
BehaviorShop: An Intuitive Interface for Interactive Character Design

Frederick W. P. Heckel, G. Michael Youngblood, and D. Hunter Hale
The University of North Carolina at Charlotte

Game Intelligence Group, Department of Computer Science
9201 University City Blvd, Charlotte, NC 28223-0001

{fheckel, youngbld, dhhale}@uncc.edu

Abstract

Artificial Intelligence for interactive characters is held back
by the difficulty of actually creating those characters. There
is a need for intuitive tools which simplify the process of
building complex AI characters. In this paper, we present
BehaviorShop, a tool for building interactive characters, and
the results of a study to test the effectiveness and ease of use
of this tool. The majority (80%) of test subjects were able to
successfully create a complex character using BehaviorShop.
Our results show success with this interface, and the advan-
tage of using the subsumption architecture as a paradigm for
character creation.

Introduction
Progress in interactive characters for games lags behind that
of other game technologies and also behind artificial intelli-
gence in general (Nareyek 2004). As graphics and physics
calculations have been offloaded to specialized GPUs in re-
cent years, more resources have been freed for use by AI.
Despite this, most character AI still uses only very basic
techniques that are decades old.

Part of the reason for this is that building artificial intel-
ligence for characters is a very difficult task. The developer
not only needs to know how they want the character to be-
have, but also the AI principles required to make that behav-
ior emerge. This can be especially difficult if the characters
are part of a training or cultural simulation, where they must
act in very specific ways to conform with the real-life do-
main. Even though more computational resources are avail-
able, creation of richer characters is blocked by the com-
plexity of AI modeling. Just as image editing and desk-
top publishing have greatly improved with more intuitive
tools, character AI can benefit from more effective inter-
faces. With an easy to learn graphical user interface, AI de-
velopers could focus on providing more complex techniques
while game designers and creative talent take on the task of
actually creating characters.

In this paper, we show our initial work creating Behav-
iorShop, an intuitive, subsumption-based graphical user in-
terface for building interactive characters such as those in
Figure 1. We also present the results of a user study with

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Two agents, created with BehaviorShop, interact-
ing in the FI3RST game environment

BehaviorShop, showing that it is easy to learn and usable by
AI novices.

Background
Tools such as Photoshop, for image editing, and PowerPoint,
for presentations, have been around for many years. These
programs provide simple interfaces for performing complex
tasks, enabling more users to produce high quality images
and presentations. The state of design tools for AI is not as
strong; while there is some agreement that the basic unit of
AI design is a decision or behavior, to our knowledge there is
no work on the basic set of behaviors necessary for building
agents from the ground up. Discussion during the recent
AI Summit at the 2009 Game Developers Conference called
for an editing paradigm which allows immediate feedback,
similar to that of image and modeling tools, but there was no
consensus on how this could be done.

An AI building tool should take into account three major
factors: the manipulation of simple atomic decision units
into larger wholes (pixels in images, primitive shapes in 3D
modeling), immediate feedback as the character is modified,
and abstraction and reuse of existing character models.

The existing work in AI builders address, at most, the first
of these factors. Tools have been developed for robotics, in-
cluding the RobotFlow builder from the University of Sher-
brooke (Cote et al. 2004). Figure 2 shows the RobotFlow
interface. The base-level units of RobotFlow are low-level,

Proceedings of the Fifth Artificial Intelligence for Interactive Digital Entertainment Conference

46



allowing a great deal of flexibility when creating new sys-
tems. Unfortunately, this level of complexity is daunting for
non-expert users.

Figure 2: Screenshot of RobotFlow, developed by Univer-
sity of Sherbrooke.

Sony uses Brian Schwab’s Situation editor for building
characters in sports games (Schwab 2008). This editor has
similar goals to our own, but even the author admits that it
is difficult to learn, noting that experienced programmers re-
quire at least a week of training. The Eki One Configurator
from Artificial Technology is a commercial product aimed at
games (Artificial Technology 2009). It provides a more pol-
ished FSM editor, but does not solve the problem of transi-
tion complexity. Xaitment also produces a set of commercial
packages for editing FSMs and knowledge bases, but these
tools are not appropriate for AI novices (Xaitment 2009).

