
A Real-Time PDDL-Based Planning Component for Video Games

Olivier Bartheye and Éric Jacopin
MACCLIA

CREC Saint-Cyr

Écoles de Coëtquidan
F-56381 GUER Cedex

{olivier.bartheye,eric.jacopin}@st-cyr.terre-net.defense.gouv.fr

Abstract

In this paper, we argue that PDDL-based real-time planning
can be achieved for today’s video-games. PDDL is an ex-
pressive language which offers to represent many planning
knowledge while freeing from the plan search algorithms.
We present two case studies where we connected a PDDL-
based AI Planner to a video-game. In each case, we report
on the engineering decisions which turned out to be crucial to
achieve real-time playability.

Introduction

Bugs are a crucial side effect of computer science: when we
cannot immediately correct them, we are left with finding
news ways to achieve our goals. And often, there are many
ways to achieve what we want to do. In a way, bugs force
us to be creative: as we do not expect them to arise, we
eventually improvise to achieve our intended results.

The purpose of planning is precisely to search for ways,
called plans, to achieve goals. Plans are combinations of
actions which will hopefully solve our problem. The various
combinations of actions to achieve goals entail that goals are
not once for all paired with a unique sequence of actions.

Once we are given a plan, we are left with its execution.
Unfortunately, a plan is not a cure for bugs which can arise
again, in particular during the execution of (what we thought
was) a good plan. Monitoring the execution of a plan is not
an easy task: should we try to adapt our current plan so as
to turn around the new bug or should we call for a complete
new plan? When it is possible to do both in real-time, this
situation becomes a matter of when to plan.

Unexpected situations or events arise during the game
experience making game/level objectives harder to achieve
in a way similar to bugs for everyday software: quickness
and sometime random enemy moves in yesterday’s 2D ar-
cade games produced numerous unexpected situations and
today’s best 3D video games possess a carefully designed
scenario with many surprises and unexpected events. Ev-
ery video game player has faced this situation where things
don’t go as initially planned.

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Planning needs in video-games follows the previous in-
formal discussion. For instance, the Goal Oriented Action
Planning architecture (GOAP) (Orkin 2003) successfully in-
troduced the decoupling of goals and actions (Orkin 2006):
instead of pairing a sequence of actions with a set of goals,
planning proposes a sequence of actions which can vary ac-
cording to the game situation assessment. Plans are indeed
built during an initial phase prior to their execution but the
dynamic environments of video-games can require the ex-
ecution phase to adapt the plan with respect to the current
game situation assessment: one can expect real-time plan
construction for video-games to be a two phases process.

The Planning Data Description Language (PDDL) is
the mandatory language for planners competing at the In-
ternational Planning Competition (IPC) (International Plan-
ning Competition 1998 2009). Consequently, many Artifi-
cial Intelligence (AI) planners with various functionalities
are now freely available. A planning problem is made of an
initial state, a final state and a set of operators; a state is a set
of predicates and operators can be seen as a couple of states:
preconditions which must be true to allow execution and ef-
fects which are true after execution. The next two sections
give illustrations in the context of an arcade game and of a
first person shooter (FPS). Planning is expected to build a
sequence of operators which shall transform the initial state
into the final state. Beyond its wide acceptance within the
AI Planning community, PDDL is an expressive language
which allows representations of resources, preferences, con-
straints, etc. It must be clear, however, that the computa-
tional complexity of AI Planning is high, even for simple
forms of PDDL-based planning problems (Erol, Nau, and
Subrahmanian 1995) and this is why, for instance, (Orkin
2006) reduces the expressiveness of the effects of operators
and moreover allows procedural information to be included.
However, we show in this paper that real-time video game
PDDL-based planning can be achieved.

The rest of this paper is organized as follows. The
next section describes how we achieved real-time PDDL-
based planning for the Iceblox arcade game (Hornell 1996).
The third section reports the same for the serious game
VBS2 (Bohemia-Interactive-Australia 2006 2009). The
fourth section presents a reverse (game) engineering ap-
proach to the design of a real-time PDDL-based planning

Proceedings of the Fifth Artificial Intelligence for Interactive Digital Entertainment Conference

130

component. Finally, we conclude with a brief discussion
and perspectives.

