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Abstract

Hashing is widely applied to large-scale image retrieval
due to the storage and retrieval efficiency. Existing work
on deep hashing assumes that the database in the tar-
get domain is identically distributed with the training
set in the source domain. This paper relaxes this as-
sumption to a transfer retrieval setting, which allows the
database and the training set to come from different but
relevant domains. However, the transfer retrieval setting
will introduce two technical difficulties: first, the hash
model trained on the source domain cannot work well
on the target domain due to the large distribution gap;
second, the domain gap makes it difficult to concentrate
the database points to be within a small Hamming ball.
As a consequence, transfer retrieval performance within
Hamming Radius 2 degrades significantly in existing
hashing methods. This paper presents Transfer Adver-
sarial Hashing (TAH), a new hybrid deep architecture
that incorporates a pairwise t-distribution cross-entropy
loss to learn concentrated hash codes and an adversar-
ial network to align the data distributions between the
source and target domains. TAH can generate compact
transfer hash codes for efficient image retrieval on both
source and target domains. Comprehensive experiments
validate that TAH yields state of the art Hamming space
retrieval performance on standard datasets.

Introduction

With increasing large-scale and high-dimensional image
data emerging in search engines and social networks, im-
age retrieval has attracted increasing attention in computer
vision community. Approximate nearest neighbors (ANN)
search is an important method for image retrieval. Paral-
lel to the traditional indexing methods (Lew et al. 2006),
another advantageous solution is hashing methods (Wang
et al. 2014), which transform high-dimensional image data
into compact binary codes and generate similar binary codes
for similar data items. In this paper, we will focus on data-
dependent hash encoding schemes for efficient image re-
trieval, which have shown better performance than data-
independent hashing methods, e.g. Locality-Sensitive Hash-
ing (LSH) (Gionis et al. 1999).
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There are two related search problems in hash-
ing (Norouzi, Punjani, and Fleet 2014), K-NN search and
Point Location in Equal Balls (PLEB) (Indyk and Motwani
1998). Given a database of hash codes, K-NN search aims
to find K codes in database that are closest in Hamming dis-
tance to a given query. With the Definition that a binary code
is an r-neighbor of a query code q if it differs from q in r
bits or less, PLEB for r Equal Ball finds all r-neighbors of a
query in the database. This paper will focus on PLEB search
which we call Hamming Space Retrieval.

For binary codes of b bits, the number of distinct hash
buckets to examine is N (b, r) =

∑r
k=0

(
b
k

)
. N (b, r) grows

rapidly with r and when r ≤ 2, it only requires O(1) time
for each query to find all r-neighbors. Therefore, the search
efficiency and quality within Hamming Radius 2 is an im-
portant technical backbone of hashing.

Previous image hashing methods (Kulis and Darrell 2009;
Gong and Lazebnik 2011; Norouzi and Blei 2011; Fleet,
Punjani, and Norouzi 2012; Liu et al. 2012; Wang, Kumar,
and Chang 2012; Liu et al. 2013; Gong et al. 2013; Yu et
al. 2014; Zhang et al. 2014; Liu et al. 2014; Xia et al. 2014;
Lai et al. 2015; Shen et al. 2015; Erin Liong et al. 2015;
Zhu et al. 2016; Cao et al. 2016b; Li, Wang, and Kang 2016;
Liu et al. 2016; Cao et al. 2017b) have achieved promising
image retrieval performance. However, they all require that
the source domain and the target domain are the same, under
which they can directly apply the model trained on train im-
ages to database images. Many real-world applications actu-
ally violate this assumption where source and target domain
are different. For example, one person want to build a search
engine on real-world images, but unfortunately, he/she only
has images rendered from 3D model with known similar-
ity and real-world images without any supervised similarity.
Thus, a method for the transfer setting is needed.

The transfer retrieval setting can raise two problems. The
first is that the similar points of a query within its Hamming
Radius 2 Ball will deviate more from the query. As shown in
Figure 1(a), the red points similar to black query in the or-
ange Hamming Ball (Hamming Radius 2 Ball) of the source
domain scatter more sparsely in a blue larger Hamming Ball
of the target domain in Figure 1(b), indicating that the num-
ber of similar points within Hamming Radius 2 decreases
because of the domain gap. This can be validated in Ta-
ble 1 by the decreasing of average number of similar points
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Table 1: Average Number of Similar Points within Ham-
ming Radius 2 of each query on synthetic → synthetic
and real → synthetic tasks in VisDA2017 dataset.

