
kNN LRTA*: Simple Subgoaling for Real-Time Search∗

Vadim Bulitko
Department of Computing Science

University of Alberta
Edmonton, AB, T6G 2E8, CANADA

bulitko@gmail.com

Yngvi Björnsson
School of Computer Science

Reykjavik University
Kringlan 1, IS-103 Reykjavik, ICELAND

yngvi@ru.is

Abstract

Real-time heuristic search algorithms satisfy a constant
bound on the amount of planning per action, independent of
problem size. As a result, they scale up well as problems be-
come larger. This property would make them well suited for
video games where Artificial Intelligence controlled agents
must react quickly to user commands and to other agents’ ac-
tions. On the downside, real-time search algorithms employ
learning methods that frequently lead to poor solution quality
and cause the agent to appear irrational by revisiting the same
problem states repeatedly. The situation changed recently
with a new algorithm, D LRTA*, which attempts to elimi-
nate learning by automatically selecting subgoals. D LRTA*
is well poised for video games except it has a complex and
memory-demanding pre-computation phase during which it
builds a database of subgoals. In this paper, we propose a
simpler and more memory-efficient way of pre-computing
subgoals thereby eliminating the main obstacle of applying
state-of-the-art real-time search methods in video games. In
the domain of pathfinding on eight video game maps, the new
algorithm used approximately nine times less memory than D
LRTA* while finding solutions 9% worse.

1. Introduction

Artificial Intelligence (AI) controlled agents in video games
must react quickly to player’s commands and to other
agents’ actions. In order to scale up to large maps and mas-
sive number of simultaneously acting agents, AI algorithms
used for such agents have to be real-time. The distinctive
property of real-time operation is that an agent must repeat-
edly plan and execute actions within a constant time interval
that is independent of the size of the problem being solved.

A common problem in video games is searching for a
path between two locations. In this context, the real-time
restriction severely limits the range of applicable heuris-
tic search algorithms. For instance, static search algo-
rithms such as A* (Hart, Nilsson, and Raphael 1968),
IDA* (Korf 1985) and PRA* (Sturtevant and Buro 2005;
Sturtevant 2007), re-planning algorithms such as D* (Stenz
1995), anytime algorithms such as ARA* (Likhachev, Gor-
don, and Thrun 2003) and anytime re-planning algorithms

∗The support of RANNIS and NSERC is acknowledged.
Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

such as AD* (Likhachev et al. 2005) cannot guarantee a
constant bound on planning time per action. This is because
all of them produce a complete, possibly abstract, solution
before the first action can be taken. As the problem increases
in size, their planning time will inevitably increase, exceed-
ing any predetermined limit.

Real-time search addresses the problem in a fundamen-
tally different way. Instead of computing a complete, pos-
sibly abstract, solution before the first action is to be taken,
real-time search algorithms compute (or plan) only a few
first actions for the agent to take. This is usually done by
conducting a lookahead search of a fixed depth (also known
as “search horizon”, “search depth” or “lookahead depth”)
around the agent’s current state and using a heuristic (i.e.,
an estimate of the remaining travel cost) to select the next
few actions. The actions are then taken and the planning-
execution cycle repeats (Korf 1990). Since the goal state is
not reached by most such local searches, the agent runs the
risks of heading into a dead end or, more generally, select-
ing suboptimal actions. To address this problem, real-time
heuristic search algorithms update (or learn) their heuristic
function with experience.

The learning process has precluded real-time heuristic
search agents from being widely deployed for pathfinding
in video games. The problem is that such agents tend to
“scrub” (i.e., repeatedly re-visit) the state space due to the
need to fill in heuristic depressions (Ishida 1992). As a
result, solution quality can be quite low and, visually, the
scrubbing behavior is perceived as irrational.

