
Adapting Game-Playing Agents to Game Requirements

Joshua Jones, Chris Parnin, Avik Sinharoy, Spencer Rugaber & Ashok K. Goel
Design & Intelligence Laboratory, College of Computing

Georgia Institute of Technology, Atlanta, USA 30332

Abstract

We examine the problem of self-adaptation in game-playing
agents as the game requirements evolve incrementally. The
goal of our current work is to develop an interactive envi-
ronment in which the game designer generates requirements
for a new version of a game, and the legacy software agents
from previous versions of the game adapt themselves to the
new game requirements. We are developing and testing our
metareasoning technique for adapting a game-playing agents
in Freeciv, a mature program in the domain of turn-based,
multi-player strategy games. In this paper, we first present an
analysis of adaptations to FreeCiv, next describe our general
approach, and then describe a specific adaptation scenario.

Introduction

Designs of long-living interactive games evolve through
many versions. Changes from one version of a game to
the next typically are incremental and often very small. A
game designer (or a team of game designers and software
engineers) formulates the requirements of the new version
of the game, adapts the software for playing the previous
versions to meet the new requirements, and implements and
evaluates the modified designs of the game and the software.
Typically the game designer uses high-level scripting lan-
guages to define the game environment (percepts, actions,
rules, constraints) as well as the behaviors of various virtual
agents in the game. We posit that an interesting research is-
sue in game playing is how might a virtual agent adapt its
design, and thus its behaviors, to very small changes in its
game environment. If the changes in the game environment
can be arbitrarily large and complex then this becomes an
”AI-complete problem.” However, even if the changes to the
game environment are incremental and very small, this is
a hard computational problem because changes to the envi-
ronment can be of many types, modifications to the agent
design can be of many types, there is no one-to-one map-
ping between changes to the environment and modifications
to the agent design, and any modification to the agent design
needs to be propagated down to the level of program code
so that the new software is directly executable in the game
environment.

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Genetic programming clearly is one computational tech-
nique for addressing this problem. However, for complex
game-playing agents, the space that must be searched by
genetic algorithms can be prohibitively large. In order to
manage this complexity, we have taken a knowledge-based,
deliberative approach to agent redesign. In previous work,
we have investigated the use of metareasoning for self-
adaptation in software agents, which may offer an effective
technique for adapting virtual agents in game playing. It is
useful to make a few distinctions here. Firstly, adaptations
to an agent can be retrospective (i.e., when the agent fails to
achieve a goal in its given environment; (Genesereth 1983)
(Birnbaum et al. 1990) (Stroulia and Goel 1995) (Leake
1996) (Murdock and Goel 2001), or proactive (i.e., when
the agent is asked to operate in a new task environment; e.g.,
(Murdock and Goel 2003) (Murdock and Goel 2008). Sec-
ondly, adaptations can be either to the deliberative element
in the agent architecture (Genesereth 1983) (Birnbaum et
al. 1990) (Stroulia and Goel 1995) (Leake 1996) (Murdock
and Goel 2008), or the reactive element (Stroulia and Goel
1999), or both. Thirdly, adaptations to the deliberative ele-
ment may be modifications to its reasoning process (i.e., to
its task structure, selection of methods, or control of reason-
ing; e.g., (Birnbaum et al. 1990) (Stroulia and Goel 1995)
(Leake 1996) (Murdock and Goel 2008)), or to its domain
knowledge (i.e., the content, representation and organization
of its knowledge; e.g., (Jones and Goel 2009)), or both.

In this paper, we examine the use of teleological metar-
easoning for proactive adaptation of an agent’s deliberative
processing, specifically in the context of game-playing soft-
ware agents. Our work in this area investigates the hypoth-
esis that a declarative self-model that captures the teleol-
ogy of the agent’s design may enable localization, if not
also identification of the elements in the reasoning pro-
cess responsible for a given behavior. The basic theme of
our work on metareasoning for self-adaptation in intelligent
agents has been that teleology is a central organizing princi-
ple of knowledge representations that enable self-adaptation
of reasoning processes. This work uses teleological self-
models to allow the metareasoning process to perform self-
diagnosis. Having done this, the metareasoning process
can then perform self-adaptation at the identified location(s).
The goal of the work described here is to develop an interac-
tive environment called GAIA (for Game Agent Interactive

