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Abstract 
Dynamic scripting is a reinforcement learning algorithm 
designed specifically to learn appropriate tactics for an 
agent in a modern computer game, such as Neverwinter 
Nights. This reinforcement learning algorithm has 
previously been extended to support the automatic 
construction of new abstract states to improve its context 
sensitivity and integrated with a graphical behavior 
modeling architecture to allow for hierarchical dynamic 
scripting and task decomposition. In this paper, we describe 
a tactical abstract game representation language that was 
designed specifically to make it easier to define abstract 
games that include the large amount of uncertainty found in 
modern computer games. We then use this framework to 
examine the effectiveness of the extended version of the 
dynamic scripting algorithm, using Q-learning and the 
original dynamic scripting algorithms as benchmarks. 
Results and discussion are provided for three different 
abstract games: one based on combat in role-playing games 
and two based on different aspects of real-time strategy 
games. 

 Introduction   
Dynamic scripting (DS) [Spronck et al., 2006] is one 
example of an online reinforcement learning algorithm 
developed specifically to control the behavior of 
adversaries in modern computer games and simulations as 
defined by Laird and van Lent [2001]. The DS algorithm 
was designed especially to support efficient learning based 
on a limited amount of experience and to maintain a 
diversity of selected behaviors, both of which are 
significant requirements for online learning in modern 
computer games [Spronck et al., 2006]. The DS algorithm 
has been tested in both role playing games (Nevewinter 
Nights) and real-time strategy games (Wargus), with 
promising results. That is, agents using DS quickly learn 
how to beat their opponent.  

This reinforcement learning algorithm has previously 
been extended to support the automatic construction of 
new abstract states to improve its context sensitivity and 
integrated with a graphical behavior modeling architecture 
to allow for hierarchical dynamic scripting and task 
decomposition [Ludwig & Farley, 2007, 2008]. The aim of 
these extensions was to improve the learning performance, 
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applicability, and flexibility of dynamic scripting-based 
learning in games and simulations. Learning performance 
is measured in terms of the relative score achieved by the 
agent and how quickly the agent was able to achieve this 
score, given a set number of learning opportunities. 
Applicability is evaluated by examining whether or not the 
learning algorithm can be used to play a particular game. 
Flexibility is demonstrated by the ability of the author to 
express different types of domain knowledge in the 
authoring of agent behaviors. While the results presented 
by Ludwig and Farley demonstrated improved learning 
performance in an abstract predator/prey game [2007] and 
improved learning performance in the role playing game 
NeverWinter Nights [2008], the remaining two claims 
were not addressed. 

In this paper we describe a tactical abstract game 
framework used to further evaluate the extended version of 
the dynamic scripting algorithm. The results generated by 
the extended algorithm (EDS) are compared to results from 
the standard dynamic scripting algorithm in three different 
abstract games. The general framework, and the three 
specific games created with it, have all been designed to 
support efficient examination of all three criteria: improved 
learning performance, applicability, and flexibility.   
 The remaining introduction presents an overview of the 
DS algorithm and a description of the extended version of 
DS (EDS) built into a behavior modeling architecture. The 
tactical abstract framework is described in the next section. 
The third section contains the methods, games, and results 
for each of three experiments. The final section of this 
paper offer discussion of these results and concluding 
remarks. 

Overview of Dynamic Scripting 
This section outlines the more standard Q-learning [Sutton 
& Barto, 1998] followed by DS [Spronck et al., 2006] as a 
way to highlight the main elements of the DS algorithm. In 
both cases, an agent makes use of the learning algorithm to 
determine what action to take given a perceived game 
state. Note that DS makes relatively little use of game state 
information, which makes it more useful for higher-level, 
tactical decisions and less useful for decisions that rely 
highly on current context such as movement through a 
grid-world. 

Q-Learning: 
� Actions have a value Q(s,a), where the set of states, S, 

can contain actual or abstract game states. Abstract 
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game states are collections of game states that are 
treated as a single state. 

� Actions are selected during an episode with value 
proportionate selection, based on their Q values. 

� When a reward is given, selected actions are updated 
using a Q-learning update function combined with a 
domain-specific reward function created by the 
behavior author. 

Dynamic Scripting: 
� Actions have (i) a value Q(s, a), where the set of 

states, S, contains only a single abstract state; (ii) an 
optional IF clause that describes when an action can be 
applied based on the perceived game state; and (iii) a 
user-defined priority (or learned, see [Timuri et al., 
2007]) that captures domain knowledge about the 
relative importance of this action. 