A number of researchers have attempted to speed up
the learning process. Approaches varied from backtrack-
ing (Shue and Zamani 1993) to heuristic weighting (Shimbo
and Ishida 2003) to prioritized sweeping (Rayner et al.
2007) to state abstraction (Bulitko et al. 2007b) to multiple
updates per action (Koenig 2004; Hernández and Meseguer
2005; Koenig and Likhachev 2006). However, the best per-
formance was achieved by virtually eliminating the learn-
ing process. This can be done by computing heuristic with
respect to a near-by subgoal as opposed to a distant goal.
Since heuristic functions usually relax the problem (e.g., a
straight-line distance heuristic ignores obstacles on a map),
they tend to be more accurate closer to a goal. As a result,
a heuristic function with respect to a near-by goal tends to
be much more accurate and, therefore, requires little adjust-

2

Proceedings of the Fifth Artificial Intelligence for Interactive Digital Entertainment Conference

(a) (b) (c) (d)

Figure 1: Clique-based abstraction employed by D LRTA*.

ment (i.e., learning). The first real-time heuristic search al-
gorithm to implement this idea was D LRTA* (Bulitko et al.
2007a; 2008). In a pre-processing phase, D LRTA* analyzes
a state space and computes a database of subgoals which are
then used at runtime. As a result, it significantly outperforms
previous algorithms even with the myopic lookahead of 1.

Despite setting a new performance bar for real-time
search, D LRTA* had substantial memory requirements
(e.g., in pathfinding on video game maps its database took
up to 70 times as much memory as the map for which it was
built and the said database is loaded in the memory in its en-
tirety) and a complex pre-processing module. The primary
contribution of this paper is a simpler and more memory ef-
ficient algorithm for pre-computing subgoals for real-time
heuristic search (Section 2.). We base our algorithm on the
“lazy learning” idea of k nearest neighbors (kNN). Namely,
instead of analyzing a map and building a clique-based ab-
straction, the new algorithm builds a database of subgoals.
During the problem-solving, we search the database for
cases most similar to the problem at hand and use them to
suggest a subgoal for LRTA* (Section 3.). The resulting algo-
rithm (called kNN LRTA*) is provably real-time and com-
plete (Section 4.). We empirically compare the new algorithm
to D LRTA* in Section 5.. We analyze the results, draw con-
clusions and propose future work in Section 6..

For the rest of the paper we focus on the problem of
pathfinding on video game maps and use it to illustrate the
ideas and to evaluate the new algorithm. Nevertheless, kNN
LRTA* can be applied to other real-time search tasks.

2. Subgoal Database Construction

Our motivation is to retain D LRTA* excellent performance
while simplifying the algorithm and relaxing memory re-
quirements. The most memory-consuming part of D LRTA*
lies with its subgoal database (Bulitko et al. 2008). To
build the database, D LRTA* first abstracts the map using
the clique abstraction scheme of PRA* (Sturtevant and Buro
2005). Figure 1 illustrates the process. A grid-based map (a)
is converted to a graph (b) which is then abstracted so that
every clique of original states becomes a single abstract state
(c)1. Once the abstraction is complete, a ground-level state
closest to the centroid of a clique is chosen as a represen-
tative for the abstract state. The representatives are marked

1The abstraction procedure is applied successively three times.

with small white circles in part (d) of the figure. Ground-
level states abstracting to different abstract states are shown
as regions of different shades.

After this partitioning of a map into regions, D LRTA*
considers all pairs of abstract states. For each pair, it finds
an optimal path between ground-level representatives of the
two abstract states. It then traces the path from the start rep-
resentative and marks the ground-level state where the path
enters the next region. The marked state is stored as the
subgoal for the pair of the abstract states (Figure 2). The
memory requirements are O(V + V 2

�) where V is the num-
ber of ground-level states and V� is the number of abstract
states at abstraction level �.