148

Proceedings of the Fifth Artificial Intelligence for Interactive Digital Entertainment Conference



Adaptation) in which the game designer generates require-
ments for a new version of a game, and the legacy agents
from previous versions of the game adapt themselves to the
new game requirements in cooperation with the human de-
signer, who provides guidance where automation is not pos-
sible or not implemented. We are developing and testing
our metareasoning technique for adapting a mature program
in the domain of turn-based, multi-player, strategy games,
specifically FreeCiv (www.freeciv.wikia.com). In this pa-
per, we first present an analysis of adaptations to FreeCiv,
next describe our general approach, then describe a specific
adaptation scenario, and finally discuss our plans for future
work.

Architecture for Adaptation

We have taken a teleological approach to software adapta-
tion, addressing the problem of adapting software by con-
necting a teleological model to the source code. The tele-
ological model is expressed in a language we have devised
called TMKL (Murdock and Goel 2008). Further, we have
built a development environment called GAIA to automate
the adaptation process. GAIA has two interesting features
that we describe: its reasoning engine, REMng, and its code
generation mechanism.

GAIA

GAIA is an interactive development environment, imple-
mented in Eclipse (http://www.eclipse.org/) that supports a
modeler in building TMKL models and then using them to
adapt the modeled software. Its architecture is depicted in
Figure 1.

The user-facing portion of GAIA is called SAGi, which
appears in the center of the diagram. Besides providing
overall control of the adaptation process, it supports users in
building TMKL models. To the right of SAGi is a module re-
sponsible for managing TMKL models and persisting them.
Persistence is currently provided via Eclipse’s EMF pack-
age. The other two parts of GAIA are its inference engine,
REMng (at the top of the diagram), and its code generation
mechanism (under SAGi). The code-generation mechanism
is based on a domain specific language (DSL) that provides
a means of expressing objects and relations that exist within
the game domain. We intend to support the addition of off-
the-shelf machine learning tools, such as planners and learn-
ers, via an interface to REMng. To the left of SAGi in the
figure is an event log for communicating run-time informa-
tion back to REMng.

TMKL

TMKL is a teleological modeling language intended to sup-
port automated reasoning about software systems (Murdock
and Goel 2008). The name is an abbreviation for Task-
Method-Knowledge Language. Tasks in TMKL express a
system’s goals in terms of inputs and outputs. Methods de-
scribe the mechanisms by which a system accomplishes its
goals. Knowledge comprises the application-domain con-
cepts and relations on which the system operates.

Figure 1: GAIA Architecture

Tasks and Methods are defined in alternating hierarchical
layers. The topmost Tasks describe a system’s ultimate goals
as black-box functional specifications. Each Task is imple-
mented by any one of a set of alternative Methods, which
it superordinates. Methods, in turn, organize the operation
of a set of sub-Tasks. At the bottom of the hierarchy are
primitive Tasks, available as executable units of code.

TMKL Tasks are defined by five pieces of information:
input Knowledge elements, output Knowledge elements,
required input conditions (pre-conditions), produced out-
put conditions (post-conditions), and implementing Meth-
ods. Methods are defined similarly in terms of their pre-
conditions, sub-Tasks and ordering constraints, represented
by finite state machines. Finally, Knowledge in TMKL is
defined in terms of application-domain concepts and their
relationships. An example of TMKL is depicted in Figure 3,
and discussed below in the section describing our case study.

REMng

GAIA’s inferencing mechanism is called REMng. REMng
works in conjunction with the code generation mechanism
described in the next subsection. That is, REMng, when
given a program model expressed in TMKL and an adapta-
tion goal, produces an adapted model as output. The model
is then used to generate new code implementing the adapted
model.

Figure 2 illustrates the process for software adaptation im-
plemented by REMng. The process begins with a specifica-
tion of program goals and their connections to the program
code, represented via a TMKL model, and a specification of
the differences between the goals delivered by and desired of
the software. REMng uses the TMKL model, localizes the
needed modifications in the model and identifies adaptation
patterns corresponding to the needed modifications. The ap-
plication of each retrieved adaptation pattern is localized to
specific components.

