
Generating Story Analogues

Mark O. Riedl
School of Interactive Computing
Georgia Institute of Technology

Atlanta, Georgia, USA
riedl@cc.gatech.edu

Carlos León
Depto. de Ingenierı́a del Software e Inteligencia Artificial

Universidad Complutense de Madrid
Madrid, Spain

cleon@fdi.ucm.es

Abstract

In this paper, we describe a computational system that
generates story analogues based on previous stories.
Unlike many previous works on story generation that
attempt to produce a story artifact from a set of high-
level specifications, we describe an approach that gen-
erates relatively novel stories by transforming existing
stories to new contexts. We describe an algorithm for
using analogical reasoning to find similarities between
story contexts in order to map events from an existing
story to a novel context.

Introduction

The interactive entertainment and entertainment computing
research areas are interesting because they blend computa-
tional sciences, engineering, and creative endeavors. Re-
cently, there has been a growing interest in computational
creativity, the notion that computational systems can be de-
veloped that bear abilities resembling human creativity. We
will not delve deeply into what it means to be creative except
to say that a creative system – human or computer – takes
some set of input parameters and constraints and produces
an artifact that is relatively novel, valuable, and unexpected
(Boden 2004).
In this paper, we describe a computational system that

generates story analogues based on previous stories. Un-
like many previous works on story generation that at-
tempt to produce a story artifact from a high-level set of
input specifications (c.f., (Meehan 1976; Lebowitz 1987;
Riedl and Young 2004)), we describe an approach that gen-
erates relatively novel stories by transforming existing sto-
ries to new contexts. For example, given a story set in
the American Old West, we might be used to produce an
analogous story set in a Science Fiction future. By “anal-
ogous” we mean possessing deep structural similarities. In
that sense, our work is more closely aligned with case-based
reasoning approaches to story generation (c.f., (Turner 1992;
Pérez y Pérez and Sharples 2001; Gervás et al. 2005;
Swartjes, Vromen, and Bloom 2007)). Case-based rea-
soning (Kolodner 1993a) and analogical reasoning (Falken-
hainer, Forbus, and Gentner 1989; Larkey and Love 2003)

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

have been posited to be related to creativity (Boden 2004;
Kolodner 1993b).
Computational creativity is relevant to the interactive en-

tertainment community because there is value in computa-
tional entertainment products being able to generate content
on-demand. On-demand content is the idea that increased
value is derived from a product if it is individualized or per-
muted to take into account more personalized or immediate
context. For example, we can begin to consider novel appli-
cations such as automated quest generation for role-playing
games such that the player can specify criteria for interest-
ing experiences (e.g., “I like to slay dragons”) and receive
tailored gameplay content. Another application is a “story-
telling companion” that can assist a user in the creation of
novel content. In general we speculate, that there is an ad-
vantage to being able to produce novel narrative and game-
play content to increase engagement and individualization
of gameplay experience. We do not explore specific applica-
tions further. Instead, we introduce a technological solution
to generating novel story and quest content from existing
story content, which can be considered a step toward open-
ing up computational creativity to entertainment computing
applications.
Specifically, we describe a process that generates stories

by taking existing stories, or fragments of stories, and adapt-
ing them to novel contexts. Our goal is to strike a balance
between novelty and familiarity. In brief, stories should be
novel, but not so novel that they are unrecognizable (Giora
2003). We use analogical reasoning to find similarities be-
tween the contexts – domains – in which different stories are
set in order to produce a transformation function that trans-
forms a story set in one domain into a skeleton of a story set
in another domain. Planning is used to fill in any gaps.

Related Work

Story generation has been the emphasis of numerous re-
search projects. Our work and most related work are pri-
marily concerned with plot – what stories are about – as op-
posed to discourse – how to tell a story. Story generation
systems include story world character simulations (Meehan
1976), planning (Lebowitz 1987; Riedl and Young 2004),
and case-based reasoning (Turner 1992; Gervás et al. 2005;
Pérez y Pérez and Sharples 2001; Riedl and Sugandh 2008).
The work described in this paper looks at story generation