Task DHN DHN-Transfer t-Transfer
#Similar Points 1450 58 620

(a) DHN (b) DHN-
Transfer

(c) t-Transfer

Figure 1: Visualization of similar points within Hamming
Radius 2 of a query.

of DHN from 1450 on synthetic → synthetic task to 58
on real → synthetic task. Thus, we propose a new sim-
ilarity function based on t-distribution and Hamming dis-
tance, denoted as t-Transfer in Figure 1 and Table 1. From
Figure 1(b)-1(c) and Table 1, we can observe that our pro-
posed similarity function can draw similar points closer and
let them locate in the Hamming Radius 2 Ball of the query.

The second problem is that substantial gap across Ham-
ming spaces exists between source domain and target do-
main since they follow different distributions. We need to
close this distribution gap. This paper exploits adversarial
learning (Ganin and Lempitsky 2015) to align the distribu-
tions of source domain and target domain, to adapt the hash-
ing model trained on source domain to target domain. With
this domain distribution alignment, we can apply the hash-
ing model trained on source domain to the target domain.

In all, this paper proposes a novel Transfer Adversar-
ial Hashing (TAH) approach to the transfer setting for im-
age retrieval. With similarity relationship learning and do-
main distribution alignment, we can align different domains
in Hamming space and concentrate the hash codes to be
within a small Hamming ball in an end-to-end deep archi-
tecture to enable efficient image retrieval within Hamming
Radius 2. Extensive experiments show that TAH yields state
of the art performance on public benchmarks NUS-WIDE
and VisDA2017.

Related Work

Our work is related to learning to hash methods for image
retrieval, which can be organized into two categories: unsu-
pervised hashing and supervised hashing. We refer readers
to (Wang et al. 2014) for a comprehensive survey.

Unsupervised hashing methods learn hash functions that
encode data points to binary codes by training from un-
labeled data. Typical learning criteria include reconstruc-
tion error minimization (Salakhutdinov and Hinton 2007;
Gong and Lazebnik 2011; Jegou, Douze, and Schmid 2011)
and graph learning(Weiss, Torralba, and Fergus 2009; Liu et
al. 2011). While unsupervised methods are more general and
can be trained without semantic labels or relevance informa-

tion, they are subject to the semantic gap dilemma (Smeul-
ders et al. 2000) that high-level semantic description of an
object differs from low-level feature descriptors. Supervised
methods can incorporate semantic labels or relevance infor-
mation to mitigate the semantic gap and improve the hash-
ing quality significantly. Typical supervised methods include
Binary Reconstruction Embedding (BRE) (Kulis and Dar-
rell 2009), Minimal Loss Hashing (MLH) (Norouzi and Blei
2011) and Hamming Distance Metric Learning (Norouzi,
Blei, and Salakhutdinov 2012). Supervised Hashing with
Kernels (KSH) (Liu et al. 2012) generates hash codes by
minimizing the Hamming distances across similar pairs and
maximizing the Hamming distances across dissimilar pairs.

As various deep convolutional neural networks (CNN)
(Krizhevsky, Sutskever, and Hinton 2012; He et al. 2016)
yield breakthrough performance on many computer vision
tasks, deep learning to hash has attracted attention recently.
CNNH (Xia et al. 2014) adopts a two-stage strategy in which
the first stage learns hash codes and the second stage learns
a deep network to map input images to the hash codes.
DNNH (Lai et al. 2015) improved the two-stage CNNH with
a simultaneous feature learning and hash coding pipeline
such that representations and hash codes can be optimized
in a joint learning process. DHN (Zhu et al. 2016) further
improves DNNH by a cross-entropy loss and a quantiza-
tion loss which preserve the pairwise similarity and control
the quantization error simultaneously. HashNet (Cao et al.
2017b) attack the ill-posed gradient problem of sign by con-
tinuation, which directly optimized the sign function. Hash-
Net obtains state-of-the-art performance on several bench-
marks.