� Action values are used to create scripts of length n 
prior to an episode by selecting actions in a value-
proportionate manner (softmax) from the complete set 
of actions available to the agent. 

� During an episode, applicable actions are selected 
from the script in priority order first, the action value 
second. Applicability is determined by the perceived 
game state and the actions IF clause. 

� At the end of an episode, action values are updated 
using the dynamic scripting updating function 
combined with a domain-specific reward function 
created by the behavior author. In contrast to Q-
learning, each action has its value updated, not just the 
selected action(s). The reward is distributed primarily 
to the actions selected in the episode and then to 
actions in the script that were not selected, with a 
smaller negative reward given to actions not included 
in the script. 

Extending Dynamic Scripting 
While the dynamic scripting algorithm has shown 

significant promise in controlling agent behavior in 
modern computer games, there were a number of issues 
that were previously addressed in an extended version of 
dynamic scripting [Ludwig & Farley, 2007, 2008]. In their 
work, the authors create an extended version of dynamic 
scripting that is integrated with a graphical behavior 
modeling architecture to allow for hierarchical dynamic 
scripting and task decomposition and that supported the 
automatic construction of new abstract states to improve its 
context sensitivity.  

The end result of this effort is a graphical behavior 
modeling tool [Fu & Houlette, 2002] that supports the use 
of dynamic-scripting based choice points. An example 
behavior is shown in Figure 1. This figure consists of 
actions (rectangles), conditions (ovals), and ordered, 
directed connectors. Within a graph (called a behavior), the 
actions and conditions can reference other behaviors (bold 
rectangles) to form hierarchical behaviors. Control flows 
from the top shaded node to the bottom shaded node. 

The dynamic-scripting based choice point in this 
particular behavior is indicated by the 

choose(choicePointName) action. Choice points, as used in 
extended dynamic scripting, are based on the choice points 
found in the Hierarchy of Abstract Machine and ALisp 
architectures [Andre & Russell, 2002]. Each choice point 
has a corresponding reward point indicated by the 
reward(choicePointName) action. This reward may be 
immediate or episodic as determined by the behavior 
author in placing the reward point. 

Figure 1. Example behavior with dynamic scripting-based choice 
point. 
 Table 1 illustrates the dynamic scripting specific data 
associated with this particular choice point. Control enters 
the top node and flows to the choice point. The choice 
point then generates a script of two actions from the four 
available actions based on the action values; one possibility 
is indicated by asterisks. When executing the script, If the 
condition canKnockdown(opponent) is true, action 1, with 
higher priority, will be selected; otherwise, action 2 will be 
selected. When the reward point is reached, the values 
associated with the actions will be updated and the script 
emptied. 
Table 1. Action priority, value, and script selection data for the 
"AttackChoice" choice point. 

Action Priority Value Script 
1 High 112 * 
2 Low 88 * 
3 Low 50  
4 Med 117  

 
The addition of choice and reward points to a 

hierarchical modeling architecture allows the behavior 
author to perform both task decomposition and manual 
state abstraction with dynamic scripting-based choice 
points. An example of manual state abstraction is deciding 
to have one script (choice point) for when a Fighter is 
present on the opposing team and another for when not 
present.  

In adding DS-based choice points to a behavior 
modeling architecture, the authors build on and generalize 
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previous research on hierarchical dynamic scripting 
[Dahlbom & Niklasson, 2006; Ponsen et al., 2006] and 
dynamic scripting with manual state abstraction [Ponsen & 
Spronck, 2004]. Additionally, there is significant related 
work on game behavior architectures that include 
hierarchical reinforcement learning such as ALisp [Andre 
& Russell, 2002] , Icarus [Shapiro et al., 2001], and Soar 
[Nason & Laird, 2004] to name a few. The main difference 
between the hierarchic learning implemented in these three 
architectures and the work described in this paper is the 
reinforcement learning algorithm being used.  

The automatic state abstraction component of EDS uses 
data-mining techniques to automatically create 
classification trees that identify the most relevant variables 
in the perceived game state based on historic state and 
reward data.  Once these trees are created, each leaf node 
in the tree is given its own set of dynamic scripting data 
(Table 1). The main idea behind this feature is to identify 
states where the current script appears to be working and 
states where the script is not working. Following this, 
separate scripts are created for the different state sets. This 
is known in machine learning as ‘boosting’, and in fact 
boosting algorithms such as Decision Stump [Witten & 
Frank, 2005] have proved effective when used in EDS 
[Ludwig, 2008]. This is the default used for automatic state 
abstraction in EDS. The tree-based automatic state 
abstraction utilized by extended dynamic scripting is based 
on previous research that showed promising results in the 
context of more standard reinforcement learning 
algorithms (e.g., see G-Algorithm [Chapman & Kaelbling, 
1991] and U-Tree [McCallum, 1996]).  