D LRTA*’s code is non-trivial as one has to build the
clique abstraction, find ground-level representatives and
then run Dijkstra2 from the ground-level representative cor-
responding to abstract goal state and trace the path from
the ground-level representative corresponding to the abstract
start state. Furthermore, because multi-level abstraction is
used in practice (� > 1), the code has to be implemented for
general graphs as opposed to rectangular grids.

We set out to come up with a simpler way of building a
subgoal database. As a result, our approach is based on the
following idea. The simplest and fastest version of real-time
search algorithms is LRTA* with a lookahead of 1. Such
a myopic LRTA* is effectively simple hill-climbing aug-
mented with a Bellman update rule for the heuristic. To
avoid learning and the problems it causes, we would like

2Running Dijkstra once from each abstract goal was found
faster than running A* for each pair of abstract states.

S

G

g

Figure 2: Subgoals as defined by D LRTA*. ‘S’ is the
agent’s state, ‘G’ is the global goal, ‘g’ is the subgoal.

3

s′subgoal

s′goal

s′start

Figure 3: Subgoals as defined within kNN LRTA*.

our LRTA* not to learn most of the time. This can be ac-
complished by selecting a subgoal which is close enough to
the agent to be reachable via simple hill-climbing. This in-
tuition suggest the following definition of a subgoal: given a
current state s′start and a goal s′goal, the best subgoal is the far-
thest state along an optimal path from s′start to s

′
goal which is

still reachable from s′start via simple hill-climbing (Figure 3).
The resulting algorithm constitutes the off-line database-

building part of kNN LRTA* (Figure 4). We take a map
and a desired number of subgoals N . We then generate
N random pairs of ground-level states which are reachable
from each other and are at least two moves apart (lines 3–
5). We run A* for each pair to compute an optimal path
p between the pair’s states (s′start, s

′
goal) (line 4). Suppose

p = [s′start, s
′
2, . . . , s

′
goal]. We then go through states s′i, i ≥ 3

(line 6). For each s′i we check if it is reachable from s′start by
using simple hill-climbing with the heuristic computed with
respect to s′i (line 7). The subgoal s′subgoal for (s

′
start, s

′
goal) is

defined as the farthest state on the path p which is still hill-
climbing-reachable from s′start. TheN records in the subgoal
database Γ are of the form (s′start, s

′
goal, s

′
subgoal) (line 8).

computeSubgoals(N)

1 load the map
2 for n = 1, . . . , N do

3 generate a random pair of states (s′start, s
′
goal)

4 compute an optimal path p from s′start to s′goal with A*
5 if p = ∅ ∨ |p| < 3 then go to step 3 end if
6 for i = 3, . . . , |p| do

7 if s′i is not hill-climbing-reachable from s′start then

8 store Γn = (s′start, s
′
goal, s

′
i−1) in the subgoal database

9 break out of the inner for loop
10 end if
11 end for
12 end for

Figure 4: kNN LRTA* offline: computing subgoals.

s′subgoal

s′goal

s′start

sstart

sgoal

Figure 5: kNN LRTA* at runtime: finding the closest
database entry. Double-ended arrows indicate heuristic dis-
tances between the agent’s situation (sstart, sgoal) and the
closest database entry (s′start, s

′
goal, s

′
subgoal).

3. Runtime Search

Computing a subgoal for every pair of states is intractable
for any non-trivial map. Thus, most of the time, the state
of the agent and its goal will not be in the database of sub-
goals. Consequently, the agent will not be able to look up its
exact goal but will have to generalize from available (state,
goal, subgoal) records. One widely used and yet simple
mechanism for run-time generalization is k nearest neigh-
bors (Cover and Hart 1967). The idea lies with finding k
closest cases to the problem at hand, combining their pre-
computed answers and using the combination as the solu-
tion.