However, prior hash methods perform not so good within
Hamming Radius 2 since their loss penalize little on small
Hamming distance. And they suffer from large distribution
gap between domains under the transfer setting. DVSH (Cao
et al. 2016a) and PRDH (Yang et al. 2017) integrate different
types of pairwise constraints to encourage the similarities of
the hash codes from an intra-modal view and an inter-modal
view, with additional decorrelation constraints for enhanc-
ing the discriminative ability of each hash bit. THN (Cao
et al. 2017a) aligns the distribution of database domain with
auxiliary domain by minimize the Maximum Mean Discrep-
ancy (MMD) of hash codes in Hamming Space, which fits
the transfer setting.

However, adversarial learning has been applied to transfer
learning (Ganin and Lempitsky 2015) and achieves the state
of the art performance. Thus, the proposed Transfer Adver-
sarial Hashing addresses distribution gap between source
and target domain by adversarial learning. With similarity
relationship learning designed for searching in Hamming
Radius 2 and adversarial learning for domain distribution
alignment, TAH can solve the transfer setting for image re-
trieval efficiently and effectively.

Transfer Adversarial Hashing

In transfer retrieval setting, we are given a database Y =
{yk}mk=1 from target domain Y and a training set X =
{xi}ni=1 from source domain X , where xi,yk ∈ Rd are
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Figure 2: The architecture of transfer adversarial hashing (TAH), which consists of three modules: similarity relationship learn-
ing (green), domain distribution alignment (orange), and quantization error minimization (pink).

d-dimensional feature vectors. The key challenge of transfer
hashing is that no supervised relationship is available be-
tween database points. Hence, we build a hashing model for
the database of target domain Y by learning from a train-
ing dataset X = {xi}ni=1 available in a different but related
source domain X , which consists of similarity relationship
S = {sij}, where sij = 1 implies points xi and xj are sim-
ilar while sij = 0 indicates points xi and xj are dissimilar.
In real image retrieval applications, the similarity relation-
ship S = {sij} can be constructed from the semantic labels
among the data points or the relevance feedback from click-
through data in online image retrieval systems.

The goal of Transfer Adversarial Hashing (TAH) is to
learn a hash function f : R

d → {−1, 1}b encoding data
points x and y from domains X and Y into compact b-bit
hash codes hx = f(x) and hx = f(y), such that both
ground truth similarity relationship S for domain X and the
unknown similarity relationship S ′ for domain Y can be pre-
served. With the learned hash function, we can generate hash
codes Hx = {hx

i }ni=1 and Hx = {hx
j }mj=1 for the training

set and database respectively, which enables image retrieval
in the Hamming space through ranking the Hamming dis-
tances between hash codes of the query and database points.

The Overall Architecture

The architecture for learning the transfer hash function is
shown in Figure 2, which is a hybrid deep architecture
of a deep hashing network and a domain adversarial net-
work. In the deep hashing network Gf , we extend AlexNet
(Krizhevsky, Sutskever, and Hinton 2012), a deep convo-
lutional neural network (CNN) comprised of five convolu-
tional layers conv1–conv5 and three fully connected lay-
ers fc6–fc8. We replace the fc8 layer with a new fch
hash layer with b hidden units, which transforms the net-
work activation zx

i in b-bit hash code by sign thresholding
hx
i = sgn(zx

i ). Since it is hard to optimize sign function for
its ill-posed gradient, we adopt the hyperbolic tangent (tanh)
function to squash the activations to be within [−1, 1], which
reduces the gap between the fch-layer representation z∗

i and
the binary hash codes h∗

i , where ∗ ∈ {x, y}. And a pairwise
t-distribution cross-entropy loss and a pairwise quantization
loss are imposed on the hash codes. In domain adversarial
network Gd, we use the Multilayer Perceptrons (MLP) ar-

chitecture adopted by (Ganin and Lempitsky 2015). It ac-
cepts as inputs the hash codes generated by the deep hash-
ing network Gf and consists of three fully connected layers,
with the numbers of units being (b, 1024, 1024, 1). The last
layer of Gd output the probability of the input data belong-
ing to a specific domain. And a cross-entropy loss is added
on the output of the adversarial network. This hybrid deep
network can achieve hash function learning through similar-
ity relationship preservation and domain distribution align-
ment simultaneously, which enables image retrieval from the
database in the target domain.