161

Proceedings of the Fifth Artificial Intelligence for Interactive Digital Entertainment Conference



from the perspective of adapting existing stories into novel
contexts either as a stand-alone generation process or as
an input into a case-based plot planner such as (Riedl and
Sugandh 2008).
Unlike the system described in this paper, the majority of

work on story generation approaches the problem of gen-
erating a story from building blocks smaller than complete
stories, such as planning operators or cases/vignettes. Case-
based reasoning has consequently been a popular method
for generating stories. Minstrel (Turner 1992) is a problem-
solving approach to story generation where, given a prob-
lem, transform-recall-adapt methods (TRAMS) are invoked
to search for additional knowledge, which may be parts of
previous stories, to apply to the problem. MEXICA (Pérez y
Pérez and Sharples 2001) uses phases of engagement and
reflection to pick next actions based on similarity with pre-
vious stories and repair inconsistencies, respectively. Gervás
and colleagues (Gervás et al. 2005) describe an ontological
approach where story “functions” – patterns of plot devel-
opment originally devised by Propp (Propp 1968) – are used
as the building blocks. VBPOCL (Riedl and Sugandh 2008)
blends partial-order planning and transformational multi-
reuse planning to solve the problem of generating a sequence
of plot events.
Analogical reasoning has been applied to stories; the

“Karla the Hawk” and “Zerdia” stories are often used to il-
lustrate an analogical reasoning system’s ability to find deep
structural similarities in first-order logical representations of
narratives (c.f., (Falkenhainer, Forbus, and Gentner 1989)
and (Larkey and Love 2003)). However, the problem we
are addressing here is not whether we can detect analogical
stories, but whether we can produce an analogue to a given
story. Other work on analogies in stories attempts to iden-
tify analogical character roles in different stories (Hervás et
al. 2006). We see identification of analogous characters as
an important part of analogical transformation, but also look
for analogies in the domain actions.
We use the Connectionist Analogy Builder (CAB)

(Larkey and Love 2003) to reason about analogies, as part
of our larger system. CAB is an implementation of a cog-
nitive model of analogy that finds correspondences between
subcomponents of two representations. Given two directed
graph representations, CAB detects correspondences among
sub-structures, producing a mapping between correspond-
ing elements through a constraint satisfaction approach to
comparison. Briefly, CAB iteratively constructs hypotheses
about graph node correspondences based on whether they
play compatible roles in the two representations. The role
of a node is determined relative to other nodes. Hypotheti-
cal mappings are proposed and each mapping can “vote” on
whether to strengthen or weaken the weight of mappings of
nearby nodes. Poor correspondences are punished and their
weights drift toward 0 while good correspondences are re-
warded and their weights drift towards 1. Further details on
CAB processing is beyond the scope of this paper.

Analogical Transformation of Stories
Between-domain analogy occurs between concepts that em-
brace dissimilar knowledge and require deep structural simi-

Source 
Domain 

Story

Source 
Domain

Target 
Domain

Transfer 
Function 

Generation 
Routine

fs�t()

Between-
Domain 
Transfer 
Routine

Target 
Domain 

Story

Figure 1: The analogical story transformation process.

larities. This is opposed to within-domain analogy, in which
concepts share the same – or very similar – knowledge and
can be performed using surface similarities. In this work, we
are concerned with between-domain analogies about stories.
A domain is both a story world description and a set of rules
for actions and events that are legal to occur in that story
world.
In this section we describe how to use analogical reason-

ing to engage in between-domain transfer. That is, to trans-
form a source story that exists in a source domain to a tar-
get story that exists in a target domain. Analogy-finding
algorithms such as the Structure-Mapping Engine (SME)
(Falkenhainer, Forbus, and Gentner 1989) and CAB have
been demonstrated to be able to find analogies in stories
when they exist. However, our problem is different: we have
a story in a source domain, but no story in the target domain;
we are solving the problem of transforming a story from a
source domain into a new story in the target domain.
The transformation process is visualized in Figure 1. The

inputs into the process are the source story ps represented
as a plan (see below), the source domain Ds, and the target
domain Dt. The first stage is to produce a transfer func-
tion, fs�→t, that maps concepts in Ds into concepts in Dt.
Specifically, fs�→t maps actions and ground symbols in Ds

to actions and symbols in Dt. The second stage is to use the
transfer function to map the concepts in our source narrative
plan ps into a new data structure that is a narrative plan in the
target domain. Note that in either the first two stages failure
to find and apply mappings can leave gaps in the target story
plan pt. For example, an action in ps may not have an ana-
logue in Dt, resulting in the case where the solution story pt

has a missing action. A partial order planner, operating in
the target domain, fills in the gaps.

Narrative Representation

We represent narratives as partially-ordered plans because
of similarities between the knowledge captured in a plan
data structure and the type of knowledge present in narra-
tive at the plot level. Narratives at the plot level and plans
both contain knowledge about action (or events that effect
change to a world), temporality, and causality (Young 1999).
More specifically, we represent narratives as a partial order-
ing of instantiated operators, each representing an action that
a story world character takes, or an event that changes the
story world but is otherwise unintentional.