We apply this approach for subgoal selection and, for sim-
plicity, set k = 1. Thus, whenever an agent is in state sstart
and is going to state sgoal, it scans the subgoal database and
find the most similar record (s′start, s

′
goal, s

′
subgoal) (line 4 in

Figure 7). The similarity is defined as the sum of heuristic
distances between sstart and s′start and between sgoal and s′goal
as illustrated in Figure 5. The heuristic distance on maps is
typically a procedurally specified function such as Euclidean
distance, Manhattan distance or the octile distance (a natural
generalization of Manhattan distance to diagonal actions).
All of these distances ignore map obstacles.

Once the agent locates the database record most similar
to its current situation, it sets the subgoal s′subgoal from that
record as its own subgoal and proceeds towards it using the
standard LRTA* (lines 8 and 12 in the pseudocode).

There are several issues to address. First, the global goal
may be hill-climbing reachable from the agent’s current state
and yet the agent may select a subgoal leading it away from
the goal. We address this by checking if the global goal
is hill-climbing-reachable from the agent’s current state. If
so, then we head for the global goal and forgo the subgoal
selection completely (lines 3 and 10).

Second, although the subgoal s′subgoal is by construction

4

hill-climbing-reachable from s′start, it is not necessarily so
from the agent’s actual state sstart. As a result, the agent
may run into obstacles trying to reach it. We address this
in several ways. First, instead of simple hill-climbing we
use LRTA*, which guarantees that the subgoal will (even-
tually) be reached. To minimize negative manifestations of
the resulting learning process, we run LRTA* with deeper
lookahead d which is known to reduce learning (Bulitko and
Lee 2006). Second, we can be proactive by increasing the
number of records in the database in an attempt to increase
similarity between agent’s situation and the closest matching
record in the database.

The third issue lies with possible cycles. It can so happen
that the agent reaches its chosen subgoal s′subgoal and then
sets the next subgoal which brings it back. After reaching
that subgoal, it may end up selecting s′subgoal again thereby
entering an infinite loop. We address this problem by main-
taining a taboo list T of the subgoals used by the agent on a
problem. As a result, no subgoal can be selected twice (lines
4 and 8 in Figure 7).

Fourth, because our similarity metric is based on the oc-
tile distance, it ignores obstacles. As a result, the most sim-
ilar record may end up being on the other side of an ob-
stacle causing the agent to spend a lot of time working its
way around the obstacle. We alleviate this by checking if
s′start is hill-climbing-reachable form sstart and if s′goal is hill-
climbing-reachable form sgoal (line 5). If they are not then
we go onto the second most similar record in the database
and so on (as indicated by “next best” in line 6). If all records
are exhausted, the agent defaults to the global goal (line 10).

Notice that we use hill-climbing reachability checks to
deal with issues one and four. In order to satisfy the real-
time constraint and prevent such checks from taking longer
as the map increases in size, we limit all hill-climbing checks
to a constant number of steps (m) as shown in lines 3 and 5.

4. Properties

At any time, kNN LRTA* either runs LRTA* (line 12 in
Figure 7) or computes a subgoal (lines 3 through 7). The
former satisfies the real-time constraint (Korf 1990). We
will now show that the latter also satisfies the real-time con-
straint insomuch as the amount of CPU time taken by lines 3
through 7 does not increase unlimitedly with map size. This
is due to the fact that the database size (N) is independent
of the map size and all hill-climbing checks are limited by
m. In the worst case, the agent will end computing similar-
ity and checking hill-climbing-reachability for all records in
the database (O(mN) time).

In addition to being real-time, kNN LRTA* is also com-
plete insomuch as it finds its goal in a finite amount of time
if the map is finite and the goal is located in the same con-
nected component as the agent’s initial state. Indeed, each
subgoal s′subgoal the agent sets out to go to (line 8) is reach-
able from agent’s state s. This is because s′subgoal lies in the
same connected component as s′start (by database construc-
tion) and s′start is in the same component as s (checked in
line 5). So the agent will always reach its subgoal and each
subgoal can be used at most once (lines 5 and 8). The num-

kNN LRTA*(sstart, sgoal, Γ, m, d)