Hash Function Learning

To perform deep learning to hash from image data, we
jointly preserve similarity relationship information under-
lying pairwise images and generate binary hash codes by
Maximum A Posterior (MAP) estimation.

Given the set of pairwise similarity labels S = {sij}, the
logarithm Maximum a Posteriori (MAP) estimation of train-
ing hash codes Hx = [hx

1 , . . . ,h
x
n] can be defined as

log p (Hx|S) ∝ log p (S|Hx) p (Hx)

=
∑

sij∈S
log p

(
sij |hx

i ,h
x
j

)
p (hx

i ) p
(
hx

j

)
, (1)

where p(S|Hx) is likelihood function, and p(Hx) is prior
distribution. For each pair of points xi and xj , p(sij |hx

i ,h
x
j )

is the conditional probability of their relationship sij given
their hash codes hx

i and hx
j , which can be defined using the

pairwise logistic function,

p
(
sij |hx

i ,h
x
j

)
=

{
σ
(
sim

(
hx
i ,h

x
j

))
, sij = 1

1− σ
(
sim

(
hx
i ,h

x
j

))
, sij = 0

= σ
(
sim

(
hx
i ,h

x
j

))sij(
1− σ

(
sim

(
hx
i ,h

x
j

)))1−sij
,

(2)

where sim
(
hx
i ,h

x
j

)
is the similarity function of code pairs

hx
i and hx

j and σ (x) is the probability function. Previous
methods (Zhu et al. 2016; Cao et al. 2017b) usually adopt
inner product function

〈
hx
i ,h

x
j

〉
as similarity function and

σ (x) = 1/(1 + e−αx) as probability function. However,
from Figure 3, we can observe that the probability corre-
sponds to these similarity function and probability function
stays high when the Hamming distance between codes is
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Figure 3: Probability (a) and Loss value (b) w.r.t Hamming
Distance between codes for similar data points.

larger than 2 and only starts to decrease when the Ham-
ming distance becomes close to b/2 where b is the number
of hash bits. This means that previous methods cannot force
the Hamming distance between codes of similar data points
to be smaller than 2 since the probability cannot discriminate
different Hamming distances smaller than b/2 sufficiently.

To tackle the above mis-specification of the inner product,
we proposes a new similarity function inspiring by the suc-
cess of t-distribution with one degree of freedom for model-
ing long-tail dataset,

sim
(
hx
i ,h

x
j

)
=

b

1 +
∥∥hx

i − hx
j

∥∥2 , (3)

and the corresponding probability function is defined as
σ (x) = tanh (αx). Similar to previous methods, these
functions also satisfy that the smaller the Hamming distance
distH(hx

i ,h
x
j ) is, the larger the similarity function value

sim
(
hx
i ,h

x
j

)
will be, and the larger p(1|hx

i ,h
x
j ) will be,

implying that pair hx
i and hx

j should be classified as “simi-
lar”; otherwise, the larger p(0|hx

i ,h
x
j ) will be, implying that

pair hx
i and hx

j should be classified as “dissimilar”. Further-
more, from Figure 3, we can observe that our probability
w.r.t Hamming distance between code pairs decreases sig-
nificantly when the Hamming distance is larger that 2, in-
dicating that our loss function will penalize Hamming dis-
tance larger than 2 for similar codes much more than previ-
ous methods. Thus, our similarity function and probability
function perform better for search within Hamming Radius
2. Hence, Equation (2) is a reasonable extension of the lo-
gistic regression classifier which optimizes the performance
of searching within Hamming Radius 2 of a query.

Similar to previous work (Xia et al. 2014; Lai et al. 2015;
Zhu et al. 2016), defining that hx

i = sgn(zx
i ) where zx

i is
the activation of hash layer, we relax binary codes to contin-
uous codes since discrete optimization of Equation (1) with
binary constraints is difficult and adopt a quantization loss
function to control quantization error. Specifically, we adopt
the prior for quantization of (Zhu et al. 2016) as

p (zx
i ) =

1

2ε
exp

(
−‖|zx

i | − 1‖1
ε

)
(4)

where ε is the parameter of the exponential distribution.
By substituting Equations (2) and (4) into the MAP esti-

mation in Equation (1), we achieve the optimization problem

for similarity hash function learning as follows,

min
Θ

J = L+ λQ, (5)

where λ is the trade-off parameter between pairwise cross-
entropy loss L and pairwise quantization loss Q, and Θ is a
set of network parameters. Specifically, loss L is defined as

L =
∑
sij∈S

log

(
1 + exp

(
b

1 +
∥∥zx

i − zx
j

∥∥
2

))

− sij
b

1 +
∥∥zx

i − zx
j

∥∥
2

.

