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Abstract 
Traditionally, there have been two large obstacles faced in 
attempting to apply AI techniques to games and other 
virtual environments.  The first obstacle is the gap between 
the largely declarative representations used by many AI 
techniques and the largely procedural approaches used in 
virtual environments. The second obstacle is the gap 
between the skill sets and knowledge bases of the two 
domain experts with AI researchers often lacking 
experience using virtual environment APIs and development 
environments and virtual environments developers often 
lacking significant AI knowledge. In this paper we present 
Bowyer, a tool designed to address these two obstacles to 
the integration of AI planning algorithms into virtual 
environments. Bowyer bridges the gap between the 
declarative representations in a planning domain and the 
procedural framework of a virtual environment via the use 
of code generation techniques.  Bowyer’s functionality also 
allows planning researchers to integrate their planning 
research into virtual environments without the need to have 
extensive knowledge of virtual environment development. 

 Introduction   
Traditionally there have been two large obstacles faced in 
attempting to apply Artificial Intelligence (AI) techniques 
in games and other virtual environments. The first obstacle 
is the gap between the largely declarative based domain of 
AI and the largely procedural based domain of most 
games, simulations and virtual environments. The second 
obstacle, that may be largely a reflection of the first, is the 
lack of virtual environment development knowledge by 
most AI researchers and conversely the lack of AI 
knowledge by most virtual environment developers. 
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 Given these obstacles the AI support in most 
commercial games and other virtual environments have 
been based on relatively simple procedural AI techniques 
such as finite state machines (FSM) and variants of the A* 
search algorithm. Games and other virtual environments 
can benefit greatly from more advanced declarative AI 
techniques such as planning.  These benefits can be seen in 
the recent success of the F.E.A.R. (Monolith 2005) 
commercial video game that uses a planning based AI.  As 
noted by one designer of F.E.A.R. the three main benefits a 
declarative planning approach gives over traditional 
procedural AI approaches are: decoupling goals and 
behaviors, layering simple behaviors to achieve more 
complex behaviors and adding dynamic problem solving 
abilities (Orkin 2003). 
 In this paper we present Bowyer, a tool designed to 
address these two obstacles to adding AI planning 
techniques to virtual environments. Bowyer allows a user 
to specify a declarative planning domain and then 
automatically generates a procedural representation of that 
planning domain for use in the virtual environment. 
Bowyer breaks this process into three general steps.  The 
first step involves the user specification of a planning 
domain.  The second step involves the generation of 
procedural representations of the planning domain 
operators and objects for use in the virtual environment 
through code generation techniques. The final step consists 
of integrating plans into the virtual environment by a) 
creating a planning problem, b) automatically retrieving 
solutions to the planning problem from a planner and c) 
executing the resulting plans in the virtual environment 
using the code generated by Bowyer in the second step. 

Related Work 
In general, Bowyer’s functionality can be broken into three 
sections: planning domain specification, code generation 
and virtual environment and planner interaction. In this 
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section we present an overview of previous work in these 
three areas that is most relevant to our discussion of 
Bowyer. 

Planning 
The aspects of planning that Bowyer addresses are 
primarily planning domain specification and planning 
problem specification.  Bowyer’s functionality in these 
areas is based on its integration into the Zocalo planning 
framework (Vernieri 2006).  Zocalo’s default planner 
Crossbow is the C# implementation of the Longbow 
planner (Young, Pollack and Moore 1994.) which is an 
extension of the UCPOP planner (Penberthy and Weld 
1992) that adds hierarchical planning support. As a result 
Bowyer’s planning domain and planning problem 
specification support is based on the STRIPS planning 
language (Fikes and Nilsson 1971). 

Code Generation 
Code generation is an establish field of research in 
computer science and has proven to be a useful technique 
in research based and commercially viable systems.  
Bowyer’s code generation functionality is based on a 
partial class generation approach. Bowyer uses a code 
library of small code modules or code “chunks” that can be 
specified using Bowyer’s interface. These code modules 
are mapped to planning operators and objects and an XML 
representation is created for the planning operator or 
object.  XSLT templates specific to the virtual environment 
being used are then applied to the XML to generate the 
virtual environment source code.  Other tools such as 
Captool (Perrin, Benoit and Foulloy 2002) and the MOmo 
compiler (Bichler 2003) use a similar approach to code 
generation to bridge the gap between domain experts and 
software engineers. 