Adaptation patterns have two parts: rules for determin-
ing the applicability of the pattern in a particular problem

149



Figure 2: REMng’s process for adaptive software design

context and procedures for changing model elements to ef-
fect the adaptation. Each adaptation pattern is parameter-
ized according to the specifics of the requirement change
that caused its retrieval as well as the local context in which
it is being applied. This parameterization step results in
a fully instantiated and executable set of adaptation plans.
The parameterization process of an adaptation pattern, for
example, may try to find a replacement for a primitive Task
in the TMKL model. If such a primitive Task is not avail-
able in a component library, the pattern may be rejected
and REMng may instead try to parameterize a different re-
trieved adaptation pattern that abstracts the adaptation goal.
If such an abstract primitive Task is available in the pattern
library, REMng is able to parameterize the adaptation pat-
tern to form an adaptation plan, which in turn would instan-
tiate the corresponding abstract primitive Task and the spe-
cific portion of the program code it points to and adjust them
accordingly.

The adaptation is completed by iteratively executing the
adaptation plans that were successfully instantiated and ask-
ing the user to confirm or reject each change. The TMKL
model is correspondingly revised by propagating the effects
of the changes to the original model, and the revised model
is passed to the code generation component for translation
into an executable form. An example of REMng’s process-
ing of an adaptation request is presented below in a section
describing our case study.

Generating program code

The primary purpose of the code generation component
of GAIA is to provide a mechanism for realizing the ef-
fects of adaptations during program execution. A secondary
purpose is to provide infrastructure for abstracting away
programming-language and implementation-specific details
from TMKL models. As a result, models and explanations
of purpose can be expressed in a domain-specific manner,

and the process of reasoning and adapting TMKL models
can take place at a high level of abstraction.

Code generation consists of four phases. The first phase
converts the TMKL elements into a type- checked semantic
model. In the second phase, the elements of the model are
translated into an abstract syntax tree (AST) representation.
Nodes in the tree correspond to grammatical constructs in
the target programming language. At this point, constraints
from the game environment and programming language are
absent from the model. Run-time details relevant to the exe-
cution of the model, but not necessarily its semantics, must
now be reintroduced. Examples include dynamic allocation
and freeing of game resources, safe storage and retrieval of
game objects, iteration over game objects or how a domain
concept in the knowledge base is actually mapped into run-
time elements in the game environment. To introduce these
concerns, the third phase traverses the AST of the model and
expands any domain concepts or operators with the neces-
sary constraints. Also during this phase, probes for produc-
ing feedback events to be sent to REMng are inserted into the
AST. This feedback will allow REMng to determine whether
failure to achieve goals expressed in the TMKL model has
occurred, and, if so, to start a retrospective adaptation pro-
cess. However, this retrospective adaptation is not yet im-
plemented. Finally, the fourth phase takes in the completely
augmented AST translated from the original TMKL model
and emits pretty printed code files. Using SAGi, the user can
then request that the resulting code be compiled, linked and
run.

Case Study
We have studied the teleological approach to software adap-
tation by applying it to a specific adaptation scenario for
the FreeCiv game. To illustrate the approach, we first de-
scribe FreeCiv and then the scenario. We then evaluate the
approach in the following section.

FreeCiv

FreeCiv is an open source variant of a class of Civilization
games with similar properties. The aim in these games is
to build an empire in a competitive environment. The major
tasks in this endeavor are exploration of the randomly ini-
tialized game environment, resource allocation and develop-
ment, and warfare that may at times be either offensive or
defensive in nature. Winning the game is achieved most di-
rectly by destroying the civilizations of all opponents, but
can also be achieved through more peaceful means by build-
ing a civilization with superior non-military characteristics,
such as scientific development.

FreeCiv is written in the C programming language and
includes 157K lines of source code. One component of the
game is an AI game-playing agent used when not enough
human players have joined the game. The AI agent that is
the target of our adaptation experiment comprises 20K lines
of code.

FreeCiv adaptation scenario

A typical strategy undertaken by the FreeCiv AI agent is to
grow cities until they are big enough to support advanced

150



technology research. However, a problem with large cities
is that citizens can become dissatisfied (unhappy).