(6)

Similarly the pairwise quantization loss Q can be derived as

Q =
∑
sij∈S

(
‖|zx

i | − 1‖1 +
∥∥∣∣zx

j

∣∣− 1
∥∥
1

)
, (7)

where 1 ∈ R
K is the vector of ones. By the MAP estimation

in Equation (5), we can simultaneously preserve the similar-
ity relationship and control the quantization error of binariz-
ing continuous activations to binary codes in source domain.

Domain Distribution Alignment

The goal of transfer hashing is to train the model on data
of source domain and perform efficient retrieval from the
database of target domain in response to the query of target
domain. Since there is no relationship between the database
points, we exploit the training data X to learn the relation-
ship among the database points. However, there is large dis-
tribution gap between the source domain and the target do-
main. Therefore, we should further reduce the distribution
gap between the source domain and the target domain in the
Hamming space.

Domain adversarial networks have been successfully ap-
plied to transfer learning (Ganin and Lempitsky 2015) by
extracting transferable features that can reduce the distribu-
tion shift between the source domain and the target domain.
Therefore, in this paper, we reduce the distribution shifts be-
tween the source domain and the target domain by adver-
sarial learning. The adversarial learning procedure is a two-
player game, where the first player is the domain discrimi-
nator Gd trained to distinguish the source domain from the
target domain, and the second player is the base hashing net-
work Gf fine-tuned simultaneously to confuse the domain
discriminator.

To extract domain-invariant hash codes h, the parameters
θf of deep hashing network Gf are learned by maximizing
the loss of domain discriminator Gd, while the parameters θd
of domain discriminator Gd are learned by minimizing the
loss of the domain discriminator. The objective of domain
adversarial network is the functional:

D (θf , θd) =
1

n+m

∑
ui∈X∪Y

Ld (Gd (Gf (ui)) , di), (8)

where Ld is the cross-entropy loss and di is the domain label
of data point ui. di = 1 means ui belongs to target domain
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and di = 0 means ui belongs to source domain. Thus, we
define the overall loss by integrating Equations (5) and (8),

C = J − μD, (9)

where μ is a trade-off parameter between the MAP loss J
and adversarial learning loss D. The optimization of this loss
is as follows. After training convergence, the parameters θ̂f
and θ̂d will deliver a saddle point of the functional (9):

(θ̂f ) = argmin
θf

C (θf , θd) ,

(θ̂d) = argmax
θd

C (θf , θd) .
(10)

This mini-max problem can be trained end-to-end by back-
propagation over all network branches in Figure 2, where
the gradient of the adversarial loss D is reversed and added
to the gradient of the hashing loss J . By optimizing the ob-
jective function in Equation (9), we can learn transfer hash
codes which preserve the similarity relationship and align
the domain distributions as well as control the quantization
error of sign thresholding. Finally, we generate b-bit hash
codes by sign thresholding as h∗ = sgn(z∗), where sgn(z)
is the sign function on vectors that for each dimension i
of z∗, k = 1, 2, ..., b, sgn(z∗k) = 1 if z∗k > 0, otherwise
sgn(z∗k) = −1. Since the quantization error in Equation (9)
has been minimized, this final binarization step will incur
small loss of retrieval quality for transfer hashing.

Experiments

We extensively evaluate the efficacy of the proposed TAH
model against state of the art hashing methods on two bench-
mark datasets. The codes and configurations will be made
available online.

Setup

NUS-WIDE1 is a popular dataset for cross-modal retrieval,
which contains 269,648 image-text pairs. The annotation
for 81 semantic categories is provided for evaluation. We
follow the settings in (Zhu et al. 2016; Liu et al. 2011;
Lai et al. 2015) and use the subset of 195,834 images that
are associated with the 21 most frequent concepts, where
each concept consists of at least 5,000 images. Each image
is resized into 256 × 256 pixels. We follow similar exper-
imental protocols as DHN (Zhu et al. 2016) and randomly
sample 100 images per category as queries, with the remain-
ing images used as the database; furthermore, we randomly
sample 500 images per category (each image attached to one
category in sampling) from the database as training points.