Planning Tools 
The planning tools covered in this section are, like 
Bowyer, tools that were designed to help planning 
researchers conduct their planning research. We make this 
distinction to differentiate these planning tools from tools 
that incorporate planning techniques as an AI technique to 
accomplish other tasks but are not aimed at improving 
planning research.  
 GIPO (Simpson et al. 2001) and its successor GIPO II 
(Simpson et al. 2003) are designed to aid planning 
researchers in defining planning domain models. Their 
functionality includes a graphical interface to define 
planning domain models, tools for checking the validity of 
the developed domain models, tools to validate the domain 
models against existing plans, import and export of 
planning domains and an interface for integration with 
external planning algorithms. 
 ViTAPlan (Vrakas and Vlahavas 2003) is a visual tool 
used for the highly adjustable planning (HAP) system. 
Similar to GIPO, ViTAPlan also supports execution of a 
plan, checking the consistency of a plan, and similar to 

Bowyer uses a graphical interface for specifying planning 
domains and planning problems and generates domain and 
planning problem specifications. 
 Bowman (Thomas and Young 2006) is a system that 
was developed to aid planning researchers, game designers 
and other users interested in utilizing planning for 
interactive narrative. Bowman was also built as a part of 
the Zocalo framework and uses similar planning domain 
and planning problem specification interfaces as Bowyer. 

ScriptEase 
ScriptEase (Cutumisu et al. 2007) is designed to be a visual 
tool for generating scripts for a commercial computer role-
playing-game; to create scripted sequences to control non-
player characters in the game world. ScriptEase consists of 
two basic components, the Atom Builder and the Pattern 
Builder. The Atom Builder is designed to be used by 
programmers to create small “atoms” of scripting code. 
The Pattern Builder is designed to be used by designers 
(nonprogrammers) and uses the atoms to create patterns of 
actions referred to as situations.  
 ScriptEase’s approach to generation of source code 
using code modules and common patterns is similar in 
concept to the approach Bowyer takes to generate code. 
The use of patterns to generate common source code is 
prevalent in code generation techniques in general. 
Bowyer’s differentiation from ScriptEase can be seen in its 
planning support, through its visual specification of 
planning domains and mapping of planning objects and 
operators to virtual environment representations for 
execution of plans in the virtual environment. Bowyer also 
utilizes an approach to code generation, discussed in the 
next section, which allows new languages and new virtual 
environments to be supported without the need to rebuild 
the Bowyer application code base to support the new 
virtual environments. 

Bowyer Overview 
This section provides an overview of Bowyer’s 
functionality.  Bowyer’s approach to addressing the two 
obstacles covered in the introduction can be broken down 
into a series of distinct steps divided into three stages used 
to translate planning domain representations into virtual 
environment representations.  These steps are represented 
in Figure 1 grouped by stage.   
 Also in order to help ground the description of Bowyer, 
simple examples will be given. The context for these 
examples is a bank world scenario which includes a bank 
robber character whose goal is to steal the gold from the 
bank vault. Due to length constraints this entire scenario 
cannot be fully described but to aid understanding some 
examples from this scenario will be given. 
 Also, while all of Bowyer’s functionality is overviewed 
in this section and available to all users, most users will not 
use all of the functionality.  Planning researchers will 
generally be able to download the shared resources needed 
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for the virtual environment domain specification and game 
designers and developers will be able to use and modify 
existing planning domain and planning problem 
specifications to gain a better understanding of how to 
define them. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1: Bowyer Functionality Overview 