Iceblox

We first describe Iceblox and then present the engineering
decisions we made to achieve real-time. We then detail
two planning operators in order to illustrate the planning
predicates we designed and eventually discuss plan length.
Many planning operators can be designed for a given set
of planning predicates; design decisions mainly concern the
amount of information pushed to the plan execution module
to avoid computations during execution.

Description In the Iceblox video game (Hornell 1996), the
player presses the arrow keys to move a penguin horizontally
and vertically in rectangular mazes made of ice blocks and
rocks, in order to collect coins. But flames randomly patrol
the maze at the speed of the penguin which can be killed in
a collision; moreover, each coin is iced inside an ice block
which must be cracked before the coin is ready for collec-
tion. The player can push (space bar) an ice block which
will slide until it collides with another ice block, a rock or
any four side of the game and kills a flame when passing
over it. If the player pushes an ice block which is next to an-
other ice block, a rock or a side of the game, it cannot slide
freely and shall begin to crack. Once cracked, an ice block
cannot move any more and thus pushing a cracked ice block
eventually results, after seven pushes, in its destruction. An
ice block which contains a coin slides and cracks as does
an ordinary ice block. However, a coin cannot slide; it can
only be collected once revealed after the seventh push. The
player reaches the next, randomly generated, level when all
coins have been collected. The number of flames and rocks
increases during several levels and then cycle back to their
initial value. Finally, the player gets 200 points for each col-
lected coin, 50 points for each killed flames and begins the
game with three spare lives.

Although Karl Hornell’s Iceblox java code is open and
has been widely available for some time now (e.g. (Bartlett,
Simkin, and Stranc 1996)), we wrote a C++ version with Mi-
crosoft’s DirectX (Microsoft 2007) to ease the integration of
the C/C++ AI Planners such as FF (Hoffmann 2001) which
are available through the IPC.

Iceblox Real-time planning does not mean an instanta-
neous plan construction or monitoring. It means determin-
ing the time limit beyond which the current Iceblox situation
is so dangerous that an action has to be taken right away, thus
changing the initial state of the planning problem and con-
sequently asking for re-planning and therefore making the
current planning activity useless. Iceblox has a good playa-
bility when the frame rate is about 30 frames per second,
that is, when the flames coordinates (in pixel) are updated
about 30 times per second. Luckily, the sprites are 30 by 30
pixels; it then takes about 1 second for a flame to move from
one crossroad to another. According to the Iceblox code, a
flame gets a random new direction between 1 and 4 cross-
roads, while keeping in mind that the new direction at the

fourth crossroad might just be the same as the previous one.
We can then consider that the limit is when the penguin is
4 crossroads away from a flame, which gives a plan search
runtime of at most 4 seconds. When a plan has been found
then it is to be executed, which undoubtedly takes time to
trigger. Consequently, the flame should not reach the fourth
crossroad and since movement between two crossroads is
not interruptible, the flame should not reach the third cross-
road before the plan search ends, which gives us a time limit
of 3 seconds.

We did not investigate to allow more time to planning by
having the penguin taking cover during planning to escape
danger.

Achieving real-time planning for Iceblox The player in-
tentionally starts the planning activity by pressing a desig-
nated key (e.g. the “p” key). Of course, planning does not
stop the Iceblox game: flames shall patrol the maze and slid-
ing ice blocks shall continue to slide while the plan forma-
tion activity is running. The player is warned when the ac-
tivity ends, either with success or else failure (e.g. a dif-
ferent sound for each case). At any time before the end of
the planning activity, the pressing of an arrow key or else
the space bar terminates the activity. Instead of having sev-
eral basic move actions in a plan, we collapsed them into
a unique Move operator recording only the coordinates of
the departure and of the destination: this drastically reduces
the plan length and consequently the plan search runtime.
AI Planning has been using such an abstract Move opera-
tor since the inception of Strips operators with the GoThru
operator (Fikes, Hart, and Nilsson 1972, page 256) and still
does, e.g. the Move operator of the storage domain (Inter-
national Planning Competition 1998 2009). Of course, this
delegates the details of the moves in Iceblox to the plan ex-
ecution module.