VisDA20172 is a cross-domain image dataset of images
rendered from CAD models as synthetic image domain and
real object images cropped from the COCO dataset as real
image domain. We perform two types of transfer retrieval
tasks on the VisDA2017 dataset: (1) using real image query
to retrieve real images where the training set consists of syn-
thetic images (denoted by synthetic → real); (2) using

1http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
2https://github.com/VisionLearningGroup/taskcv-2017-public/tree/master/

classification

synthetic image query to retrieve synthetic images where
the training set consists of real images (denoted by real →
synthetic). The relationship S for training and the ground-
truth for evaluation are defined as follows: if an image i
and a image j share the same category, they are relevant,
i.e. sij = 1; otherwise, they are irrelevant, i.e. sij = 0.
Similarly, we randomly sample 100 images per category of
target domain as queries, and use the remaining images of
target domain as the database and we randomly sample 500
images per category from both source domain and target do-
main as training points, where source domain data points
have ground truth similarity information while the target do-
main data points do not.

We use retrieval metrics within Hamming radius 2 to test
the efficacy of different methods. We evaluate the retrieval
quality based on standard evaluation metrics: Mean Average
Precision (MAP), Precision-Recall curves and Precision all
within Hamming radius 2. We compare the retrieval qual-
ity of our TAH with ten classical or state-of-the-art hash-
ing methods, including unsupervised methods LSH (Gio-
nis et al. 1999), SH (Weiss, Torralba, and Fergus 2009),
ITQ (Gong and Lazebnik 2011), supervised shallow meth-
ods KSH (Liu et al. 2012), SDH (Shen et al. 2015), super-
vised deep single domain methods CNNH (Xia et al. 2014),
DNNH (Lai et al. 2015), DHN (Zhu et al. 2016), Hash-
Net (Cao et al. 2017b) and supervised deep cross-domain
method THN (Cao et al. 2017a).

For fair comparison, all of the methods use identical train-
ing and test sets. For deep learning based methods, we di-
rectly use the image pixels as input. For the shallow learning
based methods, we reduce the 4096-dimensional AlexNet
features (Donahue et al. 2014) of images. We adopt the
AlexNet architecture (Krizhevsky, Sutskever, and Hinton
2012) for all deep hashing methods, and implement TAH
based on the Caffe framework (Jia et al. 2014). For the
single domain task on NUS-WIDE, we test cross-domain
method TAH and THN by removing the transfer part. For the
cross-domain tasks on VisDA2017, we train single domain
methods with data of source domain and directly apply the
trained model to the query and database of another domain.
We fine-tune convolutional layers conv1–conv5 and fully-
connected layers fc6–fc7 copied from the AlexNet model
pre-trained on ImageNet 2012 and train the hash layer fch
and adversarial layers, all through back-propagation. As the
fch layer and the adversarial layers are trained from scratch,
we set its learning rate to be 10 times that of the lower lay-
ers. We use mini-batch stochastic gradient descent (SGD)
with 0.9 momentum and the learning rate annealing strategy
implemented in Caffe. The penalty of adversarial networks
mu is increased from 0 to 1 gradually as RevGrad (Ganin
and Lempitsky 2015). We cross-validate the learning rate
from 10−5 to 10−3 with a multiplicative step-size 10

1
2 . We

fix the mini-batch size of images as 64 and the weight decay
parameter as 0.0005.

Results

NUS-WIDE: The Mean Average Precision (MAP) within
Hamming Radius 2 results are shown in Table 2. We can ob-
serve that on the classical task that database and query im-
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Table 2: MAP Results of Ranking within Hamming Radius 2 for Different Number of Bits on Three Image Retrieval Tasks

Method NUS-WIDE VisDA2017
synthetic → real real → synthetic

16 bits 32 bits 48 bits 64 bits 16 bits 32 bits 48 bits 64 bits 16 bits 32 bits 48 bits 64 bits
TAH 0.722 0.729 0.692 0.680 0.465 0.423 0.433 0.404 0.672 0.695 0.784 0.761
THN 0.671 0.676 0.662 0.603 0.415 0.396 0.228 0.127 0.647 0.687 0.664 0.532