FSMs (Finite State Machines) are a common choice
for the architectures underlying agent builders. The
commercial package SimBionic is designed for build-
ing game AI, and provides a HFSM (Hierarchical Finite
State Machine) modeling interface, a debugger, and en-
gine (http://www.simbionic.com/). SimBionic is an exten-
sion of Fu’s BrainFrame software (Fu and Houlette 2002).
AI.implant is another commercial package for building sim-
ulation AI, and is developed by Presagis (Presagis 2001).
The AI.implant tool allows the user to model game agents
using a variety of methods, most notably FSMs and HFSMs.
While we cannot provide screenshots of these commercial
products, the interfaces are similar to, or more complex than,
the RobotFlow interface in Figure 2.

Agent Wizard is a specialized interface for building soft-
ware agents (Tuchinda and Knoblock 2004). It uses a
question-based system which queries the user to specify var-
ious facets of the desired agent. This approach is accessi-
ble, but this tool is domain-specific for web software agents
rather than game agents.

Each of these builders uses an artificial agent architecture
to instantiate the created agents. Many possible architec-
tures exist, but in game AI, FSMs are very commonly used
to drive character AI. While they can be used to quickly
build AI, and the basic idea is intuitive, the number of transi-
tions between states can grow to an unmanageable level for
complex agents. This can be partially overcome through the

use of HFSMs or Behavior Trees, which are also commonly
used in games (Fu and Houlette 2004). The hierarchical ap-
proach can reduce the complexity of the top level FSM, but
are still time-consuming to build.

Cognitive architectures provide testbeds for theories from
cognitive psychology. It can be difficult to work with cog-
nitive architectures, because they attempt to be cognitively
plausible. Two examples of cognitive architectures are
ACT-R and Soar (Anderson 1996; Laird, Rosenbloom, and
Newell 1987). Typically cognitive architectures are not ap-
propriate for games (although Soar has been applied to game
AI, and ACT-R used to control mobile robots).

Another architecture which is not commonly used in
games, but, we argue, is appropriate, is the subsumption ar-
chitecture (Brooks 1986). Subsumption systems use mul-
tiple simple behavior layers which are triggered based on
sensor input. Layers do not interact with one another, but
the output of higher priority layers may override or subsume
that of lower level layers. Pure subsumption architecture
uses stateless layers and is most appropriate for low-level
reactive control, but has been extended as behavior-based
control (Matarić 1992). We have found subsumption using
behavior-based control to be a very intuitive approach for AI
novices.

Design
The DASSIEs (Dynamic Adaptable Super-Scalable Intel-
ligent Entities) Project addresses the problem of building
an intuitive user interface for interactive character design
(see Figure 3). DASSIEs is composed of three major
parts: CGUL (Common Games Understanding and Learn-
ing Toolkit), BEHAVE (Behavior Emulating Hierarchically-
based Agent Vending Engine), and BehaviorShop (Heckel,
Youngblood, and Hale 2009b). Our game environment
is FI3RST (FIrst and 3rd-person Realtime Simulation
Testbed).

CGUL provides information services to BehaviorShop
and BEHAVE, such as navigation services (world geom-
etry and planning) and information tagging through influ-
ence points (Heckel, Youngblood, and Hale 2009a). Game
events flow to CGUL, which updates its services, and passes
processed information on to BEHAVE and BehaviorShop.
BEHAVE uses CGUL during runtime, while BehaviorShop
polls CGUL during agent creation to provide accurate infor-
mation about the simulation environment to the user. Behav-
iorShop also queries BEHAVE for information about avail-
able pre-built character behaviors.

BehaviorShop and BEHAVE are based on the subsump-
tion architecture, as we have found that AI-naive users find
the layered architecture more intuitive than FSMs when cre-
ating agents.