162



A domainD = 〈S, Λ〉 is a tuple such that S is a description
of the state of a world and Λ is the set of all possible oper-
ations that can change the world. We assume that the oper-
ators in Λ are ground operators, meaning they do not con-
tain variables. However, our techniques would also work if
operators did have variables – ground operators can be gen-
erated from operators with variable parameters by creating
instances for all possible legal bindings of ground operators
to variables.
A narrative plan p = 〈I, A, O〉 is a tuple such that I is

a description of the initial state, A is a set of ground oper-
ators – called actions – and O is a set of temporal ordering
constraints of the form a1 < a2 where a1, a2 ∈ A and a1

necessarily precedes a2 in the story. A narrative plan is said
to be of domain D = 〈S, Λ〉 if ai ∈ Λ for all ai ∈ A and
I ⊆ S.

We define a plan operator as a tuple 〈h, P, E〉, where h is
the head of the action, defining its name and its arguments, P
is the set of ground preconditions, a set of propositions that
define the previous state needed for the action in the story
to be performed, and E is the set of ground effects, that is,
the set of propositions that are made true when the action is
performed (e.g., propositions added to the world state and
negated propositions deleted from the world state under the
closed world assumption).

Pre-Processing

In our approach, we use the Connectionist Analogy Builder
(Larkey and Love 2003) as a component in our first stage.
CAB works with graphs, and thus we need to translate
STRIPS-like operators to graphs. To translate an operator
into a graph we create a root node with the head of the ac-
tion, and children nodes for the arguments of that action. We
add as children to the root node a precondition node and an
effect node, whose children are the propositions of the sets
P andE, respectively. The graph is completed by adding se-
lected propositions from the domain state information. The
precondition and effect nodes provide structure to the graphs
and also provide consistent terms that can be leveraged by
CAB that help avoid very unlikely matches.
State information provides context about the ground sym-

bols that is essential for finding correct analogies between
operators. Context is important because many operators
have very similar structures (e.g., propositions that become
negated) and CAB would be unable to find the difference
between any two operators with surface-level structural sim-
ilarity without additional contextual information. Our pro-
cess choses context information to be included in the graph
by picking world state propositions that relate the ground
symbols referenced by the operator. An example operator is
in Figure 2 and resultant graph is in Figure 3. Gray nodes
represent ground symbols. The white nodes at the bottom of
the figure represent state information. Some nodes and links
are omitted for space. Notably, special nodes (not shown)
capture cardinality of relations. For example, the ordering
of parameters in stronger(king2, princess) is semantically
important.

Action:
Head: Capture (king2, princess)

Precondition: not(captured(king2)),

not(captured(princess)),

stronger(king2, princess)

Effect: captured(princess),

captured-by(princess, king2)

Context knowledge:
stronger(king1, king2), enemies(king1, king2),

daughter(princess, king1), has(king2, spear1)

Figure 2: The operator, Capture(king2, princess) in STRIPS
representation with ground symbols.

Capture

precond

not not

captured stronger

king2

effect

captured

princess

captured-by

daughter

king1

enemiesstronger

spear1

has

Figure 3: The operator, Capture(king2, princess), in graphi-
cal form. For clarity, some links and nodes are left out.

Generating the Transfer Function

With the operators represented as graphs, the transformation
algorithm, given a source story plan ps = 〈I, A, O〉 and a
target domain Dt = 〈S, Λt〉, computes a concept map of
the form map = {as1 ⇔ at1}...{asn ⇔ atn} as follows.
The algorithm iterates over the set of actions in the source
story ps according to the temporal ordering of actions in the
plan. First, it computes the world state for the source domain
states and target domain statet. During the first iteration of
the process, states is the initial state of ps and statet is
the initial state of Dt. Then, for the current action asi

from
the source story, we invoke the find-best sub-procedure,
which computes the best action from Λt (call it ati

) that cor-
responds to asi given states and statet as contextual cues.
If find-best returns a value we create an entry in our
transformation mapping. The algorithm then updates states

and statet by applying the effects of asi and ati , respec-
tively. The update is important because the actions in the
source story progressively modify the world state and the
domain initial state becomes less relevant. Without progres-
sively updating the world state the algorithm becomes more
prone to errors. The process repeats until every action in the
source story has a mapping to an operator in the target do-
main, or to nil. The transformation process can fail to find
an analogues for actions, however, leaving gaps in the tar-
get domain story plan. We describe how to handle missing
actions in a later section.
The find-best routine is responsible for finding the

best operator in the target domain for an operator in the
source domain. It is important to note that we have not de-