HashNet 0.709 0.693 0.681 0.615 0.412 0.403 0.345 0.274 0.572 0.676 0.662 0.642
DHN 0.669 0.672 0.661 0.598 0.331 0.354 0.309 0.281 0.545 0.612 0.608 0.604

DNNH 0.568 0.622 0.611 0.585 0.241 0.276 0.252 0.243 0.509 0.564 0.551 0.503
CNNH 0.542 0.601 0.587 0.535 0.221 0.254 0.238 0.230 0.487 0.568 0.530 0.445
SDH 0.555 0.571 0.517 0.499 0.196 0.238 0.229 0.212 0.330 0.388 0.339 0.277
ITQ 0.498 0.549 0.517 0.402 0.187 0.175 0.146 0.123 0.163 0.193 0.176 0.158
SH 0.496 0.543 0.437 0.371 0.154 0.141 0.130 0.105 0.154 0.182 0.145 0.123

KSH 0.531 0.554 0.421 0.335 0.176 0.183 0.124 0.085 0.143 0.178 0.146 0.092
LSH 0.432 0.453 0.323 0.255 0.122 0.092 0.083 0.071 0.130 0.145 0.122 0.063
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Figure 4: The Precision-recall curve @ 64 bits within Hamming radius 2 of TAH and comparison methods on three tasks.
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Figure 5: The Precision curves @64 bits within Hamming radius 2 of TAH and comparison methods on three tasks.

ages are from the same domain, TAH generally outperforms
state of the art methods defined on classical retrieval set-
ting. Specifically, compared to the best method on this task,
HashNet, and state of the art cross-domain method THN, we
achieve absolute boosts of 0.031 and 0.053 in average MAP
for different bits on NUS-WIDE, which is very promising.

The precision-recall curves within Hamming Radius 2
based on 64-bits hash codes for the NUS-WIDE dataset are
illustrated in Figure 4(a). We can observe that TAH achieves
the highest precision at all recall levels. The precision nearly
does not decrease with the increasing of recall, proving that
TAH has stable performance for Hamming Radius 2 search.

The Precision within Hamming radius 2 curves are shown
in Figure 5(a). We can observe that TAH achieves the high-
est P@H=2 results on this task. When using longer codes,
the Hamming space will become sparse and few data points

fall within the Hamming ball with radius 2 (Fleet, Punjani,
and Norouzi 2012). This is why most hashing methods per-
form worse on accuracy with very long codes. However,
TAH achieves a relatively mild decrease on accuracy with
the code length increasing. This validates that TAH can con-
centrate hash codes of similar data points to be within the
Hamming ball of radius 2.

These results validate that TAH is robust under diverse
retrieval scenarios. The superior results in MAP, precision-
recall curves and Precision within Hamming radius 2 curves
suggest that TAH achieves the state of the art performance
for search within Hamming Radius 2 on conventional image
retrieval problems where the training set and the database
are from the same domain.

VisDA2017: The MAP results of all methods are com-
pared in Table 2. We can observe that for novel transfer re-
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trieval tasks between two domains of VisDA2017, TAH out-
performs the comparison methods on the two transfer tasks
by very large margins. In particular, compared to the best
deep hashing method HashNet, TAH achieves absolute in-
creases of 0.073 and 0.090 on the transfer retrieval tasks
synthetic → real and real → synthetic respectively, val-
idating the importance of mitigating domain gap in the trans-
fer setting. Futhermore, compared to state of the art cross-
domain deep hashing method THN, we achieve absolute in-
creases of 0.140 and 0.096 in average MAP on the transfer
retrieval tasks synthetic → real and real → synthetic
respectively. This indicates that the our adversarial learn-
ing module is superior to MMD used in THN in aligning
distributions. Similarly, the precision-recall curves within
Hamming Radius 2 based on 64-bits hash codes for the two
transfer retrieval tasks in Figure 4(b)-4(c) show that TAH
achieves the highest precision at all recall levels. From the
Precision within Hamming radius 2 curves shown in Fig-
ure 5(b)-5(c), we can observe that TAH outperforms other
methods at different bits and has only a moderate decrease
of precision when increasing the code length.