Planning Domain Specification 
Bowyer allows the user to create a planning domain 
specification using its interface to define the types, objects, 
literals and operators that exist in the planning domain.  
 Types in Bowyer represent the types of objects in the 
planning domain and consist simply of a type name. Types 
are defined in a hierarchical manner with the root of the 
hierarchy being the generic type anyThing and all types are 
directly or indirectly derived from this type.  One example 
of a type from the bank world would be the key type which 
is the type of the object that is used to unlock the bank 
vault. 
 Objects in Bowyer represent the physical objects and 
locations in the virtual world that will be used in the 
planning process. Objects in Bowyer consist of a name, an 
optional description and can have one or more types 
assigned to them. The gold in the bank value would be an 
object in the bank world and would simply need to be an 
object named “gold” with the type gold assigned to it. 
 Literals are used as the operator’s preconditions, 
constraints and effects and to define the initial and goal 
states in the planning problem. Literals in Bowyer consist 
of a name, optional description and a set of arguments for 
the literal represented by their types. The has(character, 
object) literal is used in the bank world scenario to 
determine if a character in the world has a given object. 
 Operators in Bowyer represent the actions that are 
possible in the planning domain. Operator representations 
consist of: a name, preconditions, constraints, effects and a 
set of parameters similar to the way operators are 
represented in the STRIPS planning language. 
Preconditions, constraints and effects are represented as 
lists of literals. A heavily used operator in the bank world 
scenario is MoveTo. This operator has three parameters 
representing the character that is going to move, the start 

location and the end location.  The preconditions for this 
operator are at(character, start) and pathExists(start, end) 
representing that the character is at the start location and 
that there is a path between the start and end locations.  
The constraints for this operator are isLocation(start), 
isLocation(end) and isCharacter(character) that verify that 
the parameters are of the correct type.  Finally, the effects 
of this operator are at(character, end) and notAt(character, 
start) which represents that the character has moved and is 
at the end location and no longer at the start location. 
These planning domain specifications can be saved and 
shared so that users not as familiar with planning domain 
specification can use existing specifications. 

Virtual Environment Domain Specification 
Bowyer allows the user to specify Zocalo client 
information for the virtual environment being used. The 
functionality covered in this subsection is designed for a 
user familiar with the Zocalo client for the virtual 
environment, usually the developer of the Zocalo client.  
The process described here should only need to be 
completed once for each virtual environment and creates 
representations saved as XML files that can be distributed 
with the Zocalo client and loaded by Bowyer. This is one 
of the steps taken in Bowyer’s functionality to help aid 
nonprogrammer users of Bowyer with the code generation 
process. The functionality for this subsection includes 
specifying: the generic operator and object base class 
representations, code libraries for the virtual environment 
and the location of the XSLT templates for the virtual 
environment. This creates a Bowyer virtual environment 
client specification.  
 The Bowyer client base classes represent the generic 
operator and object classes in the Zocalo client, referred to 
as action classes and world object classes respectively. The 
definition of the Bowyer client’s base classes is necessary 
for the code generation step to allow the methods in the 
base classes to be mapped along with code library methods 
and properties, to the planning operators and objects. The 
process of specifying base classes consists of specifying 
the name of each base class as well as the signature for all 
of the methods in each base class. A method’s signature 
consists of the scope, return type, name and parameters for 
that method. 
 Although some functionality for the generated source 
code classes is inherited from the base classes, additional 
functionality will be needed in the generated operator and 
object representations. This additional functionality is 
obtained from code modules that are saved in code 
libraries using Bowyer’s interface. Each virtual 
environment must have its own code library built using the 
programming language that corresponds to that virtual 
environment. As with the base class definitions the code 
library is designed to be sharable between users, 
downloadable with Bowyer and specified by developers 
for the virtual environment. This portability of the code 
library is another feature used to aid nonprogrammer users 
in the code generation process. The code library for each 
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virtual environment is built by adding method and property 
specifications that can be used to specify possible operator 
and object functionality. Methods are specified by entering 
the scope, return type, name, parameters, code body and a 
description for the method. Properties are specified by 
entering the type, name and default value of the property. 
 Finally, Bowyer needs to know the location of the XSLT 
templates for the virtual environment so that it can use 
them in the code generation process to create source code 
representations of the XML representations for the 
planning operators and objects. 