If the details of path planning are left to the plan execu-
tion module then actions like avoiding or fleeing can be del-
egated as well. Fighting flames requires both basic moves
and pushing ice blocks, so it is already handled. Finally,
following the design of the abstract Move operator, we col-
lapsed the 7 basic push actions in an abstract coin Extraction
operator.

The plan execution module receives a plan from the AI
Planner and perform corresponding actions in the Iceblox
game. Execution of a plan means executing the players ac-
tions corresponding to the operators of the plan, in an order
compliant with their order of appearance in the plan. As
discussed above, the plan execution module decides of sev-
eral basic moves (including the pushing of ice blocks) to
perform a Move operator in the plan. The plan execution
module also decides to take advantage of the current Ice-
blox situation to avoid pushing an ice block when a flame
is no longer aligned with it, to choose a new weapon or to
avoid unexpected flames. These decisions result from a lo-
cal analysis and no global situation assessment is realized to
take such advantages; that is, these decisions do not result
from planning. The plan execution module eventually warn
the user when it terminates (whatever the outcome, success

131

or failure), thus giving the game control back to the player.
However, the player can terminate the plan execution at any
time by pressing any arrow key or else the space bar.

Planning problems predicates used to describe Iceblox
PDDL planning problems are the following (crossroadi,j de-
notes the location at the intersection of line i and column j):

• (at i j): a sprite (penguin, ice block, iced coined, weapon)
is at the crossroadi,j.

• (extracted i j): the coin at the crossroadi,j has been col-
lected by the player.

• (guard i1 j1 i2 j2): the flame at the crossroadi1,j1 guards
the coin at the crossroadi2,j2 . The idea of guarding a coin
is linked to the 3 seconds time constraint (see the planners
requirements): a flame makes dangerous the collection of
a coin when it is within a range of 3 crossroads.

• (iced-coin i j): there is an ice block at the crossroadi,j

which contains a coin.

• (protected-cell i j): there exists a path towards the
crossroadi,j. This path is safe: no flame makes this path
dangerous

• (reachable-cell i j): there exists a path towards the
crossroadi,j; there exists at least one flame putting this
path in danger.

• (weapon i1 j1 i2 j2 i3 j3): there exists a weapon at
the crossroadi2,j2 ; the penguin should push this weapon
from the crossroadi1,j1 . The weapon shall stop sliding at
the crossroadi3,j3 ; this is useful information when an ice
block needs more than one push before the final kick.

Operators use two more predicates. A path towards a
crossroad always exists in a maze of crushable ice blocks
and the only real matter is whether it is dangerous; bus as
crushing an ice block takes time and as an ice block can be
used as a weapon, it is worth noting such facts:

• (blocked-path i j): there is an ice block on the path to
crossroadi,j.

• (blocked-by-weapon i1 j1 i2 j2): the weapon at
crossroadi2,j2 is on the path to crossroadi1,j1 .

Over all the operators we designed, 4 proved to be criti-
cal for Iceblox game playing: move-to-crossroad, destroy-
weapon, kick-to-kill-guard and extract. We hope their
names are self explanatory. Basic Iceblox playing is impos-
sible if your design does not capture the meaning of those
4 operators: moving to iced coins, extracting coins from ice
blocks and fighting flames from time to time is the essence
of the Iceblox gameplay. Due to space limitations, we only
give the PDDL code of the last two:

(:action extract

:parameters (?coinx - coord-i ?coiny - coord-j)

:precondition (and (protected-cell ?coinx ?coiny)

(iced-coin ?coinx ?coiny)

(at ?coinx ?coiny)

(reachable-cell ?coinx ?coiny))

:effect (and (extracted ?coinx ?coiny)

(not (iced-coin ?coinx ?coiny))

(not (protected-cell ?coinx ?coiny))

(not (reachable-cell ?coinx ?coiny)))))

(:action kick-to-kill-guard

:parameters (?reachablewx - coord-i ?reachablewy - coord-j

?weaponx - coord-i ?weapony - coord-j

?newweaponx - coord-i ?newweapony - coord-j

?guardx - coord-i ?guardy - coord-j

?coinx - coord-i ?coiny - coord-j

?blockedx - coord-i ?blockedy - coord-j)