In our experiment, we changed the rules of FreeCiv. We
added a new rule involving luxury items. Luxuries are spe-
cial resources that may be randomly found on the FreeCiv
game map. The added rule states that if a player’s city is
connected to a luxury item by a road, the happiness value
of citizens of that city is increased. The happiness value of
a city has secondary impacts, including an effect on pop-
ulation growth of the city. After applying the adaptations
described in the following section and generating code for
the adapted agent, we can see that the adapted agent does in
fact exploit this new rule by building roads that connect its
cities to luxury resources.

REMng

In the luxury adaptation scenario, REMng works with the
TMKL model depicted in Figure 3, without any of the por-
tions contained within the three bold-outlined boxes. The
portions within these boxes were added by REMng during
the adaptation process, resulting in a new, adapted agent that
is able to exploit the new game rule that is added in this
adaptation scenario. In the figure, the containing, named
rectangles are TMKL Methods. The contained, unlabeled
rectangles are Tasks. The lines between Tasks in the Meth-
ods depict control flow (state transitions) while the lines
from Tasks to Methods illustrate which Methods implement
particular Tasks. This figure depicts the ”Largepox” strat-
egy for playing FreeCiv, where the goal is to first build a
number of cities (Initial M), grow the population at those
cities (Growth M), achieve appropriate technology for mil-
itary production (Research M), exploit that technology to
build a strong military (Production M), and then employ that
military to destroy the opponents (MarineRush).

In order to produce the adaptations depicted within the
bold-outlined boxes of Figure 3, REMng must decide how
the game-playing agent should be adapted in order to take
advantage of the altered game dynamics of the luxury adap-
tation scenario. First, REMng must localize the adaptations
within the TMKL model, as per the first reasoning step in
Figure 2. In order to localize the adaptations, REMng must
look into its knowledge base to determine all secondary im-
pacts of increasing the happiness value of a city. Once it
obtains this information, REMng must inspect the model of
the agent to determine whether there are any goals expressed
within the model that could potentially be affected by ex-
ploiting the new rule. In this example, REMng’s knowledge
base contains the information that increasing the happiness
value at a city will also increase the population growth rate
at that city. By forward chaining from the new rule added
in the luxury adaptation scenario, REMng determines that
connecting a city to a luxury resource via a road will have a
secondary impact of increasing the population growth rate at
that city. REMng’s subsequent search of the TMKL model
will then identify the Growth task (the task parent of the
Growth M method depicted in Figure 3) as having a relevant
goal, since the goal of this task is to increase population at
cities.

Given that one or more such locations are identified,

REMng will look into its library of adaptation patterns to de-
termine whether it knows of any ways to adapt the identified
model location(s) to achieve some enhancement relevant to
the newly added rule. REMng has now reached the second
reasoning step in Figure 2, pattern retrieval. If REMng lo-
cates some potentially applicable adaptation patterns, it will
then try to instantiate them for the current situation (the
following step in Figure 2). Adaptation patterns are gen-
eral, and thus require parameterization to make them game-,
system- and scenario-specific. In this scenario, REMng does
find an applicable pattern, insert-action-for-goal, which in-
serts processing in the agent’s model that results in the ex-
ecution of an action to help achieve a particular goal. This
pattern is instantiated by locating a specific action to be ex-
ecuted (found in the game-specific knowledge base), Con-
nectByRoad. This action causes a worker unit to build a
road connecting two locations on the FreeCiv game map.
REMng must further constrain the parameters of the action
to be executed based upon the specific adaptation scenario.
Here, REMng sees that the rule specifically requires the con-
nection of a city location to a luxury resource location, and
thus constrains the two location parameters of the Connect-
ByRoad action to those that contain the appropriate items.

Now that REMng has an instantiated the pattern to form
an adaptation plan, it can actually apply changes to the
TMKL model. The application of this plan includes several
more plan-specific reasoning steps, including (1) an analy-
sis of the control flow within the portion of the model to
be modified, (2) insuring that there are no resource conflicts
between existing actions and those to be inserted, (3) adding
secondary actions that establish preconditions of the action
to be inserted and (4) the generation of heuristics to con-
trol the execution of the action as well as secondary actions
arising from (3).

