classes. (3) Turn W̃x into an M -dimensional
probability vector via σS(x), a softmax function restricted
to S(x). (4) Expand this probability vector into an N -
dimensional vector, setting the entries corresponding to the
unselected classes to zeros. The notation ES(x) indicates this
operation. Note that the expanded vector is a valid probabil-
ity vector over all N classes.

The selective softmax above is equivalent to forcing the
probabilities to be zeros for non-active classes, while renor-
malizing those of the active ones. If the active classes are
correctly selected, this would be a very close approximation
to the full softmax, as the original probabilities of non-active
classes are indeed nearly zeros. Consequently, the resultant
gradients also closely approximate the original gradients.

Using selective softmax, both the computational complex-
ity and the memory demand are reduced from O(ND) to
O(MD). When M � N , this would be a dramatic re-
duction. Our experiments show that with a proper selection
scheme, we can maintain the same level of performance with
only 1% of the classes selected at each iteration.

Optimal Selection of Active Classes

Selective softmax provides a good approximation to the full
softmax with substantially reduced cost. However, the ef-
fectiveness of this approach hinges on whether we can accu-
rately and efficiently selection the active classes. This is the
key challenge of our work.

For a softmax function, a class with higher response value
wT

i x also has higher predicted probability σi(y) and greater
gradient norm ‖gi‖. Therefore, with a fix quota Q, the opti-
mal strategy to select active classes for a given sample x is
to choose those classes that yield the highest responses.

As we will show empirically in next section, this simple
method can accurately find the active classes. Using this
scheme, a very small quota Q is usually enough for train-
ing a classifier with competitive performance. This method,
however, has a serious drawback – it is too expensive. To
find the M classes with highest responses, one has to com-
pute Wx entirely in order to derive the responses for all
classes. The complexity of this procedure is O(ND), at the
same level as the original full softmax function. Hence, this
selection scheme is not a viable choice in practice, as its sig-
nificant complexity defeats the very purpose of our work,
that is, to reduce the computational cost.

Nonetheless, the optimal scheme above reveals two key
factors that affect the selection: the weight matrix W and
the sample feature x. For W, its columns can be viewed as
the embeddings of classes in a D-dimensional space, which
capture the proximity among classes. The proximity is cru-
cial for identifying classes that can be easily confused. The
sample feature x, on the other hand, provides instance-level
information. Due to large intra-class variation, the subset of
active classes may significantly vary across instances, even
within the same class. Also, as the extracted feature x for
each instance changes over iterations, it is important to use
the updated features for active classes selection.

Approximated Selection

Algorithm 1 Build Hashing Tree
Input: W, root
Output: Tree

1: while |W| > B do
2: Randomly sample wi,wj ∈ W, i �= j

3: Get the normal vector h =
wi+wj

2

4: Wl = argwi∈W(wT
i h ≥ 0)

5: Wr = argwi∈W(wT
i h < 0)

6: Build Hashing Tree (Wl, root→left)
7: Build Hashing Tree (Wr, root→right)
8: end while
9: return Tree

We propose to use a Hashing Forest (HF) to approximate
the optimal selection scheme. The gist of this method is to
partition the space of weight vectors into small cells via re-
cursive partitioning. Specifically, it begins with the entire
space as a cell, and recursively applies random partitioning
as follows. At each iteration, it chooses a cell with more than
B points, randomly picks a pair of points therein, and then
computes a hyperplane that separates the chosen points with
maximum margin. This hyperplane will split this cell into
two. The procedure continues until no cells contain more
than B points. Note that this recursive partitioning proce-
dure essentially builds a binary tree of the cells. Overall, the
tree building procedure is listed in Algorithm 1.

As each cell is partitioned in a stochastic way, a single
hashing tree might not be enough to capture the proximity
among classes reliably. To improve the accuracy of search,
we build L hashing trees, which together form a hashing
forest. The number of trees L can be determined empirically
based on the trade-off between cost and accuracy.

Given a query feature x and a required quota Q, we walk
along the tree starting from the root node. At each iteration,
it will choose a branch according to which side of the bound-
ary that it falls in. This stops when it hits a node (not nec-
essarily a leaf cell) that contains less than Q points. Then, it
selects all the classes under its parent (whose size is at least
Q). This procedure will be repeated for each hashing tree
in the forest. Among all resultant classes pooled from indi-
vidual trees, we choose Q that are closest to x (by cosine
distance) to form S(x).