When a decision is made in a choice point with 
automatic state abstraction enabled, the correct set of 
dynamic scripting data is retrieved based on the current 
perceived game state. To continue our example, if the 
behavior author does not know that different scripts should 
be used depending on whether a Fighter is present on the 
other team, automatic state abstraction could learn that this 
is an important distinction and create distinct scripts for the 
two cases. This is an example of a state abstraction actually 
found by EDS when tested in Neverwinter Nights 
[Ludwig, 2008]. EDS with state abstraction also 
successfully improved performance of a character in a 
predator/prey abstract game [Ludwig & Farley, 2007] 

Tactical Abstract Game Framework 
In order to better evaluate the claims of EDS, we created 
an abstract game framework based upon high-level 
(tactical) decisions in games and simulations. The Tactical 
Abstract Game (TAG) framework is derived from simple 
decision simulations such as the n-armed bandit problems, 
where each of n actions has a different reward associated 
with its completion [Sutton & Barto, 1998]. We extend this 
type of simulation to include aspects commonly 
encountered in modern computer games. With these 
additions the TAG framework can be used to model some 
instances of the class of decision problems referred to as 

Markov Decision Processes (MDPs). An MDP is defined 
by the tuple <S, A, T, R> [Kaelbling et al., 1998], where: S 
is a set of states in the environment, A is the set of actions, 
T is the state transition function, where T(s, a, s’) defines 
the probability of ending up in state s’ when action a is 
performed in state s, and R is the reward function, where 
R(s, a) is the expected reward for performing action a in 
state s. 
 While there are a number of existing languages in which 
to describe MDP-based games, such as the Game 
Description Language [Genesereth & Love, 2005], the 
TAG framework is designed to capture the essential 
characteristics and considerable role of randomness found 
in modern computer games while at the same time 
minimizing the amount of the game that must be specified. 
To this end, TAG can only represent some MDPs as the 
language has limited representational capabilities with 
respect to the set of games states, the transition function, 
and the reward function. To be clear, TAG is an 
implemented framework that includes (i) an XML-based 
game specification language, (ii) a Java-based player 
specification, and (iii) a general computer program that 
instantiates a game based on the specifications, uses the 
given player to make decisions in the game, and reports the 
results generated by the player. Below we define the two 
main components of the TAG framework, game and 
player, and the major attributes of these components. 
Following this, we illustrate how to run a TAG experiment 
with these two components. 

TAG Game 
A game in the TAG framework is made up of a number of 
components: a game feature set that corresponds to the 
agent observations, F, a set of actions, A, and a set of state 
transition rules for the observation features, R. The tuple 
<F, A, R> defines a game with a particular set of 
observations and actions available to the agent. Note that in 
order to take up less space, we are using a formal 
representation rather than the actual XML representation. 
 The observation feature set of a game, F, contains the 
game features observable to a player when it selects an 
action and defines the set of game observation states, O. 
Each observation state is defined as a distinct set of feature 
values. This is a significant departure from MDPs, which 
contain the actual set of game features, Fs, and the 
corresponding set of game states, S, in addition to the set of 
observation features, F, and observation states, O. The 
TAG framework simplifies the process of game 
construction by relying on the significant amount of 
randomness seen in modern computer games instead of an 
underlying game state model.  
 The second basic component of a game definition is the 
set of actions, A. Each action is defined by a set of 
parameter value tuples < O, p, r-, r+, g>: 
� O: a set of observation states where this action is 

available. 
� p: a positive reward likelihood, which defines the 

probability of receiving a reward in the positive range 

78



rather than the negative range. TAG is only capable of 
producing a reward function, R(s,a), that generates a 
random reward distribution within the given bounds. 

� r+: a positive reward range, where the given reward is 
selected randomly from within the given range 
(inclusive) when a positive reward is given 

� r-: a negative reward range, defined the same as  r+ 
but used when a negative reward is given 

� g: the probability that the action can be applied in the 
current state, given that it is available according to O. 
The applicability value is a significant simplification 
that determines the applicability of an action randomly 
without the need to specify information on the actual 
or observed game state. 

An action, a, is composed of multiple tuples: a = {< O1, 
p1, r-1, r+1, g1 >, < O2, p2, r-2, r+2, g2>, < O3, p3, p-3, p+3, g3 
> …}. Across the attributes sets that define an action, the 
observation state sets (O1, O2, etc.) are distinct. All other 
attributes may be the same or different in each attribute set.  