Step (1) finds that the state machine flow in the Growth M
method of Figure 3 is sequential and unconditional, and
step (2) finds no resource conflicts. Based on these find-
ings, REMng adds a new task to the end of the existing
state machine in Growth M. The expanded structure of this
new task is based upon REMngs analysis of the action to
be executed (ConnectByRoad), its parameters, and the con-
straints on those parameters. Step (3) finds that we may not
have the worker units necessary to execute ConnectByRoad,
so it inserts the new task under the GrowthImprovements M
method after a recursive invocation of the add-task-for-goal
adaptation pattern set up with a new parameterization for
this secondary adaptation. Step (4) is handled by making
use of a cost annotation that is attached to the ConnectBy-
Road action within the domain-specific knowledge base. At
this time REMng will prefer to execute the lowest-cost pa-
rameterizations of ConnectByRoad. This is not necessarily
the best heuristic, and step (4) is likely a place where the hu-
man designer may wish to intervene in order to insert a better
criteria for ranking of possible action parameterizations.

REMng then proceeds to the Evaluation step of Figure
2 and displays the model to the user for validation. If the
user rejects the adaptation, REMng retracts it and, in this
case, terminates, as there are no further retrieved adaptation
patterns to be tried. If the user accepts REMng’s adapta-

151



Figure 3: Detailed TMKL model for agent player in the FreeCiv case study. In this figure, the containing, named rectangles are
TMKL Methods. The contained, unlabeled rectangles are Tasks. The lines between Tasks in the Methods depict control flow
(state transitions) while the lines from Tasks to Methods illustrate which Methods implement particular Tasks. Areas enclosed
in bold boxes are added during adaptation in this case study.

tion, the result is a new, adapted TMKL model to be run in
the modified FreeCiv environment containing the new game
rule. This model is handed off to code generation mech-
anism to produce executable code for the adapted FreeCiv
agent.

Code generation

FreeCiv and its unadapted AI player are written in the C pro-
gramming language. Adapting the C code directly requires
knowledge of both C’s syntax and also of low-level imple-
mentation details. For the experiment described in this pa-
per, we were more concerned with adaptation at the strategic
level. We therefore decided to separate the programming-
language-specific issues of reverse engineering and code
embedding from the core research question of reasoning
about adaptation. To effect this separation, we devised a
domain-specific language for modeling games. The lan-
guage contains both an ontology of game concepts and a
reference architecture for game-playing agents. We then
manually reverse engineered the FreeCiv AI agent into this
language for use by REMng. After REMng produces an
adapted model, the code generator produced an updated C
program capable of playing the game with the luxury rule
described above.

The input to the code generation process is the adapted
TMKL model produced by REMng. The result of gener-
ating code from the model is a set of C files. These are
then compiled and linked with the run-time library to pro-

duce an executable program capable of autonomously play-
ing FreeCiv. Generated code comprises a file containing
implementations of the finite state machines inherent in the
TMKL Methods and a file containing a set of queries of (ac-
cesses into) the TMKL knowledge base. The run-time li-
brary also comprises the two components responsible for re-
alizing the domain-specific language. The first is a generic
robot player capable only of communicating with the game
engine on a turn-by-turn basis, sending it any outstanding
requests. The means of communication is FreeCiv’s game
engine API comprising a set of handles. The second compo-
nent contains implementations for commands. Commands
denote TMKL primitive Tasks for performing actions in the
game. When executed, the state machines produce a se-
quence of commands that are queued for execution by the
generic player. When the game engine has completed one
turn in the game, the state machines can resume their activ-
ities, possibly making use of the compiled queries to learn
about changes in the game state. Execution progresses in
this fashion, alternating between agent action and game en-
gine updates until the game is completed.

Discussion

We have learned many things while conducting our research
with TMKL and FreeCiv. Specifically, we can now begin
the process of designing a next-generation teleological lan-
guage. Interesting extensions include program structures,

152



enhanced inferencing and knowledge modeling, the ability
to express non-functional requirements and automated re-
verse engineering used to produce the original, unadapted
TMKL models.

Program structures TMKL is strictly hierarchical and se-
quential. Unfortunately, real programs are more complex.
In FreeCiv it is often the case that conflicting goals must be
reconciled. It makes sense to be able to reason about the
goals separately and modularly and then use a reconciliation
mechanism to arbitrate. For example, having more soldiers
supports safety and ultimate victory, but taxes are required
to support them, thereby reducing the happiness and pro-
ductivity of citizens. Furthermore, to model agents capable
of concurrent processing or to model independent, concur-
rently executing agents, it makes sense to add supporting
program structuring mechanisms.