On average, the depth of a hashing tree is log N
B . At each

level (except in the leaf cell), all points have to be dispatched
to either side of the boundary by geometric calculation.
Hence, the overall complexity for building a hashing tree
is O(N log N

B ). As B � N in practice, we may consider
the complexity as O(N logN). For query, the complexity
of top-down traverse is O(log N

Q ) on average. When it hits
the target node, it has to compute the cosine distances from
x to all points therein, for which the complexity is O(Q).
Hence, the overall complexity for a query (along a tree) is
O(log N

Q + Q). For a forest, the complexity for both build-
ing and querying grows linearly with L. However, the time
can be reduced by parallelizing the operation on different
trees.
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Adaptive Allocation

The empirical study in Section 3 shows that both the pre-
dicted probabilities and the gradients become more concen-
trated as the training proceeds, due to the increasing discrim-
inative power of the model. Inspired by this, we propose an
improved training scheme, which adaptively adjusts the pa-
rameters that affect the use of computing resources (e.g. al-
lowing more active classes in early epochs), so as to pursue
a better balance between performance and cost.

This scheme controls three parameters: (1) M , the num-
ber of active classes for each iteration, (2) L, the number
of hashing trees, and (3) T , the interval of structure update.
In particular, we will rebuild the hashing forest every T it-
erations in order to stay updated. Generally, increasing M
and L while reducing T can improve the performance, but
at the expense of higher computing cost. Our strategy ad-
justs M , L, and T periodically, based on several heuristics.
Specifically, we divide the entire training process into a few
phases, each spanning a number of epochs. At the beginning
of a phase, we reset these design parameters according to the
updated states of the network, as follows.

First, we set M to be the minimum number such that the
average top-M cumulative probability is above a threshold
τcp, where τcp increases linearly with the number of itera-
tions. Second, we increase the update interval T linearly, as
the training process stabilizes over time. Third, we initialize
the number of trees L to be a small number, and increase L
linearly over time. The rationale behind is that the selection
need not be very accurate in early stages as everything is
volatile, and more accurate selection is needed as the proba-
bilities become more concentrated in later stage.

Implementation Details

For the sake of clarity, the algorithm discussed above only
involves one instance. In practice, we use a mini-batch of
instances for each iteration. Let X denotes a set of extracted
feature x for the current mini-batch, then S(X ) is a union
of S(x). Also, it is often convenient to have a maximum
size for the set of active classes used in each iteration. When
the cardinality of S(X ) is greater than the maximum size,
sampling based on the renormalized probabilities of active
classes will be applied.

Besides, in our approach, since only a small number of
rows in W will be used and updated in each iteration, we
adopt a client-server architecture (Xie et al. 2016) to sup-
port efficient sparse update. Particularly, it maintains the en-
tire W in a large-capacity memory (e.g. CPU Ram) on the
server. When a subset of active classes is selected, it will re-
trieve the corresponding sub-matrix W̃ and cache it in the
client’s GPU. When the updates are done, the gradients will
be sent back to the server. Our implementation adopts the pa-
rameter server design (Ho et al. 2013), which allows sparse
updates to be done asynchronously.

Experiments

We test our method on three benchmarks on face recogni-
tion/verification, which is the application that motivates this
work. We not only compare it with various methods, but also

investigate how different factors influence the performance
and cost, via a series of ablation studies.

Experimental Settings

Datasets Following the convention in face recognition, we
train networks on large training sets that are completely dis-
joint from the testing sets, namely the identities (i.e. classes)
used for testing are excluded from the training set.

Specifically, two large datasets below are used for train-
ing: (1) MS-Celeb-1M (Guo et al. 2016). This dataset con-
sists of 100K identities, each with about 100 facial im-
ages on average. In total, the dataset contains 10M im-
ages. As the original identity labels are extracted automat-
ically from webpages and thus are very noisy. We clean
up the annotations manually, resulting in a reliable subset
that contains 4.6M images from 87K classes. (2) Megaface
(MF2) (Kemelmacher-Shlizerman et al. 2016). This is one
of the largest annotated training sets for face recognition that
are publicly available, which contains 4.7M images from
672K identities. Note that these two datasets differ signifi-
cantly in the number of identifies (87K vs. 672K) and the
average number of images per identity (100 vs. 7). Compar-
ing the results on both datasets reveals the differences among
various methods under different settings.