163



Stick-Up

precond effect

wyatt tomgun1

has

at-gunpt

not

at-gunpt

not

holding-up

Shoot

precond effect

has alive

not

frank

hashates hates

gun2

has

Figure 4: Two target domain operators, Shoot(Wyatt, Tom,
gun1) and Stick-Up(Wyatt, Tom, gun1), merged into a
graph. For clarity, some links and nodes are left out.

veloped a test for optimality, and thus there is not an exact
way for finding the best mapping. However, we refer to the
“best” or “optimal” operator when, intuitively, that operator
would be chosen by a human. We implement find-best
as a single-elimination competition of target domain opera-
tors. The routine compares a source action with a randomly
chosen pair of target actions. Paired target domain actions
are merged into the same directed graph by linking oper-
ator graph nodes to a shared set of ground symbol nodes.
See Figure 4 for an example of a pair of conflated target do-
main actions. The conflation of target domain actions takes
advantage of the way CAB uses connectionist operations
to find structural commonalities between graphs. This ap-
proach forces CAB to choose which of the two head nodes
in the target domain graph makes the best correspondence
to head node nodes of the graph of the single source action.
The loser is discarded while the winner is matched against
another randomly chosen target domain action. This repeats
until only one target domain action remains.

The purpose of conflating target operators is to force CAB
to choose whether to map the head of the source operator to
a head of one of the two target operators. We believe this is
more robust than attempting to identify a metric of “good-
ness” of analogy; the notion of “goodness” is hard to com-
putationally formalize. However, under certain conditions,
CAB will not return a mapping of head nodes. This occurs
when structural similarity between the source graph and any
portion of the target graph does not meet a minimum thresh-
old. If there is a good analogue in the target domain, the
tournament routine will find it. If there is no good analogue,
meaning the source story references an action that has no
identifiable equivalent in the target domain, find-best
will return no solution.

The single-elimination competition is equally effective as
algorithms that compare a source operator to all pairs of tar-
get domain operators while only requiring a linear number
of comparisons with respect to the length of the story. This
is important because CAB is NP-complete; our process does
not significantly affect the computational complexity of the
entire transformation algorithm.

Applying the Transfer Function

Applying the transfer function is straight-forward. The func-
tion maps source story actions to target domain actions on a
one-to-one basis. Once the transform algorithm is applied,
we have the new story in the target domain. Note that the
resulting story is not guaranteed to be sound, meaning that
should the plan be executed, not all actions are guaranteed
to have all of their preconditions satisfied in the world state
before execution. The next section describes how we can
correct flaws in story plan soundness by filling in gaps left
by failures in the analogical transformation.

Correcting Errors with Planning

In the cases where the analogical transformation stage has
determined – correctly or incorrectly – that there are actions
in the source story that have no analogical equivalents in
the target domain, the transform algorithm described above
will return a target story with missing actions. Because we
have chosen to represent story actions as STRIPS-like op-
erators, we have a wealth of contextual information about
actions, in the form of preconditions and effects. This infor-
mation is exactly the information that partial-order planners
(POP) need to repair flaws in plans. A partial-order planner
requires every precondition of every action in a plan to be
satisfied by the effect of a temporally prior action, or the ini-
tial state. Causal links are used to record the decision made
by the planner about how to satisfy preconditions.
We input our target domain story plan pt = 〈I, A, O〉

into a partial-order planner as the starting node in the plan
search space. Because our plan representation does not in-
clude causal links, the partial-order plan is initialized to con-
sider every precondition on every action in pt to be a flaw.
The planner is also provided the target domain operator li-
brary Λt. The planner resolves the flaws by first attempting
to causally link preconditions on actions to effects of ex-
isting actions in the plan. Barring that, the planner then at-
tempts to resolve the flaws by instantiating new actions from
the domain operator library. Instantiation of new actions fills
gaps in the story plan that resulted from failures in analog-
ical transformation. A heuristic penalizes promiscuous in-
stantiation of new actions. Of course there can be different
configurations of causal linkages; the planner backtracks if
it makes any mistakes that lead to an impasse. Currently we
use a standard off-the-shelf POP planner. However, in future
work, we may consider planners specialized to the story gen-
eration problem, such as the IPOCL story planner (Riedl and
Young 2004).