The set of state transition rules, R, move the agent 
through the observation state based on the completed 
actions. Each rule, r � R, contains both an action a and a 
feature f. By default, when action a is selected while 
running a game, the observation feature f is randomly 
changed to create a new observation state. Alternate rule 
types exist to change the observation state in a more 
principled way, such as setting a feature to a particular 
value or (in the case of integers) adjusting the existing 
value up or down.  

TAG Player 
A TAG Player is responsible for making decisions in a 
TAG Game, where each player implements a different 
action selection method. The player implementations 
examined in this paper are Q, DS, and EDS. The Q player 
implements the Q-learning algorithm as described by 
Sutton and Barto [1998]. The Q-player provides a baseline 
for informational purposes only – the performance of a 
standard reinforcement learning algorithm on the same 
problem. There are a number of standard ways the Q-
learning algorithm could have be extended to improve 
performance that are not investigated, though it does take 
advantage of manually constructed abstract states when 
available. The DS player implements the standard dynamic 
scripting algorithm, without manual or automatic state 
abstraction and without task decomposition. The EDS 
player makes full use of the behavior architecture and 
choice points to support all three of these. 

TAG Experiment 
Running a TAG experiment to generate empirical results 
involves both a TAG game and player. The primary 
measure when performing an experiment is the reward 
received after each action selection. The player selects an 
applicable action, a, from A based on the current settings of 
the player, the current observation state o and the 
applicability threshold g. The information in a is used to 

supply a numeric reward to the player for the selected 
action. After the reward is given, the game play rules, R, 
are used to change the game observation state o. Rewards 
can be delayed to require multiple actions per reward (an 
episodic reward). 

Experiments 
We define three distinct games in the TAG framework, 
with a number of different players for each game: Anwn, 
Resource Gathering, and Get the Ogre. The first is an 
abstract role-playing game, based in part on the 
NeverWinter Nights computer game. The Resource 
Gathering game builds on a real-time strategy subtask 
studied by Mehta et al. [2008]. Get the Ogre is derived 
from another real-time strategy game subtask, previously 
explored with ALisp [Marthi et al., 2005]. These three 
games represent a range of different problems encountered 
in modern computer games.  

In the abstract role playing game, Anwn, the current 
observable state plays little role in the expected utility of 
the high-level decisions made in the game. In this type of 
game, EDS and DS should perform very well. The other 
two games require a sequence of actions to complete the 
game. It is predicted that DS will perform poorly on the 
Resource Gathering and Get the Ogre games without the 
additional domain knowledge that can be encoded in EDS. 
For each of these games, we present a description of the 
game followed by the main results and discussion of their 
significance.  

Anwn 
Anwn is an abstract version of the combat portion of a role 
playing game. The tuple <F, A, R> is defined as: 
• F: 10 features (Boolean and Integer) 
• A: 40 actions - 10 good (low applicability, high 

reward); 20 medium (moderate applicability and 
reward); 10 poor (high applicability, low reward); 
Current observation state has little affect on rewards 

• R: Randomly change 1 observation feature after each 
action 

For the DS and EDS players, the priority assigned matches 
the rating of the actions (i.e. good = high priority). In all 
cases, the score is the average reward received in the 
episode. Rewards are immediate after each selection. 
 The results of this experiment are shown in Figure 2. 
Manual state abstraction indicates the construction of three 
abstract game states based on domain knowledge. The 
EDS and Q players use this to learn which actions perform 
best in each of three abstract game states. EDS with 
automatic state abstraction comes in second, performing 
nearly as well as the manually constructed state 
abstraction. With automatic state abstraction, the EDS 
player is learning to create distinct scripts for different sets 
of game states. The DS learner learns a single script that is 
used in all game states. This game demonstrates the utility 
of both manual and automatic state abstraction in EDS. 
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Figure 2. Performance of learners in the Anwn game. Higher 
scores indicate better performance (average reward received in an 
episode) (n=1000). 

Resource Gathering  
In the Resource Gathering game, the goal is to send out a 
peasant to collect 100 wood and 100 gold by making one 
trip to the forest and one trip to the gold mine. However, 
the locations of the gold, wood, and town hall (where 
resources are to be returned) are not known ahead of time. 
• F: 10 features (Boolean and Integer) 
• A: 13 actions - Move to 1 of 9 possible line-of-sight 

locations (9 distinct actions); Mine gold (if gold mine 
visible); Chop wood (if forest visible); Drop off wood  
(if carrying wood and town hall visible); Drop off gold 
(if carrying gold and town hall visible) 

• R: Changes the observation states in predictable ways, 
such as moving the peasant to the location, gathering a 
resource into a peasants arm, and dropping off the 
resources to increase the amount of stored wood or 
gold.  