The trained networks are then tested on three testing sets:
(1) LFW (Huang et al. 2007), the de facto standard test-
ing set for face verification under unconstrained conditions,
which contains 13, 233 face images from 5, 749 identities.
(2) IJB-A (Klare et al. 2015), which contains 5, 712 face
images from 500 identities. (3) Megaface & Facescrub, the
largest public benchmark for face recognition, which com-
bines the gallery sets from both Megaface (Kemelmacher-
Shlizerman et al. 2016) (with 1M images from 690K iden-
tities), and Facescrub (Ng and Winkler 2014) (with 100K
images from 530 identities).

Metrics We assess the performance on two tasks, namely
face identification and face verification. Face identification
is to select top k images from the gallery, where the per-
formance is measured by the top-k hit rate, i.e. the fraction
of predictions where the true identity occurs in the top-k
list. Face verification is to determine whether two given face
images are from the same identity. We use a metric widely
adopted in practice, namely the true positive rate under the
condition that the false positive rate is fixed to be 0.001.

Networks We conduct two series of experiments, with dif-
ferent network architectures. First, we experiment over MS-
Celeb-1M training set with various methods under different
settings, based on Hynet, a variant of VGG (Simonyan and
Zisserman 2014) with certain parts optimized for higher ef-
ficiency. Using a network of moderate size like this allows
us to conduct extensive studies within a reasonable bud-
get. To further study how different methods work with very
deep networks, we conduct another series of experiments for
selected methods using ResNet-101 (He et al. 2016), over
a larger training dataset, namely the union of MS-Celeb-
1M and Megaface (MF2). For all settings, the networks are
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Method IJB-A Megaface (FaceScrub+1M)
Full softmax 0.860 0.630
Random (1K) 0.771 0.515

PCA (1K) 0.773 0.524
Kmeans (1K) 0.765 0.491
Optimal (1K) 0.863 0.625

HF (1K) 0.856 0.599
NCE 0.313 -
HSM 0.488 -

Table 1: Quantities in IJB-A column are TPR when FPR is
0.001, and in Megaface identification task is the top-1 accu-
racy.

trained using SGD with momentum. The mini-batch sizes
are set to 512 and 256 respectively for Hynet and ResNet-
101.

Method Comparison

We compare the proposed method with a series of baselines.
These methods are briefly described below.
(1) Softmax, the full version of softmax, which involves all
classes as active classes at each iteration.
(2) Random, a naive method, which randomly picks a fixed
number of classes for softmax computation at each iteration.
(3) PCA, a simple hashing method. It projects the weight
vectors to a low-dimensional space and encodes it into a bi-
nary hash code based on the polarity of each entry of the pro-
jected vector. For a sample from class c, the classes which
share the same hash code will be selected.
(4) KMeans, another simple way to find active classes. It
clusters all classes into 1024 groups based on the corre-
sponding weight vectors. For a sample from class c, the
group that contains c will be chosen.
(5) Optimal, the optimal selection scheme, which computes
Wx entirely and chooses those classes that yield the highest
responses as the active classes. This provides a performance
upper bound, but it is very expensive.
(6) HF, the basic version of the proposed method, which
approximates the optimal selection scheme using a hashing
forest that will be updated periodically.
(7) HF-A, an advanced version of the proposed method that
uses the adaptive allocation scheme to adjust the use of com-
puting resources, in order to strike a better balance.

Results We train networks using different methods on MS-
Celeb-1M and test them on Megaface & Facescrub. Tab. 1
shows some quantity results for different methods. And
Fig. 2 compares their performance (against cost). Here, the
performance is measured by top-1 identification accuracy,
while the cost includes the time for both class selection and
computing the restricted softmax and the gradients.

The results show: (1) For random sampling, the perfor-
mance increases slowly as the number of active classes
grows. This suggests that random sampling is not a very
efficient way for selecting active classes. (2) Cluster-based
methods like K-means and PCA do not perform very well,

Figure 2: Face identification accuracy vs. computing cost for
different methods. The points towards the top-left corner in-
dicate high performance with low cost. Note that the x-axis
is in log-scale.

Figure 3: Face identification accuracy vs. approximation
precision for different methods. Note that the x-axis is in
log-scale.

which suggests that only using the clusters of weight vec-
tors while neglecting the sample feature x is not enough to
obtain good performance. (3) The optimal selection delivers
very high performance, even slightly surpassing full soft-
max. But this is at the expense of severe overhead in class
selection, as it requires computing responses for all classes.
(4) Our method (HF) clearly outperforms others by a large
margin. At the same cost, it can yield considerably higher
performance. On the other hand, to reach the same perfor-
mance, it requires substantially lower cost (sometimes by
even nearly an order of magnitude). (5) HF-A achieves clear
improvement over the basic version, which clearly shows
the merit of the adaptive allocation strategy. It is notewor-
thy that it can surpass the performance of full softmax with
only 10% of the cost. This is a remarkable improvement. (6)
The results of NCE and HSM are far inferior to a typical
method. Such results may suggest that these two methods
are not quite suitable for massive classification problems.