BEHAVEngine
Our primary goals for BEHAVEngine are for it to be scal-
able, modular, and subsumption-based. It is also a plat-
form for research in discovering an ontology of behaviors—
BEHAVE is an important component for finding a minimal
set of low-level behaviors that can be used to build any com-
plex behavior that is needed. This requires that it provide a

47



Figure 3: The DASSIEs system: Information flow is labeled
with the large arrows showing a) the flow of the environment
information into CGUL for processing into knowledge, b)
the flow of processed information and created knowledge
for incorporation into the behavior construction task, c) the
flow of processed information and created knowledge to BE-
HAVEngine for use in reasoning and agent interaction, d)
the flow of agent action information to BehaviorShop for in-
corporation into the behavior construction task, e) the flow
of the behavioral model to BEHAVEngine for creation of
the simulation agent(s), and f) the control and perception in-
formation interchange between the BEHAVEngine and the
Simulation Environment.

hierarchical behavior-building system. Hierarchical behav-
iors reduce the total number of low level behaviors which
must be created, as many important behaviors can be com-
posed of multiple low-level behaviors. BEHAVE serves the
purpose of finding an ontology of behaviors by providing
a testbed to compare the performance of monolithic behav-
iors with compound behaviors composed of individual sim-
ple behaviors.

Scalability refers both to resource usage and the num-
ber of agents it is capable of running. BEHAVE must be
resource-aware so that it can run on sub-notebooks and hard-
ened laptops, yet scale up to multicore workstations. Mod-
ularity is an important requirement, as it should be easy to
experiment with different perceptual systems and add new
behaviors to the engine.

We use hierarchical subsumption, so each layer may con-
sist of a full subsumption instance itself. Subsumption po-
tentially suffers from unpredictability as the complexity of
the system increases, due to emergent behavior (Simmons
1994). So far this has not been a major issue (possibly due
to the simplicity of our scenarios, but we are creating use-
ful characters), but the incorporation of deliberative compo-
nents as well as parallel subsumptions will help to mitigate
this problem in the future. Deliberative components can be
used to modify the active subsumption, possibly replacing it

entirely in certain situations (such as when the agent is un-
der duress). This eliminates the need for a single model to
handle all situations the character may experience.

BehaviorShop
BehaviorShop is a subsumption-based interactive character
builder designed to be utilized by users with little to no AI
experience. It is capable of querying game services and the
underlying AI engine to receive information appropriate to
the given scenario. This helps the user ground the character
being created in the game environment for a given scenario.

Figure 4: The main subsumption view in BehaviorShop.

Figure 5: Details of main view: a) The character role se-
lector, b) Help activation button, c) Save buttons, d) Layer
creation controls.

When a user initially starts BehaviorShop, they are taken
to the screen shown in Figure 4 and detailed in Figure 5.
The left pane provides an area where the user can view the
currently open characters. The user first selects the role of
the agent to be created(5a). The roles provide predefined in-
formation for the agent, such as the model to be used, start-
ing location, and default parameter settings. The help button
(5b) provides a tooltip-like facility for obtaining information
about each area of the builder, and at the bottom of the pane

48



the first layer is available. When the user clicks on this layer,
he is taken to the behavior screen. The + and – buttons (5d)
allow the user to add or remove layers from the subsump-
tion. Finally, the user can save the current agent to a file,
or save it and view a preview of the agent’s behavior in the
game engine (5c).

Figure 6: The BehaviorShop specific behavior builder
screen. This screen allows the user to define a specific layer
in the subsumption agent. Note the map of the environment
which is received from CGUL, and the menus which are
propagated by querying BEHAVEngine.

The first layer of the behavior is preset to use an “Always”
trigger—this is the base layer behavior, and one must always
be present. Figure 6 shows the behavior screen for this layer,
and demonstrates the flow of information from the informa-
tion services into BehaviorShop. For the behavior “Go To
Point”, BehaviorShop provides a map of the game environ-
ment so that the user can select the target location in the
world.