The DS player assigns the highest priority to the drop off 
actions, medium priority to gathering actions, and lowest 
priority to moving actions. For all players, the reward 
given is -1 * the number of actions taken in the episode.  

Figure 3. Results of the resource gathering experiment. Lower 
scores indicate better performance (shorter solution) (n=1000). 
 The results in  show that while the Q player (no state 
abstraction) starts out performing the same as random, it 
starts to approach the optimal solution of eight actions 
relatively quickly. The DS player is able to perform better 
than random by making use of action priorities. For 
example, if the agent is over a forest and is not carrying 

anything it will chop wood (assuming that action is in the 
script) rather than move to a new location. However, the 
DS player demonstrates no learning since the script cannot 
take the context of the move actions into account. That is, 
if a peasant is holding gold it should be sent somewhere 
different than when it should be gathering gold.  

The EDS player makes use of task decomposition, 
supplied by the behavior modeling architecture to break the 
problem into distinct learning subtasks as shown in the 
partial plan in Figure 4. In this figure, the FindForest and 
FindTownHall sub-behaviors (indicated by bold 
rectangles) contain distinct choice points that are quickly 
able to learn how to solve the subtask while the ChopWood 
and DropOffWood actions capture known action ordering 
that was specified as priorities in DS. This game 
demonstrates the utility of task decomposition as supported 
by EDS. 

Figure 4. Task decomposition solution to Resource Gathering 
expressed with EDS. 

Get the Ogre 
In Get the Ogre, the goal is to perform a sequence of 
actions that creates a small squad of soldiers and attacks a 
nearby Ogre. The actions available to the player consist of 
building a farm, creating wood or gold gathering peasants, 
creating a solider, and attacking the Ogre with 3, 4, or 5 
soldiers. 
• F: 4 features (Integer) 
• A: 13 actions -  Build farm (if has wood); Gather 

wood-gathering peasant (if has food); Gather gold-
gathering peasant (if has food); Create solider (if has 
wood and gold); Attack ogre (if has 3, 4, or 5 soldiers) 

• R: Changes the observation states in predictable ways, 
such as spending resources, gathering resources, or 
attempting an attack on the ogre which is more likely 
to succeed with more soldiers.  

The optimal sequence of actions includes creating two gold 
peasants, one wood peasant, four soldiers, and then 
attacking the Ogre. The DS / EDS assigned priorities to the 
actions as follows (from high to low): attack, soldier, gold, 
wood, farm. One difference with this game is that it is easy 
for the player to get into a state where no actions are 
applicable or to get into loops and not solve the problem 
within a limit of 50 actions. The episodic reward is based 
on defeating the Ogre with the least number of soldiers (4 
is optimal), or a large negative reward if not solved. 

The DS player was not able to solve this problem since 
there exists no single script that can perform this task 
without getting into an infinite loop or reaching a state 
where no action was available. The EDS player with 
automatic state abstraction is able to find a reasonable set 
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of abstract states after a minimum of five episodes and is 
outperforming the Q player by episode 25. This game 
demonstrates the ability of EDS to solve games that could 
not be solved by dynamic scripting without the inclusion of 
additional domain knowledge. 

Conclusion 
In this paper, we developed an abstract tactical game 
framework and three abstract games based on particular 
aspects of modern computer games. Each game was tested 
using a number of different learning algorithms in order to 
examine the capabilities of the extended dynamic scripting 
algorithm. 

Taken together, the results from the three abstract games 
provide evidence for the hypothesis that EDS improves 
upon the basic dynamic scripting algorithm. EDS 
demonstrated increased learning performance, shown 
through faster learning and improved scores in all three 
games. EDS also demonstrated increased applicability and 
flexibility. By allowing additional means for including 
domain knowledge in the form of manual state abstractions 
and task hierarchies and through automatic state 
abstraction, EDS demonstrated learning in games where 
dynamic scripting alone could not as shown in the 
Resource Gathering and Get the Ogre games.  

These extensions are especially important for dynamic 
scripting as the DS algorithm is designed to learn very 
quickly when applied in modern computer games, in part 
by ignoring game state information. The extended dynamic 
scripting algorithm allows the behavior modeler to start 
with the speed of learning and diversity of behavior 
supplied by dynamic scripting and improves upon it by 
allowing for a number of ways in which to add (or learn) 
domain knowledge that can be used to improve learning 
performance. 
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