Mapping Between Declarative and Procedural 
Domains 
Bowyer is able to bridge the gap between declarative and 
procedural domains using code generation and a process of 
mapping from planning operators and objects attributes to 
virtual environment code. This includes two steps: 
mapping code modules to planning operators and objects 
and mapping code variables to operator parameters. After 
the mapping is complete the virtual environment code 
representation of the planning operators and objects can be 
generated, viewed, edited and saved for use in the virtual 
environment.  
 The first step in translating planning operators and 
objects into their virtual environment representations is to 
map code methods and properties to operators and objects. 
For planning operators the mapping consist of mapping the 
literals for the preconditions, constraints and effects to 
their method representations as well as mapping the code 
representations for the operator’s execution (the code that 
actually performs the operator’s effects) and any code that 
should be in the operator’s initialization code. For 
example, a mapping for the MoveTo operator would 
include mapping the at(character, start) precondition 
literal to the isTouching(actor, location) method in the 
code library. 
 For planning object translation Bowyer allows the user 
to map any methods or properties to the planning object 
that reflect the object functionality. For example, the key 
object would have the unlock() method mapped to it.  
 After the mapping for all of the operators and objects 
has been completed the next step is the operator parameter 
to code variable mapping stage. 
 After all methods have been added to an operator the 
variables used in each of the method signatures (as method 
parameters) need to be mapped to the operator’s 
parameters. This is necessary because the variables used in 
the code represent the world objects in the virtual 
environment and the operator’s parameters are used by the 
action classes to find the correct virtual environment world 
objects. A simple one to one mapping is created for each 
method’s variables. For example the at(character, start) to 
isTouching(actor, location) mapping given earlier would 
require a variable to parameter mapping to map character 
to actor and start to location for the generated code to 
function correctly. 

 Code generation in Bowyer uses the mapped 
relationships defined in the previous two steps to create an 
XML specification of the planning operator or object. This 
XML specification is then sent to be processed by the 
current client’s XSLT templates to generate the source 
code to be used in the virtual environment. The generated 
source code is displayed to the user so that any possible 
changes can be made such as specifying initial values for 
properties.  The source code can then be saved to file to be 
used in the virtual environment. This code generation 
technique was selected to allow Bowyer to generate code 
for additional virtual environments without the need to 
modify the Bowyer implementation.  This can be achieved 
by defining a Bowyer client, base class definitions, XSLT 
templates and a code library for the new virtual 
environment. 

Integration with the Zocalo Planning Framework 
The Zocalo planning framework is a web service based 
framework made up of several independent components. It 
is designed to facilitate planning support and testing in 
virtual environments by removing the tight integration 
between planners and virtual environments. This allows for 
easy testing of different combinations of planners and 
virtual environments.  The architecture of the Zocalo 
framework that is relevant to Bowyer’s functionality is 
shown in Figure 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2: Components of the Zocalo Framework 

 
 Bowyer provides functionality to allow the user to 
graphically specify a planning problem and planning 
domain, connect to a planner (default is Crossbow), request 
a plan using the planning problem and planning domain 
given, and display the returned plan to the user as a plan 
graph. Bowyer’s planner support is based on the planner 
support that the Zocalo framework provides and therefore 
requires that planners support the same web service 
interface that Zocalo uses.  This allows planning 
researchers and game designers to easily swap out planning 
algorithm implementations. 
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 Before using a planner to find a plan the planning 
domain and planning problem must be specified for use by 
the planner. Bowyer allows the user to use the current 
planning domain maintained by Bowyer or to specify the 
location of a planning domain document.  Bowyer also 
allows the user to specify the planning problem by 
specifying the literals in the start and goal state of the plan 
using the Bowyer interface or by specifying the location of 
a planning problem document. 
 Bowyer’s planner interaction includes connecting to a 
planner, specifying the domain and planning problem, 
specifying some optional plan space search information 
and retrieving the plan to display to the user. After the plan 
has been created Bowyer allows the user to connect to the 
virtual environment through the Execution Manager 
component and execute the plan in the virtual environment. 