Figure 7: behavior layers are specified as English language
sentences

Note that, as seen in Figure 7, behaviors are created as
simple sentences: if the [role] [triggering condition], then
the [role] will [behavior response]. We have found that pro-
viding this style of interface makes the interface far more
intuitive than simple lists of trigger and behavior names.

In addition to basic if/then sentences, trigger conditions
can be modified through negation as well as combined as
conjunctions or disjunctions. Figure 8 shows the trigger op-
tions as well as the list of behaviors. These behaviors are
obtained by querying the BEHAVEngine. This allows Be-
haviorShop to provide access only to the behaviors available

Figure 8: Triggers can be negated using the “not” dropdown
and combined with the “and” (conjunction/disjunction)
dropdown. Behaviors available to the user are displayed us-
ing a drop down list.

to the user in the particular scenario.

Figure 9: The BehaviorShop subsumption screen. This
shows the full layered behaviors for a guard character.

After creating several subsumption layers for a character,
such as that seen in Figure 9, the user can test the character
using the Save and Test button (which can be used at any
time during creation), or if satisfied, can save the complete
character with the Save button to finish the task.

The specified subsumption is translated to a simple behav-
ior description language which is understood by BEHAVE.
This language lists all of the behaviors for the character, cou-
pled with one or more triggers per behavior.

Evaluation
During the initial development of BehaviorShop, we cre-
ated several different versions to explore different types of
agent architectures. The initial interface was a FSM builder,
but most users had difficulty with this due to the complex-
ity of the transitions. A HFSM version also proved unin-
tuitive, and so FSM-based approaches were quickly aban-
doned. Surprisingly, the layered builder was immediately

49



found more intuitive, and most users were able to use it more
easily.

During a pilot study at a public library, an earlier sub-
sumption based version of BehaviorShop proved successful.
Fifteen subjects participated in this pilot. Each subject was
given the task of creating a game character for one of five
possible described roles, which involved some complex be-
haviors (e.g., security for a location, gathering information
from other characters, and other military-type scenarios). A
single subject quit in frustration, citing basic unfamiliarity
with computers. Eleven subjects created characters that be-
haved correctly and accomplished all key behaviors for the
assigned role (as compared with characters created by ex-
perts from our lab), and three others created partially correct
characters. The pool of subjects was 53% female and cov-
ered an age range from just over 18 to mid-50s.

Online Study
Before running full user studies with BehaviorShop, we first
created an online study. In the online study, subjects were
asked to write instructions for a person filling a specific role
in a scenario. One of thirteen possible roles in five differ-
ent scenarios was chosen, and a high-level description of the
role was given. The subject was then asked to write a more
precise description of the tasks for a person executing that
role. After completing this portion, the subject was shown a
video of actors demonstrating another scenario. Following
the video, the subject was asked to write a precise descrip-
tion of how one of the actors performed their role.

Descriptions from this study were analyzed for word fre-
quency to find the most common language used to describe
behaviors for each role. The results of frequency analysis
based on 147 people are being used to adjust the presenta-
tion of behaviors and triggers for the interface, but the cur-
rent results are preliminary. Once we have completed the
analysis, it will be used to develop a more complete vocab-
ulary of behaviors and language specific to user profiles for
use with BehaviorShop and BEHAVEngine.

User Study
Our first full user study with the complete system (Behav-
iorShop, BEHAVEngine, and FI3RST) included fourteen
subjects, but data from four subjects was unusable. Each
subject was asked to build a character filling a guard role.
Users were given the following description of the scenario
and guard role:

This is a normal day outside a secure office building. A
security guard (Role 1) armed with a gun and a commu-
nication radio to the main guard dispatch office stands
guard at the entrance to the facility. Authorized person-
nel must show their badges to the guard to gain entry.
An authorized person (Role 2) will enter the building
through the doors after showing their badge to the se-
curity guard. An unauthorized person (Role 3) is trying
to make several attempts to enter the building. They
try to run past the guard, trail an authorized person, and
other such activity. The unauthorized person does carry

a knife. The security guard is authorized to use deadly
force if threatened with any type of lethal force.