Fig. 3 shows the performance against the approxima-
tion precision, i.e. the average overlap between the selected
classes and the optimal selection. We see that better ap-
proximation generally comes with higher performance. The
classes selected by the proposed HF are very close to the
optimal subset (much more precise than other methods), and
consequently obtain notably higher performance.
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Method Cost (s) Memory (Mb) Accuracy (%)
Full Softmax 3.5 2511 64.7

Random 1.45 9 50.2
HF-A 1.5 9 63.9

Table 2: Performance vs cost in the large-scale experiment.

Figure 4: Performance vs. the number of active classes M
for Random, Optimal, and HF, on different datasets.

Large Scale Experiment

We also conduct a large-scale experiment with ResNet-101,
using the union of MS-Celeb-1M and Megaface (MF2) as
the training set, which contains 750K classes in total. The
training is done on a server with 8 NVIDIA Titan X GPUs.
In this experiment, HF-A can reduce the training time per it-
eration from 3.5 s to 1.5 s, which is a speedup by 60%. Note
that this is the overall speedup of for the entire network (not
just the softmax layer). Also the overall memory consump-
tion on each GPU is reduced from 10.8G to 8.2G. This is
due to the dramatic reduction of the GPU memory demand
from the softmax layer, as shown in Table 2. It also shows
that our method can achieve a performance comparable to
full softmax, with only 1% of the classes selected for each
iteration. This result suggests that our method can scale well
to massive classification problems.

Ablation studies

Number of Active Classes M The number of active
classes is an important factor that influences the final per-
formance. Generally, larger number active classes can result
in better performance. This is confirmed by Fig. 4. Here,
we compare three methods, Random, Optimal Selection, and
HF. The former two respectively provide a lower and up-
per bounds in terms of performance. For all these methods,
we can see performance increases as the number of active
classes per iteration increases. But for Optimal Selection,
the increase is much faster than Random, which indicates
the importance of accurately identifying the active classes.
The performance of proposed method HF also comes close
to Optimal Selection in terms of performance given M , but
it achieves close performance with substantially lower cost.

Figure 5: Performance vs. number of hashing trees L.

Figure 6: Performance vs. interval of structure update T

Number of Hashing Trees L The number of hashing trees
directly relates to the accuracy of approximating the Optimal
Selection. Fig. 5 shows that the performance increases with
the number of trees. There is a large performance gap be-
tween L = 5 and L = 50, but the performance gradually
saturates as L increases beyond 100.

Interval of Structure Update T The cost on building the
hashing forest can be hidden by updating the structure in
the background. Hence, this cost is generally not an issue.
However, it is still interesting to examine the influence of the
interval T on performance. Fig.6 shows the performance do
not change much when T ranges from 100 to 1000 iterations,
but becomes more sensitive to T in the range between 1000
and 10000. The rightmost point is an extreme case that only
builds the forest at the beginning of the training, the result
of which is close to the result of random sampling.

Threshold of Adaptive Allocation τcp The performance
is not very sensitive to the threshold. In our experiments,
when τcp changes from 0.7 to 0.9, the accuracy improves
by about 2%. Generally, higher threshold results in better
performance, but the reward diminishes when the threshold
increases beyond 0.9.