Discussion and Evaluation 
A small pilot study with five participants was conducted to 
create an initial evaluation of Bowyer. The pilot study was 
setup to get potential users, for this study planning 
researchers, evaluation after giving them an opportunity to 
interact with Bowyer to complete a set of simple tasks 
associated with the bank world scenario. The study was 
broken down into three stages that corresponded to the 
three sections of Bowyer functionality so that each stage 
could be evaluated separately. The pilot study used an 
initial implementation of the Bowyer tool and the Zocalo 
framework with a client for the Unreal Tournament 2004 
game engine.  
 In general planning domain and planning problem 
creation is an iterative, trial and error process.  In order to 
conduct the study in a reasonable time period each 
participant was given a script for the bank world with a set 
of instructions for steps to complete for each stage. The 
instructions were written in natural language and included 
no Bowyer interface specific instructions. The study was 
meant to give the users a general feel for the functionality 
of Bowyer and the types of tasks they would be able to 
complete using Bowyer. At the end of each stage and at the 
end of the session the participants were given a set of short 
answer and survey questions to rate their experience using 
Bowyer and give feedback. 
 The first stage of the study was used to evaluate 
Bowyer’s ability to allow the user to specify a planning 
domain. In general the participants found that Bowyer’s 
functionality allowed them to efficiently and intuitively 
create the planning domain and that it matched well with 
the STRIPS paradigm. All of the suggested improvements 
noted by the participants were related to Bowyer’s user 
interface and the fact that defining the types, objects, 
literals and operators was done separately and is less 
intuitive then being able to define them together. 
 The second stage of the study was used to evaluate 
Bowyer’s ability to allow the user to create virtual 
environment representations of the planning domain 
operators and objects. The participants stated that while the 

mapping process was not as intuitive as the planning 
domain specification process, once the general flow of the 
mapping process was understood they found it efficient 
and easily understandable. The main problems found with 
this stage were that the participants would like more 
information about the virtual environment code library and 
a drop and drag interface to do the mapping. 
 The third stage of the study was used to evaluate 
Bowyer’s ability to allow the user to specify a planning 
problem, get a plan from the planner and execute the plan 
in the virtual environment. The participants found the 
functionality for this stage the most useful in that it would 
allow them to test planners and plans in the virtual 
environment and could be used separately with other 
aspects of their planning research given the ability to save 
and load planning domains and planning problems. The 
main concerns and suggested improvements for this stage 
were usability improvements such as displaying more 
information about the Zocalo framework and about the 
current state of the plan and virtual environment. 
 In general the study participants found Bowyer to be a 
useful tool that they would use to integrate their planning 
research into virtual environments, test their research and 
give demos of their research. Most of the participants’ 
criticisms of Bowyer can be attributed to Bowyer currently 
being in a proof of concept state with the usability 
concerns being addressed in future development of the 
tool. In all the results of the pilot study were promising, 
showing that Bowyer could be useful to aiding in 
integration of planning into virtual environments. 

Benefits Provided by Bowyer 
Bowyer is designed to provide several benefits to the 
planning researchers and other users integrating planning 
AI into virtual environments. Bowyer’s main benefit is to 
aid the user in bridging the gap between the planning 
domain and the virtual environment domain. This provides 
the additional benefit of allowing planning researchers, and 
game designers with basic planning knowledge, to 
incorporate planning techniques and functionality into 
virtual environments to create more robust experiences, 
add dynamic narrative structure and allow new elements of 
narrative and game play to be integrated into the virtual 
environment that go beyond what is possible with simpler 
AI techniques. Also Bowyer has been designed to aid 
planning researchers in testing planning algorithms, plans 
generated by planning algorithms and other aspects of 
planning such as interactive narrative in virtual 
environments by requiring much less knowledge about 
virtual environment development and allowing researchers 
to easily swap out components of the testing framework. 