After being given the description and a 1-minute tool and
subsumption technique tutorial, the user was asked to create
the guard agent in BehaviorShop.

Before the study, subjects were given a demographic sur-
vey. The majority of subjects had substantial experience
playing video games, and 7 were male. All of the subjects
were in the 18-24 age range. Of the subjects, 6 had no AI ex-
perience, while 3 more described themselves as having had
a low level of experience; 6 of 10 subjects had either a bach-
elor’s degree or were currently in a bachelor’s program, 3
had advanced degrees, and 1 high school education.

Results Of the 10 users with valid data, 8 successfully cre-
ated agents that filled the guard role. To determine success,
the characters generated by the users were compared with a
set of reference agents created by members of the research
team. 3 users created agents which exactly matched one
of the reference agents, while 5 more created agents which
were acceptable—they did not match exactly, but used all of
the critical behaviors as defined by the AI experts. These
measures were also verified by calculating a graph edit dis-
tance between the reference agents and created agents. Sub-
sumptions were transformed into a graph where each layer
of the subsumption (both trigger and behavior together) was
treated as a vertex in the graph, and an edge was created be-
tween adjacent layers (ie, the third layer had edges to the
second and fourth layers). If the behavior and trigger of a
layer matched the reference character, no change was made
(distance of zero). If only one of the behavior or trigger was
correct, it was considered a distance of 1. If the entire vertex
had to be removed and replaced, that counted as a distance
of 2. The average graph edit distance for successful agents
was 1.25, while the average distance for unsuccessful agents
was 7.25. The difference between the two groups was found
to be statistically significant at p < .05.

We learned several important lessons from this user study.
First, contrary to our expectations, the most confusing aspect
of the user interface was the negation modifier for the trig-
ger conditions, rather than the conjunction/disjunction fea-
ture. No users used the help button, suggesting that a new
paradigm for providing support information is needed; this
is especially important given that users were sometimes con-
fused by what different triggers and behaviors actually do.
Four users attempted to click and drag layers of the sub-
sumption around to rearrange their priorities. Two users ac-
tually requested the ability to make more complex behav-
iors, by linking multiple behaviors to a single trigger, either
in series or parallel.

One of the most important discoveries based on user feed-
back was that no users had difficulty with the basic subsump-
tion concept of triggers and actions. Only brief instruction
was given about the subsumption architecture itself, yet it
was still a very intuitive paradigm. The Save and Test but-
ton was extremely important, as users would frequently test
out behaviors to see what they would do. This reinforces the
notion that some mechanism for providing immediate feed-
back is needed.

50



Certain triggers and behaviors were confusing to users.
BEHAVE includes a simple mental state model for charac-
ters, allowing them to be scared, alert, or nervous. These
were chosen for specific scenarios, but, unsurprisingly, they
caused confusion, as it is difficult to precisely define what
these moods mean. Users had different expectations than
the developers about what events would trigger a change in
these states. For our guard scenario, initially the charac-
ter authorization required two steps: request authorization
and confirm authorization. Consolidating these two behav-
iors into a single more complex behavior greatly reduced the
problem.

In the post-survey, subjects were also asked to rate two
statements on a 5 point Likert scale: “Creating simulation
characters is easy with the DASSIEs Creation Tool” and
“Making simulation characters is fun”. The average for ease
of use was 3.38, with a standard deviation of 0.916, while
fun was rated higher—average of 4.5, with a standard devi-
ation of 0.756. While users found creating the characters
moderately difficult, no user rated fun lower than a neu-
tral “neither” value, with most users rating fun as “agree”
or “strongly agree”.