1 s ← sstart
2 T ← ∅
2 while (s �= sgoal)
3 if sgoal is not m-hill-climbing-reachable from s then

4 (s′start, s
′
goal, s

′
subgoal) ←

arg min
(s•start,s•goal,s

•
subgoal)∈Γ

dist(s, s•start) + dist(sgoal, s
•
goal)

5 if s′subgoal ∈ T ∨
s′start is not m-hill-climbing-reachable from s ∨
s′goal is not m-hill-climbing-reachable from sgoal then

6 go to step 4 and find the next best (s′start, s
′
goal, s

′
subgoal)

7 end if

8 ssubgoal ← s′subgoal; T ← T ∪ {s′subgoal}
9 else
10 ssubgoal ← sgoal
11 end if
12 s ← LRTA*(d) starting in s with ssubgoal as the goal
13 end while

Figure 7: kNN LRTA* at runtime. Γ is the subgoal database
computed off-line; m is the limit on the number of steps
hill-climbing reachability checks are allowed to make; d is
LRTA*’s lookahead depth; dist is the heuristic distance.

ber of subgoals is finite, so in the worst case the agent will
visit all of them before running LRTA* to the global goal.

Asymptotic memory complexity of kNN LRTA* is O(N)
for the subgoal database, O(V) for LRTA*’s heuristic and
O(N) for the taboo list T . Thus, in the worst case the agent
consumes no more than O(N + V) memory. Comparing to
the standard LRTA*, the overhead is O(N).

5. Empirical Evaluation

For the empirical evaluation we used eight maps from popu-
lar video games: five from Baldur’s Gate (BioWare Corp.
1998) and three from Warcraft III (Blizzard 2002). The
maps were represented with grids sizes ranging from 150×
141 to 234× 274 cells (Figure 6). The timings are reported
for a 2.33GHz Intel Core 2 Duo computer.

On each map we ran 128 different pathfinding prob-
lem instances with the start and goal locations chosen ran-
domly, although constrained so that the optimal solution
costs of the paths were similar, more specifically, in the
range 100 to 150. Each data point we present is an aver-
age of 1024 different pathfinding searches (8 maps × 128
searches on each). The pathfinding algorithms used the oc-
tile distance as the heuristic. They were tested with several
different parameterizations: for D LRTA* abstraction levels
� ∈ {3, 5, 6, 7} and for kNN LRTA* subgoal database sizes
N ∈ {1000, 5000, 10000} were used. The parameters m
and d were set to 25 and 3, respectively.

Figure 8 presents the empirical results. The two subplots
in the figure show the suboptimality of paths traversed by
agents controlled by either D LRTA* (hollow markers) or
kNN LRTA* (filed markers). The suboptimality is expressed
as a percentage of how much more costly the paths are than
optimal ones (e.g., a path costing 110 has suboptimality of
10% if the optimal path has a cost of 100). Points closer to
the center of origin are preferred.

5

Figure 6: The eight maps used for empirical evaluation.

0 0.5 1 1.5
0

10

20

30

40

50

60

Mean database size (map sizes)

M
ea

n
su

bo
pt

im
al

ity
 (

%
)

0 5 10 15 20 25 30
0

10

20

30

40

50

60

Mean number of states expanded per move

M
ea

n
su

bo
pt

im
al

ity
 (

%
)

kNN LRTA* (1000) kNN LRTA* (5000) kNN LRTA* (10000) D LRTA* (3) D LRTA* (5) D LRTA* (6) D LRTA* (7)

Figure 8: Suboptimality of paths as a function of database size and number of state expansions per move.

The left subplot presents the suboptimality as a function
of database size. Database sizes are reported relative to the
map size (e.g., relative database size of 1 means that the
database takes as much memory as the map itself). Observe
that kNN LRTA* subgoal databases are generally consider-
ably smaller than their D LRTA* counterparts. For exam-
ple, kNN LRTA* database with 1000 subgoals requires ap-
proximately 9 times less storage than the D LRTA* subgoal
database producing comparable quality paths (� = 7). This
ratio is also sizable for other parameterizations, although not
as profound. Of a particular interest is the comparison be-
tween kNN LRTA* (N = 10000) and D LRTA* (� = 6):
the former dominates the latter as it uses less memory and
generates better paths.