Conclusion and Future Work 
Future work for Bowyer can be divided into the separate 
sections of Bowyer functionality. 
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 The approach Bowyer takes to the specification of 
planning domains can be further improved by adding 
validation checks for the domain, adding decomposition 
support for hierarchical planning and adding mediation 
support to the planning domain specification so that 
Bowyer can use all functionality provided by the Zocalo 
framework. 
 The specification of virtual environment representations 
as Zocalo client’s can be improved by allowing more the 
one level of inheritance in the generated code as well as 
allowing the user to use virtual environment classes, 
previously generated by Bowyer, to be the parent class of 
newly generated Bowyer classes. The code generation can 
be improved by adding more intelligence to the code 
generation process. An additional improvement to code 
generation is to add functionality to Bowyer to generate 
planning domain and planning problem specifications in 
planning languages such as PDDL and STRIPS in the same 
manner in which virtual environment source code is 
generated. 
 The plan generation and execution support can be 
improved by adding planning mediation support and 
making the plan execution support more robust to allow for 
smoother interactions with the virtual environment and 
more control over the virtual environment. 
 Bowyer is meant to be a first step towards bridging the 
gap between declarative and procedural domains. It is 
designed specifically for planning domains and developed 
as a proof of concept implementation. Given this, Bowyer 
is able to accomplish the two goals for which it was 
designed. It is able to create translations between 
declarative planning domains and procedural virtual 
environments and, under the assumption that appropriate 
virtual environment client specifications and code libraries 
exist, it is able to allow nonprogrammer users to complete 
this translation process. Bowyer and its descendent tools 
should prove to be useful in the development, testing and 
application of planning research and as a part of the larger 
Zocalo framework will serve as a robust platform for 
integrating planning into virtual environments for research 
based as well as commercial projects. 

Acknowledgements 
The authors wish to thank the members of the Liquid 
Narrative research group for their assistance in the 
creation of the Zocalo framework and for their support 
in the development of Bowyer. 

References 
Bichler, L. 2003. A Flexible Code Generator for MOF-
based Modeling Languages. OOPSLA Workshop on 
Generative Techniques in the context of Model Driven 
Architecture. Anaheim, California, USA 2003. 
 

Cutumisu, M.; et al. 2007. ScriptEase: A 
Generative/Adaptive Programming Paradigm for Game 
Scripting. Science of Computer Programming 67:32–58. 
 
Fikes, R. E. and Nilsson, N. J. 1971. STRIPS: A new 
Approach to the Application of Theorem Proving to 
Problem Solving. Artificial Intelligence 5(2):189-208. 
 
Monolith Productions, Inc. 2005. F.E.A.R., Los Angeles, 
California: Vivendi Universal Games. 
 
Orkin, J. 2003. Applying Goal-Oriented Action Planning to 
Games. AI Game Programming Wisdom 2, Hingham 
Mass.: Charles River Media. 
 
Penberthy, J. S. and Weld, D. 1992. UCPOP: A Sound, 
Complete, Partial-Order Planner for ADL. Third 
International Conference on Knowledge Representation 
and Reasoning (KR-92), Cambridge, MA, October 1992. 
 
Perrin, S.; Benoit, E. and Foulloy, L. 2002. Automatic 
Code Generation based on Generic Description of 
Intelligent Instrument. 2002 IEEE International 
Conference on Systems, Man and Cybernetics. Volume: 6. 
Hammamet, Tunisia, October 2002 
 
Simpson, R. M.; et. al. 2001. GIPO: An Integrated 
Graphical Tool to support Knowledge Engineering in AI 
Planning. Proceedings of the 6th European Conference on 
Planning. 2001. 
 
Simpson, R. M.; et. al. 2003. GIPO II: HTN Planning in a 
Tool-supported Knowledge Engineering Environment. 
Proceedings of the Thirteenth International Conference on 
Automated Planning and Scheduling (ICAPS 2003), 
Trento, Italy, June 2003. 
 
Thomas, J. and Young, R. M. 2006. Author in the Loop: 
Using Mixed-Initiative Planning to Improve Interactive 
Narrative. In Proceedings of the ICAPS-06 Workshop on 
AI Planning for Computer Games and Synthetic 
Characters, Cumbria, UK. 
 
Vernieri, T. 2006. A Web Services Approach to 
Generating and Using Plans in Configurable Execution 
Environments. Masters Thesis. North Carolina State 
University. 
 
Vrakas D. and Vlahavas, I. 2003. ViTAPlan: A Visual 
Tool for Adaptive Planning. Proceedings of the 9th 
Panhellenic Conference on Informatics, Thessaloniki, 
Greece, 2003. 
 
Young, R.M. Pollack, M.E and Moore, J.D. 1994. 
Decomposition and Causality in Partial-Order Planning. 
Proceedings of the 2nd Int’l Conf. AI Planning Systems 
(AIPS-94), AAAI Press, 1994. 

19


	AIIDE09
	Contents
	Index
	AAAI Website