Conclusion

This paper presents a new method to tackle the computa-
tion difficulty of the softmax layer for massive classification
problems. Particularly, we develop an efficient method based
on dynamic class hierarchies to approximate the optimal se-
lection, which can accurately and efficiently identify the ac-
tive classes for each mini-batch of samples. We also develop
an adaptive allocation scheme on top that achieves better
tradeoff between performance and cost by adaptively adjust-
ing the allocation of computing resources. Experiments on
large benchmarks show that the proposed method can speed
up the overall training procedure by 60% and reduce the
GPU memory demand by 24% without compromising per-
formance. Note that this is achieved by only optimizing the
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softmax layer (without modifying other layers).
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Grave, E.; Joulin, A.; Cissé, M.; Grangier, D.; and Jégou,
H. 2016. Efficient softmax approximation for gpus. arXiv
preprint arXiv:1609.04309.
Guo, Y.; Zhang, L.; Hu, Y.; He, X.; and Gao, J. 2016.
Ms-celeb-1m: A dataset and benchmark for large-scale face
recognition. In European Conference on Computer Vision,
87–102. Springer.
Gutmann, M., and Hyvärinen, A. 2010. Noise-contrastive
estimation: A new estimation principle for unnormalized
statistical models. In AISTATS, volume 1, 6.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
770–778.
Ho, Q.; Cipar, J.; Cui, H.; Lee, S.; Kim, J. K.; Gibbons, P. B.;
Gibson, G. A.; Ganger, G.; and Xing, E. P. 2013. More ef-
fective distributed ml via a stale synchronous parallel param-
eter server. In Advances in neural information processing
systems, 1223–1231.
Huang, G. B.; Ramesh, M.; Berg, T.; and Learned-Miller,
E. 2007. Labeled faces in the wild: A database for study-
ing face recognition in unconstrained environments. Tech-
nical report, Technical Report 07-49, University of Mas-
sachusetts, Amherst.
Jean, S.; Cho, K.; Memisevic, R.; and Bengio, Y. 2015. On
using very large target vocabulary for neural machine trans-
lation. In Proceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language Processing of
the Asian Federation of Natural Language Processing, ACL
2015, July 26-31, 2015, Beijing, China, Volume 1: Long Pa-
pers, 1–10. The Association for Computer Linguistics.
Kemelmacher-Shlizerman, I.; Seitz, S. M.; Miller, D.; and
Brossard, E. 2016. The megaface benchmark: 1 million
faces for recognition at scale. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
4873–4882.
Klare, B. F.; Klein, B.; Taborsky, E.; Blanton, A.; Cheney, J.;
Allen, K.; Grother, P.; Mah, A.; and Jain, A. K. 2015. Push-
ing the frontiers of unconstrained face detection and recog-

nition: Iarpa janus benchmark a. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
1931–1939.
Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012.
Imagenet classification with deep convolutional neural net-
works. In Advances in neural information processing sys-
tems, 1097–1105.
Le, H.-S.; Oparin, I.; Allauzen, A.; Gauvain, J.-L.; and
Yvon, F. 2011. Structured output layer neural network lan-
guage model. In Acoustics, Speech and Signal Processing
(ICASSP), 2011 IEEE International Conference on, 5524–
5527. IEEE.
Mnih, A., and Kavukcuoglu, K. 2013. Learning word em-
beddings efficiently with noise-contrastive estimation. In
Advances in neural information processing systems, 2265–
2273.
Mnih, A., and Teh, Y. W. 2012. A fast and simple al-
gorithm for training neural probabilistic language models.
arXiv preprint arXiv:1206.6426.
Ng, H.-W., and Winkler, S. 2014. A data-driven approach
to cleaning large face datasets. In Image Processing (ICIP),
2014 IEEE International Conference on, 343–347. IEEE.
Schmidhuber, J. 2015. Deep learning in neural networks:
An overview. Neural networks 61:85–117.
Schwenk, H. 2007. Continuous space language models.
Computer Speech & Language 21(3):492–518.
Shakirov, V. 2016. Review of state-of-the-arts in artificial
intelligence with application to ai safety problem. arXiv
preprint arXiv:1605.04232.
Simonyan, K., and Zisserman, A. 2014. Very deep convo-
lutional networks for large-scale image recognition. CoRR
abs/1409.1556.
Sun, Y.; Chen, Y.; Wang, X.; and Tang, X. 2014. Deep learn-
ing face representation by joint identification-verification. In
Advances in neural information processing systems, 1988–
1996.
Sun, Y.; Wang, X.; and Tang, X. 2014. Deep learning face
representation from predicting 10,000 classes. In Proceed-
ings of the IEEE Conference on Computer Vision and Pat-
tern Recognition, 1891–1898.
Vaswani, A.; Zhao, Y.; Fossum, V.; and Chiang, D. 2013.
Decoding with large-scale neural language models improves
translation. In EMNLP, 1387–1392. Citeseer.
Wu, Y.; Li, J.; Kong, Y.; and Fu, Y. 2016. Deep convo-
lutional neural network with independent softmax for large
scale face recognition. In Proceedings of the 2016 ACM on
Multimedia Conference, 1063–1067. ACM.
Xie, P.; Kim, J. K.; Zhou, Y.; Ho, Q.; Kumar, A.; Yu, Y.; and
Xing, E. 2016. Lighter-communication distributed machine
learning via sufficient factor broadcasting. In Proceedings
of the 32nd International Conference on Conference on Un-
certainty in Artificial Intelligence.

7573