:precondition (and (iced-coin ?coinx ?coiny)

(at ?reachablewx ?reachablewy)

(guard ?guardx ?guardy ?coinx ?coiny)

(weapon ?reachablewx ?reachablewy ?weaponx ?weapony

?newweaponx ?newweapony)

(reachable-cell ?weaponx ?weapony)

(protected-cell ?weaponx ?weapony))

:effect (and (at ?weaponx ?weapony)

(protected-cell ?coinx ?coiny)

(blocked-by-weapon ?blockedx ?blockedy

?newweaponx ?newweapony)

(reachable-cell ?newweaponx ?newweapony)

(protected-cell ?newweaponx ?newweapony)

(not (reachable-cell ?weaponx ?weapony))

(not (protected-cell ?weaponx ?weapony))

(not (reachable-cell ?blockedx ?blockedy))

(not (guard ?guardx ?guardy ?coinx ?coiny))

(not (weapon ?reachablewx ?reachablewy ?weaponx ?weapony

?newweaponx ?newweapony))))

These operators can be much simpler and we indeed de-
signed and used several versions of various complexity.

We eventually plugged the following PDDL-based plan-
ners in Iceblox: FF (Hoffmann 2001) and Qweak (Bartheye
and Jacopin 2005). FF achieves our real-time objective in
most of the Iceblox game situations; it is written in C and
its code is simple to understand. Qweak is a real-time plan-
ner for Iceblox, but it is written in Prolog and its code is
not simple. FF heuristically applies operators from the ini-
tial state, hoping to reach the final state at some point of its
search. Qweak associates time intervals to both states and
operators predicates and uses operators to generate arith-
metic constraints over the time intervals; a plan is found
when the lower and upper bounds of the time intervals sat-
isfy the arithmetic constraints. The reader is referred to the
references for further details. Other planners available from
the IPC web site either failed to understand our PDDL prob-
lems or else failed to satisfy our need for real-time better
than FF and Qweak (Bartheye and Jacopin 2008).

A plan is generated for one coin at a time. Basic Iceblox
playing means that 2 actions are needed to kill a flame (move
to a weapon and push it) and 2 actions are needed to collect
a coin (move to an iced coin and extract it). Consequently,
the length of the generated plans is at least 2 plus 2 times the
number of dangerous flames; note that on average, the gen-
eration of random levels produces 1 or 2 dangerous flames
per coin. There are less basic situations when a primary push
is needed to align a weapon with a dangerous flame; and of
course, ice blocks preventing from reaching a coin must be
destroyed, thus linearly (one action for each destruction plus
one move to the next ice block) increasing the plan length.

132

Planning for VBS2

Let’s face it, our success with Iceblox does not entail an im-
mediate reuse of our work with other games. But which
other games should we try? The addition of planning func-
tionalities to a game is subject to accessing the game loop,
which is generally impossible in commercial games. For-
tunately, commercial serious games do provide such hooks.
We consequently chose Virtual Battle Space 2 (Bohemia-
Interactive-Australia 2006 2009) as our next test-bed for AI
Planning: it is vastly different from Iceblox, allows external
calls and is a popular commercial serious game.

This section is similar to the previous section on Iceblox.
We start with a brief description of VBS2, explain what we
mean by real-time planning for VBS2 and report on the deci-
sions we took. We end with a tactical planning example: we
give the generated PDDL problem, a PDDL operator crucial
to solve the problem and VBS2 scripts generated on the fly
for this problem.

Description VBS2 is a serious game aiming at training
and after action review in a military setting; a toolkit allows
professional users to edit terrains, characters, weapons, ve-
hicles, buildings,. . . , and a scarcely documented scripting
language provides commands for scenario editing. Many
real world military assets are available and concrete cases
can be implemented to train troops in realistic scenarios. As
a game, VBS2 looks like a first person shooter: you control
a character in a subjective or a third person view and assign
orders to other characters of your troop; then, shooting and
destroying can be part of your mission objectives.

A VBS2 session begins with the selection of a map and
continues by loading a mission. A scenario is then activated
by the preview command.