Conclusions
The user study with BehaviorShop shows that our approach
is feasible, and that with very little training, individuals with
little to no AI experience can build interactive characters if
provided the right interface. Most of our subjects for this
first study were college students with some computer sci-
ence experience, but we believe that these results will hold
for the general population. We are currently planning to run
full scale user studies with 5 different scenarios and 13 dif-
ferent character roles to test this in a diverse population of
subjects.

We have learned several useful lessons from this initial
work which are informing the further refinement of our in-
terface and AI engine. Important factors to take into account
when designing a character designer include the method for
displaying information about behaviors, dealing with nega-
tion of trigger conditions, methods for providing immediate
feedback, and simplifying lists of behaviors to reduce per-
ceived complexity.

Acknowledgments
Special thanks to George Alexander, Nick Crook, Keith
Dublin, and Shawn Kirsch for their assistance with the
FI3RST simulation environment and data analysis.

This material is based on research sponsored by the US
Defense Advanced Research Projects Agency (DARPA).
The US Government is authorized to reproduce and dis-
tribute reprints for Governmental purposes notwithstanding
any copyright notation thereon. The views and conclusions
contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of DARPA or
the US Government.

References
Anderson, J. R. 1996. Act: A simple theory of complex
cognition. American Psychologist 51:355–365.
Artificial Technology. 2009. Eki One. http://www.eikone.
com.
Brooks, R. 1986. A robust layered control system for a
mobile robot. Robotics and Automation, IEEE Journal of
2(1):14–23.
Cote, C.; Letourneau, D.; Michaud, F.; Valin, J.-M.;
Brosseau, Y.; Raievsky, C.; Lemay, M.; and Tran, V. 2004.
Code reusability tools for programming mobile robots. In-
telligent Robots and Systems, 2004. (IROS 2004). Proceed-
ings. 2004 IEEE/RSJ International Conference on 2:1820–
1825 vol.2.
Fu, D., and Houlette, R. 2002. Putting AI in Entertainment:
An AI Authoring Tool for Simulation and Games. IEEE
Intelligent Systems 81–84.
Fu, D., and Houlette, R. 2004. AI Game Programming
Wisdom 2. Charles River Media. chapter 5.1: The Ultimate
Guid to FSMs in Games, 283–302.
Heckel, F. W. P.; Youngblood, G. M.; and Hale, D. H.
2009a. Influence Points for Tactical Information in Nav-
igation Meshes. In Proceedings, International Conference
on Foundations of Digital Games.
Heckel, F. W. P.; Youngblood, G. M.; and Hale, D. H.
2009b. Making Interactive Characters BEHAVE. In Pro-
ceedings, Florida Artificial Intelligence Research Sympo-
sium.
Laird, J.; Rosenbloom, P.; and Newell, A. 1987. Soar: An
architecture for general intelligence. Artificial Intelligence
33:1–64.
Matarić, M. J. 1992. Behavior-based control: Main proper-
ties and implications. In Proceedings, IEEE International
Conference on Robotics and Automation, Workshop on Ar-
chitectures for Intelligent Control Systems, 46–54.
Nareyek, A. 2004. AI in Computer Games. ACM Queue
59–65.
Presagis. 2001. Ai.implant. http://www.presagis.
com/products/simulation/details/aiimplant/. November 23,
2008.
Schwab, B. 2008. Implementation Walkthrough of a
Homegrown “Abtract State Machine” Style System in a
Commercial Sports Game. In Proceedings of the Fourth
Artificial Intelligence and Interactive Digital Entertain-
ment Conference, 145–148.
Simmons, R. 1994. Structured control for autonomous
robots. Robotics and Automation, IEEE Transactions on
10(1):34–43.
Tuchinda, R., and Knoblock, C. A. 2004. Agent wizard:
building information agents by answering questions. In IUI
’04: Proceedings of the 9th international conference on
Intelligent user interfaces, 340–342. New York, NY, USA:
ACM.
Xaitment. 2009. xaitMove and xaitKnow. http://www.
xaitment.com.

51


	AIIDE09
	Contents
	Index
	AAAI Website