The right subplot presents suboptimality as a function of
the number of states expanded per move. kNN LRTA* is
more expensive per move due to its reachability checks.

Table 1: Resources and performance metrics (means).
Algorithm Time Size Subopt. Exp.

(min) (rel) (%) (nodes)
LRTA* 0 0 447.95 20.44
kNN LRTA* (1000) 0.62 0.09 49.91 42.6 8
kNN LRTA* (5000) 3.08 0.46 27.24 28.54
kNN LRTA* (10000) 6.23 0.92 19.52 25.11
D LRTA* (7) 0.29 1.06 55.87 20.34
D LRTA* (6) 0.35 1.14 22.57 20.14
D LRTA* (5) 0.50 1.39 13.35 19.98
D LRTA* (3) 1.91 8.22 10.13 17.50

D LRTA* suboptimality varies, exceeding that of kNN
LRTA* only for abstraction levels 3 and 5. However,
D LRTA* requires excessive amounts of memory (8 map
sizes) for its level-3 subgoal database.

Two data points fall outside the range plotted in the

6

graphs: D LRTA*(3) in the left subplot (the database size
is over 8 map sizes) and kNN LRTA*(1000) in the right
subplot (it expands over 42 states per move). Data for all
parameterizations of D LRTA* and kNN LRTA* as well as
for the classic LRTA* are found in Table 1. The columns
are: subgoal database precomputation time (in minutes), its
size (relative to map size), suboptimality of the solution and
the number of states expanded per move.

Note that the times provided are estimates of how long the
precomputations would take if run with an optimized imple-
mentation written in a fast high-level programming language
— a setting typical in video-game development.3 The ex-
act timings are implementation and map specific. Relative
precomputation times for different algorithms are more im-
portant. As we can see, kNN LRTA* subgoal databases take
longer to compute, although the computation times are still
quite reasonable — a matter of minutes — and therefore do
not exclude the approach from being used even by gamers
for indexing their custom made game maps.

To summarize, we can state that kNN LRTA* performs
slightly worse than D LRTA*, while requiring considerably
less memory for its subgoal databases. The tradeoff is at-
tractive for pathfinding in video games, especially on con-
soles where memory is often a scarce resource. This benefit
comes at the expense of a somewhat longer precomputation
times for generating the subgoal databases and a more com-
plex runtime module.

6. Conclusions

The primary drive behind this work was to develop a new
high-performance real-time search algorithm suitable for
pathfinding in video games, by relaxing memory require-
ments of D LRTA*, a current state-of-the-art real-time
search algorithm. The new algorithm, kNN LRTA*, offers
clear benefits for pathfinding applications in video games:
not only is its database computation simpler to implement
than that of D LRTA* but it also offers nearly as good
runtime real-time performance while requiring substantially
less memory for storing the subgoal databases. Simplicity of
implementation and a light memory footprint are desirable
attributes of AI algorithms in video games.

As for future work, we believe that kNN LRTA* can be
further enhanced to fully match D LRTA* runtime perfor-
mance. We have identified several avenues for potential im-
provements. First, instead of selecting the start-goal pairs at
random, a more intelligent way of dealing out the pairs can
be envisioned, for example, by using influence maps to en-
sure a better coverage. Secondly our similarity metric does
not take obstacles into account. The adverse side-effects it
entails are mitigated by requiring a hill-climbing reachabil-
ity between neighbors at the cost of additional runtime com-
putation. Instead, an obstacle-aware similarity metric should
be investigated. Finally, currently the algorithm looks for
only the single nearest neighbor (k = 1); combining subgoal

3We computed the subgoal databases using MATLAB, which,
on this code, is estimated to be 16.4 times slower than C++. For
the estimate we ran A* on a set of pathfinding problems using both
a C++ testbed (Sturtevant 2005) and our MATLAB testbed.

recommendations from several database records (k > 1)
may reduce suboptimality. A natural approach would be to
select a valid map state closest to the weighted average of
the k subgoals.