VBS2 Real-Time Planning is less constrained than in the
case of Iceblox. This because taking cover has the military
use, among others, of being safe while waiting to synchro-
nize your soldiers before the execution of a tactical opera-
tion. And there is, as in real world combat, a huge need for
taking cover: VBS2 enemies shall otherwise efficiently open
fire at you with no other objective than killing you. Conse-
quently, we decided to allow planning only when troops are
safe. Of course, being safe does not mean that you can spend
all day planning the next tactical actions of your troops: fol-
lowing our work on Iceblox, we allowed at most 4 seconds
to plan search.

Achieving real-time planning for VBS2 The player in-
tentionally starts the planning activity by pressing a desig-
nated key (e.g. the “p” key). Obviously, planning does not
stop the VBS2 game. The player is warned when the ac-
tivity ends, either with success or else failure (e.g. a differ-
ent hint on screen for each case). The player can stop the
activity at any time planning by pressing a designated key.
Goals are generated according to the current game situation
assessment: enemies neutralized, building entered, civilian
and military units rescued, etc. The example below illus-
trates the rescue of a hostage while neutralizing a guard.

We studied two means to activate planning within a sce-
nario. At each frame produced by the graphic engine,
VBS2 calls the function OnSimulationStep which can
then call your own code. VBS2 also provides the function
PluginFunction which can be called within a script.

We used OnSimulationStep for three reasons: (i) the
hook in Iceblox was provided at each graphic frame so this is
similar to our work on Iceblox, (ii) OnSimulationStep
does not suffer from the overhead of launching a script and,
moreover, (iii) PluginFunction seems to only accept
strings for both parameters and returned data, which adds
overhead to the generation of a PDDL planning problem.

We packed our planners in a Dynamically Loadable
Library (DLL). DLLs must be dropped in the “plugins”
folder of the VBS2 folder and are loaded when VBS2 is
launched thus entailing no activation overhead in the play-
ing of the scenario. Then, everything works as in Iceblox:
OnSimulationStep checks for the keystroke “p”, which
first generates a PDDL planning problem, then calls for
planning and eventually activates plan execution.

We discovered that VBS2 provides high level scriptable
actions such as move-unit, escort-unit (unit is the
VBS2 term for every VBS2 human agent) and many others:
this is a backward validation of our decision to plan for ab-
stract actions in Iceblox. Therefore, we mapped VBS2 high
level actions to PDDL operators. We accordingly decided to
let the VBS2 game engine manage path planning and only
used waypoints as game parameters for our PDDL opera-
tors: paths always existed in the scenarios we tested.

An example of elementary tactical planning We take as
an elementary example the case of rescuing a hostage in a
fictive landscape. Two blue force soldiers, a machine gun-
ner called the hero (which is, at start up, the player and con-
sequently cannot be directed by AI script statements) and a
grenadier called the companion, must escort a hostage to a
vehicle, a desert car. An enemy/ is located not too far from
the hostage and therefore needs to be neutralized.

The PDDL planning problem generated for this exam-
ple is the following (most of the predicates should be self-
explanatory):

(define

(problem plan-auto)

(:domain vbs2-strips)

(:objects companion - unit hero - unit hostage - unit enemy - unit

desert-car - vehicle)

(:init

(near-object hero hero)

(soldier-unit hero)

(soldier-unit companion)

(hostage-unit hostage)

(enemy-unit enemy)

(has-grenade companion)

(guard-unit enemy hostage)

(unsafe-unit hostage)

(reachable-unit hostage)

(reachable-unit hero)

(safe-unit hostage))

133

(:goal (and (liberated-unit hostage)

(near-object hostage desert-car)))

The tactical goal is to rescue the hostage; the planning
:goal is to establish the predicates (liberated-unit hostage)
and (near-object hostage desert-car). The unit named hero
represents the player; the predicate (player-near-unit hero)
means that the player starts at the hero’s location.