In particular, between two transfer retrieval tasks,
TAH outperforms other methods with larger margin on
synthetic → real task. Because the synthetic images con-
tain less information and noise such as background and color
than real images. Thus, directly applying the model trained
on synthetic images to the real image task suffers from large
domain gap or even fail. Transferring knowledge is very im-
portant in this task, which explains the large improvement
from single domain methods to TAH. TAH also outperforms
THN, indicating that adversarial network can match the dis-
tribution of two domains better than MMD, and the proposed
similarity function based on t-distribution can better concen-
trate data points to be within Hamming radius 2.

An counter-intuitive result is that the precision keeps un-
changed while the recall increases, as shown in Figure 4.
One plausible reason is that, we present a t-distribution mo-
tivated hashing loss to enable Hamming space retrieval. Our
new loss can concentrate as many data points as possible to
be within Hamming ball with radius 2. This concentration
property naturally leads to stable precision at different re-
call levels, i.e. the precision decreases much more slowly by
increasing the recall.

Furthermore, as an intuitive illustration, we visualize the
top 10 relevant images for a query image for TAH, DHN and
HashNet on synthetic → real and real → synthetic tasks
in Figure 6. It shows that TAH can yield much more relevant
and user-desired retrieval results.

The superior results of MAP, precision-recall curves and
precision within Hamming Radius 2 suggest that TAH is a
powerful approach to for learning transferable hash codes
for image retrieval. TAH integrates similarity relationship
learning and domain adversarial learning into an end-to-end
hybrid deep architecture to build the relationship between
database points. The results on the NUS-WIDE dataset al-
ready show that the similarity relationship learning module
is effective to preserve similarity between hash codes and
concentrate hash codes of similar points. The experiment on
the VisDA2017 dataset further validates that the domain ad-
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HashNet
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30%
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100%
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synthetic 
to real

real to 
synthetic

Figure 6: Examples of top 10 retrieved images and P@10.

versarial learning between the source and target domain con-
tributes significantly to the retrieval performance of TAH on
transfer retrieval tasks. Since the training and the database
sets are collected from different domains and follow differ-
ent data distributions, there is a substantial domain gap pos-
ing a major difficulty to bridge them. The domain adversarial
learning module of TAH effectively close the domain gap by
matching data distributions with adversarial network. This
makes the proposed TAH a good fit for the transfer retrieval.

Table 3: MAP within Hamming Radius 2 of TAH variants

Method synthetic → real real → synthetic
16 bits 32 bits 48 bits 64 bits 16 bits 32 bits 48 bits 64 bits

TAH-t 0.443 0.405 0.390 0.364 0.660 0.671 0.717 0.624
TAH-A 0.305 0.395 0.382 0.331 0.605 0.683 0.725 0.724

TAH 0.465 0.423 0.433 0.404 0.672 0.695 0.784 0.761

Discussion

We investigate the variants of TAH on VisDA2017 dataset:
(1) TAH-t is the variant which uses the pairwise cross-
entropy loss introduced in DHN (Zhu et al. 2016) instead
of our pairwise t-distribution cross-entropy loss; (2) TAH-
A is the variant removing adversarial learning module and
trained without using the unsupervised training data. We re-
port the MAP within Hamming Radius 2 results of all TAH
variants on VisDA2017 in Table 3, which reveal the follow-
ing observations. (1) TAH outperforms TAH-t by very large
margins of 0.031 / 0.060 in average MAP, which confirms
that the pairwise t cross-entropy loss learns codes within
Hamming Radius 2 better than pairwise cross-entropy loss.
(2) TAH outperforms TAH-A by 0.078 / 0.044 in average
MAP for transfer retrieval tasks synthetic → real and
real → synthetic. This convinces that TAH can further ex-
ploit the unsupervised train data of target domain to bridge
the Hamming spaces of training dataset (real/synthetic) and
database (synthetic/real) and transfer knowledge from train-
ing set to database effectively.

Conclusion

In this paper, we have formally defined a new transfer hash-
ing problem for image retrieval, and proposed a novel trans-
fer adversarial hashing approach based on a hybrid deep ar-
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chitecture. The key to this transfer retrieval problem is to
align different domains in Hamming space and concentrate
the hash codes to be within a small Hamming ball, which re-
lies on relationship learning and distribution alignment. Em-
pirical results on public image datasets show the proposed
approach yields state of the art image retrieval performance.
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