Enhanced reasoning REMng is specialized for situations
that arise when adapting FreeCiv. The following generaliza-
tions are contemplated.
• The ability to handle hypothetical situations.
• The ability to plug in external reasoners such as planners

and learners.
• The ability to provide explanations for decisions.
• The ability to support classification and generalization

such as would be provided by an off-the-shelf knowl-
edge representation and reasoning system like Power-
Loom (http://www.isi.edu/isd/LOOM/PowerLoom/).

• The ability to reason effectively at the meta-level in situa-
tions when making strategic decisions involving multiple
conflicting goals is required. One possibility is to devise a
TMKL model of REMng so that it can reason about itself.

Knowledge modeling The level of abstraction provided
by the Knowledge component of TMKL is low. In partic-
ular, our experiments with FreeCiv suggest the addition of
the following devices to the language.
• The ability to aggregate similar domain elements.
• The ability to aggregate domain operations by, for exam-

ple, providing by a macro capability.
• A specialized notation for expressing the adaptation to

be made. With the FreeCiv experiment, the adaptation
amounted to a rule change, but rule is a domain concept,
and TMKL needs a more general mechanism.

Conclusion

We have described a language, TMKL, and a tool, GAIA,
that supports the adaptation of game-playing agents. We
have experimented with our approach to agent adaptation in
the context of an open-source game called FreeCiv. We have
adapted its AI game-playing agent in the situation where a
new game rule has been added. A key enabler for this ap-
proach is the close connection between the game require-
ments, as expressed by TMKL Tasks, and the mechanisms
by which the requirements are implemented, TMKL Meth-
ods. The connections between these requirements and the
mechanisms that achieve them are represented by the use
of a teleological modeling language, TMKL. These teleo-
logical agent models allow a metareasoning process to lo-

calize required changes to the modeled agent’s design, and
then to effect adaptation of the agent at identified locations.
The initial work on the adaptation scenario described here
lends support to our overarching hypothesis that teleology is
a central organizing principle of knowledge representations
that enable self-adaptation of reasoning processes. In addi-
tion to the enhancements described in Section 5, we plan to
experiment first with other strategy games and then move to
other types of games, such as first-person shooters.

Acknowledgements

We gratefully acknowledge support by the National Sci-
ence Foundation, Science of Design Program, under Grant
#0613744. We thank Sameer Indrapu, Lee Martie and Derek
Richardson for their contributions to the GAIA project.

References

Birnbaum, L.; Collins, G.; Freed, M.; and Krulwich, B.
1990. Model-based diagnosis of planning failures. In Pro-
ceedings of the Eighth National Conference on Artificial
Intelligence 318–323.
Genesereth, M. 1983. An overview of meta-level architec-
ture. In Proceedings of the Third National Conference on
Artificial Intelligence 119–123.
Jones, J., and Goel, A. 2009. Metareasoning for adaptation
of classification knowledge. In AAMAS.
Leake, D. B. 1996. Experience, introspection and exper-
tise: Learning to refine the case-based reasoning process.
J. Exp. Theor. Artif. Intell. 8(3-4):319–339.
Murdock, J. W., and Goel, A. K. 2001. Learning about
constraints by reflection. Canadian Conference on AI 131–
140.
Murdock, J. W., and Goel, A. K. 2003. Localizing planning
with functional process models. ICAPS 73–81.
Murdock, J. W., and Goel, A. K. 2008. Meta-case-based
reasoning: self-improvement through self-understanding.
J. Exp. Theor. Artif. Intell. 20(1):1–36.
Stroulia, E., and Goel, A. 1995. Functional representa-
tion and reasoning in reflective systems. Journal of Ap-
plied Intelligence, Special Issue on Functional Reasoning
9(1):101–124.
Stroulia, E., and Goel, A. K. 1999. Evaluating psms in
evolutionary design: the autognostic experiments. Int. J.
Hum.-Comput. Stud. 51(4):825–847.

153


	AIIDE09
	Contents
	Index
	AAAI Website