Operators are designed from the high level scriptable ac-
tions of VBS2 and then extended to deal with the tactical
goals of a particular mission: we designed extra predicates,
such as the previous unary liberated-unit, which we included
in our PDDL operators so as to achieve a mission:

(:action escort-unit

:parameters (?soldier - unit ?hostage - unit ?vehicle - vehicle)

:precondition (and (near-object ?soldier ?hostage)

(soldier-unit ?soldier)

(hostage-unit ?hostage)

(safe-unit ?hostage)

(reachable-unit ?hostage))

:effect (and (liberated-unit ?hostage)

(near-object ?hostage ?vehicle)

(not (near-object ?soldier ?hostage))

(not (hostage-unit ?hostage))

(not (safe-unit ?hostage))

(not (reachable-unit ?hostage))))

Once a plan is found, we are left with its execution. A
script is automatically generated to let VBS2 monitor (role
assignment to currently available units, game trigger condi-
tions for the execution of actions) the execution:

[companion, enemy] execVM ”kill unit.sqf”

selectPlayer companion

[hero, position hostage, str hostage] execVM ”move.sqf”

trg=createTrigger[”EmptyDetector”, position hostage];

trg setTriggerArea[3,3,0,false];

trg setTriggerActivation[”WEST”,”PRESENT”,true];

statement=’[hero, hostage, desert car] execVM ”escort unit.sqf”’

trg setTriggerStatements[”this”, statement, ””];

We also automatically generate as many files as opera-
tors in the plan, in order to read actual values of the pa-
rameters from the game, activate necessary animations and
perform necessary computations such as where to throw a
grenade. Here is a part of the ”kill unit.sqf” generated script
file which makes the grenadier throw a grenade to neutralize
the enemy:

Soldier = this select 0;

Enemy = this select 1;

// On screen printing

hint ”kill-guard companion enemy” ;

// Performs a ”throw” animation

Soldier switchmove ”AwopPercMstpSgthWnonDnon end”;

// Grenade data

array=[getPos Enemy, ”VBS2 ammo G 40x46mm HE”,15,4,3,1,0.75,1,5];

height = array select 2 ; coords = array select 0 ;

// Maximum Distance for shots off the Aimed Point

radius = array select 8 ;

tmp setpos [(coords select 0) + (random radius) - (radius / 2),

(coords select 1) + (random radius) - (radius / 2), height];

We did not investigate the handling of emergency situ-
ations as we did for Iceblox where we were able to avoid
unexpected flames and find new weapons for them. Also,
as we did not access VBS2 low level instructions (e.g. path
planning), squad tactics that would, for instance, place sol-
diers in front of a building according to the current military
doctrine, are not achievable. We hope to tackle these in the
future.

Reverse Engineering

The previous two case studies illustrate how real-time
PDDL-based planning can be achieved without affecting
game playability. This section presents a brief reverse engi-
neering of the planning developments made during these two
case studies; two UML activity diagrams (Douglass 2000)
document this step.

Figure 1 presents a UML activity diagram of the plan-
ning component as reverse engineered from the previous
two case studies. Round corners rectangles represent proce-
dures which we implemented as threads. This is a classical
pipeline architecture where each thread waits for the previ-
ous thread for its input parameters. The pipeline is enabled
when goals are received. Goal selection is then activated so
as to simplify plan search. For instance, coins in Iceblox
are processed one at a time, according to distance from the
penguin and the number of flames less than four crossroads
away. Distance and danger criteria are also relevant in the
setting of VBS2. It is possible to enhance this diagram with
a Take Cover procedure whose objective would be to protect
the characters involved in the plan during plan search so that
these characters stay alive to carry out the plan. As we men-
tioned earlier, we avoided such a protection step in our two
case studies.

Figure 2 presents a UML subsidiary activity diagram of
the plan execution thread which appears in Figure 1. The
rectangle on the top side is the input parameter and the two
rectangles on the right side are two values of the output pa-
rameter: as outlined in Figure 1, the plan execution receives
a plan to execute and returns whether this execution is a suc-
cess. As in Figure 1, round corners rectangles represent sub-
sidiary activities which we implemented as threads. Each
high level action is compiled into game instructions; for in-
stance path planning data must be generated in Iceblox while
appropriate animations and waypoints must be generated in
VBS2. High level action compiling must be done on the fly,
one high level action at a time: further game instructions be-
come useless when an emergency game situation arises. The
compilation time thus saved improves playability and allows
to test for emergency game situations.