Acknowledgements

References
BioWare Corp. 1998. Baldur’s Gate. http://www. bioware. com/
bgate/.
Blizzard. 2002. Warcraft 3: Reign of chaos. http://www. blizzard.
com/ war3.
Bulitko, V., and Lee, G. 2006. Learning in real time search: A
unifying framework. JAIR 25:119–157.
Bulitko, V.; Björnsson, Y.; Luštrek, M.; Schaeffer, J.; and Sig-
mundarson, S. 2007a. Dynamic Control in Path-Planning with
Real-Time Heuristic Search. In ICAPS, 49–56.
Bulitko, V.; Sturtevant, N.; Lu, J.; and Yau, T. 2007b. Graph
Abstraction in Real-time Heuristic Search. JAIR 30:51–100.
Bulitko, V.; Luštrek, M.; Schaeffer, J.; Björnsson, Y.; and Sig-
mundarson, S. 2008. Dynamic control in real-time heuristic
search. JAIR 32:419 – 452.
Cover, T. M., and Hart, P. E. 1967. Nearest neighbor pattern
classification. IEEE Trans. on Information Theory IT-13:21–27.
Hart, P.; Nilsson, N.; and Raphael, B. 1968. A formal basis for
the heuristic determination of minimum cost paths. IEEE Trans-
actions on Systems Science and Cybernetics 4(2):100–107.
Hernández, C., and Meseguer, P. 2005. LRTA*(k). In IJCAI,
1238–1243.
Ishida, T. 1992. Moving target search with intelligence. In AAAI,
525–532.
Koenig, S., and Likhachev, M. 2006. Real-time adaptive A*. In
AAMAS, 281–288.
Koenig, S. 2004. A comparison of fast search methods for real-
time situated agents. In AAMAS, 864–871.
Korf, R. 1985. Depth-first iterative deepening : An optimal ad-
missible tree search. Artificial Intelligence 27(3):97–109.
Korf, R. 1990. Real-time heuristic search. Artificial Intelligence
42(2–3):189–211.
Likhachev, M.; Ferguson, D. I.; Gordon, G. J.; Stentz, A.; and
Thrun, S. 2005. Anytime dynamic A*: An anytime, replanning
algorithm. In ICAPS, 262–271.
Likhachev, M.; Gordon, G. J.; and Thrun, S. 2003. ARA*: Any-
time A* with provable bounds on sub-optimality. In NIPS.
Rayner, D. C.; Davison, K.; Bulitko, V.; Anderson, K.; and Lu, J.
2007. Real-time heuristic search with a priority queue. In IJCAI,
2372–2377.
Shimbo, M., and Ishida, T. 2003. Controlling the learning process
of real-time heuristic search. Artificial Intelligence 146(1):1–41.
Shue, L.-Y., and Zamani, R. 1993. An admissible heuristic search
algorithm. In ISMIS, volume 689 of LNAI, 69–75.
Stenz, A. 1995. The focussed D* algorithm for real-time replan-
ning. In IJCAI, 1652–1659.
Sturtevant, N., and Buro, M. 2005. Partial pathfinding using map
abstraction and refinement. In AAAI, 1392–1397.
Sturtevant, N. 2005. HOG - Hierarchical Open Graph.
http://www.cs.ualberta.ca/˜nathanst/hog/.
Sturtevant, N. 2007. Memory-efficient abstractions for pathfind-
ing. In AIIDE, 31–36.

7

	AIIDE09
	Contents
	Index
	AAAI Website