Conclusion

We reported two cases studies where we were able to achieve
PDDL-based real-time planning; the first case study is an
arcade game and the second is a commercial serious game.
PDDL is an expressive language which easily maps to high
level video-game actions. Among many engineering deci-
sions, multi-threading, goal selection and on the fly com-
pilation of high level actions proved to be necessary steps

134

Plan Execution

PDDL GenerationGoal Selection

Planning

[Plan] [No plan found]

[Else]

[Empty Goal set]

Goals
Confirmed

Figure 1: UML activity diagram of a PDDL-based Planning
Component. Round rectangles represent subsidiary activ-
ities. The component begins with accepting the signal of
goals confirmation and ends when this goal set is empty or
else when no plan has been found. When the execution of a
plan is a success, its goal are removed from the goal set by
the subsidiary activity Plan Execution (see Figure 2).

Compile first
Operator into
Game Instructions

Remove first
Operator

Compile new
Game Instructions

[Plan is empty]

[Else]

[No Game
 Instruction
 to execute]

[Else]

[Safe Game Situation]

[Emergency Game Situation]

[Emergency cannot be handled][Emergency can be handled]

Selected Goals
Achieved

Selected Goals
Unachieved

Plan

Execute next
Game Instruction

Plan Execution

Figure 2: UML subsidiary activity diagram of the Plan Exe-

cution from Figure 1; it receives a plan as an input parame-
ter and returns whether the plan’s goals have been achieved.
Operators from the plan are compiled, one at a time, into
low-level game instructions such as path planning. These
instructions are in turn executed one at a time, thus provid-
ing an opportunity to test for emergency game situations.

to cope with the untractability of PDDL-based plan search.
We eventually gather those lessons in UML diagrams which
must be understood as design documents for a real-time
PDDL-based planning component.

Are two cases studies enough? A 2D arcade game is re-
ally different from a 3D commercial serious game but as
incredible as this may sound, everything from Iceblox was
reused or adapted for VBS2. In fact, these two games are
close in terms of gaming experience and the previous ques-
tion should be instead: what kind of game genre next? Good
question, isn’t it?

Acknowledgements

This work is part of a 3 year project founded by the Saint-
Cyr Foundation. Thanks to Rick Alterman, Jon Gratch,
David Kirsh, Carlos Linarès, Jeff Orkin and Adrian Smith
for helpful discussions; and to two anonymous reviewers for
their constructive reviews.

References

Bartheye, O., and Jacopin, É. 2005. New results for arith-
metic constraints partial order planning. 24

th Workshop of
the UK Planning and Scheduling Special Interest Group,
London, UK, Dec. 15-16.

Bartheye, O., and Jacopin, É. 2008. Connecting pddl-based
off the shelf planners to an arcade game. ECAI Workshop
on AI in Games, Patras, GR, Jul. 21.

Bartlett, N.; Simkin, S.; and Stranc, C. 1996. Java Game
Programming. Coriolis Group Books.

Bohemia-Interactive-Australia. 2006–2009. Virtual battle
space 2. http://www.vbs2.com/.

Douglass, B. 2000. Real-Time UML (2nd Edition).
Addison-Wesley.

Erol, K.; Nau, D.; and Subrahmanian, V. 1995. Com-
plexity, decidability and undecidability results for domain-
independent planning. Artificial Intelligence 76(1-2) 75–
88.

Fikes, R.; Hart, P.; and Nilsson, N. 1972. Learning and
executing generalized robot plans. Artificial Intelligence
3(4) 251–288.

Hoffmann, J. 2001. FF: The Fast-Forward planning sys-
tem. AI Magazine 22(3) 57–62.

Hornell, K. 1996. Iceblox. http://www.-

javaonthebrain.com/java/iceblox/.

International Planning Competition. 1998–2009.
http://ipc.icaps-conference.org/.

Microsoft. 2007. Directx 9. http://msdn.micro-

soft.com/en-us/directx.

Orkin, J. 2003. Applying goal-oriented action planning to
games. In Rabin, S., ed., AI Game Programming Wisdom
2. Charles River Media. chapter 3.4, 217–227.

Orkin, J. 2006. Three States and a Plan: The A.I. of
F.E.A.R. In Proceedings of the Game Developper Con-
ference, 17 pages.

135

	AIIDE09
	Contents
	Index
	AAAI Website