Example

We show how the story translation works on a very simple
story. Consider the following sequence of events set in the
domain of J.R.R. Tolkein’s The Silmirillion:

1. Wander (princess) – Princess wanders away from home

2. Capture (king2, princess) – King2 captures the princess

3. Marry (king2, princess) – King2 marries the princess

4. Have-Child (king2, princess) – A child is born

164



5. 2-Escape (princess, child, king2) – Princess/child escape
6. Chase (king2, princess) – King2 chases Princess
7. Capture (king1, king2) – King1 captures King2
8. Fealty-Oath (child, king1) – Child oath to King1
9. Attack (king2, child) – King2 attacks child
10. Accidentally-Wound (king2, princess) – King2 acciden-

tally wounds Princess
11. Die-of-Wounds (princess) – Princess dies of her wounds
12. Kill (king1, king2) – King1 kills King2

Part of the initial state information of the source story in-
cludes the fact that the princess is the daughter of king1. An
example of the Capture action with some accompanying
initial state information is shown in Figure 3. The target
domain is the American Old West. In the target domain,
consider three of the many possible operators:
• Shoot (wyatt, tom, gun1) – Wyatt shoots Tom with gun1
• Stick-up (wyatt, tom, gun1) – Wyatt points gun1 at Tom
• Stick-up (tom, wyatt, gun2) – Tom points gun2 at Wyatt
• Go (wyatt, saloon, corral) – Wyatt goes between places
The target domain initial state information includes the fol-
lowing facts: Wyatt has gun1, Tom has gun2, Wyatt hates
Tom, and Wyatt hates Frank. This set of operators has been
chosen in order to show a simple example, but in a real trans-
lation, we would have a larger set of operators that includes
more actions and all permutations of character arguments.
The story translation algorithm executes as follows. The

first action from the source story, Capture(king2, princess),
is selected and combined with source domain initial state
information. The system randomly picks two operators
from the target domain, Go(wyatt, saloon, corral) and
Shoot(wyatt, tom, gun1). CAB prefers the correspondence
between Capture and Shoot. However, both Shoot and Go
are very poor analogies for Capture. Even though CAB is
forced to pick one, when none of the target operators are
analogous to the source operator, the choice does not matter.
The loser of the first competition, Go, is removed from the

list of valid target operators. Next, Capture is compared with
the previous winner, Shoot(wyatt, tom, gun1), and Stick-
Up(wyatt, tom, gun1). Figure 4 shows the graph of these
two target domain operators. This time, CAB prefers the
correspondence between Capture and Stick-Up. Note that
the mapping is found despite the different number of pa-
rameters in Capture and Stick-Up and despite differences in
number of preconditions and effects.
The third competition is between Stick-Up(wyatt, tom,

gun1) and Stick-Up(tom, wyatt, gun2). The only difference
between target operators is the parameter order. We may
wonder if it is possible for CAB to discriminate. It turns out
that, because of asymmetries in state information – relations
between characters and story world objects – combined with
the way each operator operates on the story world state is
enough to uniquely discriminate between operators.
Further trials are required before the system can finally

conclude that Capture(king2, princess) corresponds to Stick-
Up(wyatt, tom, gun1). Once the tournament has settled

on the best target operator, the effects of the source op-
erator, Capture(king2, princess), are applied to the source
story world state and the effects of the target operator, Stick-
Up(wyatt, tom, gun1), are applied to the target story world
state. This prepares the respective world states for the next
tournament, which is a competition to be the best correspon-
dence to Marry(king2, princess) – the next successive oper-
ator in the source story.
When the process is complete, the target story analogue is

as follows.

1. Go (wyatt, saloon, corral)

2. Stick-Up (wyatt, tom, gun1)

3. Dodge (tom, wyatt)

4. Chase (wyatt, tom, corral, bank)

5. Stick-Up (frank, wyatt, gun3)

6. Shoot (wyatt, tom, gun1)

7. Shoot (frank, wyatt, gun3)

Note that the analogue story is shorter. In some circum-
stances, the target domain did not have operators that could
be matched to source story actions. Gaps occur when best
target operator match to a source operator does not achieve
a particular correspondence threshold. Consequently, the re-
sult may or may not be a sound plan. That is, the result may
not possess a logical causal progression. When this occurs,
planning is used to fill in the gaps and create a sound plan.
For example, the skeleton of a plan created by the analogical
transformation does not explain how Frank got to the bank.
Planning works backwards from the gap, inserting events
that establish any necessary conditions to fill the gap.

Limitations and Future Work

The system described in this paper creates stories that are
analogues of previous stories. The advantage of the ap-
proach is that source stories can come from heterogeneous
sources with non-overlapping event vocabularities. The
work described in this paper assumes the existence of li-
braries of source stories and domain descriptions. While it
is undoubtably true that there is a plethora of story material
available (e.g., movies, fables, short stories, etc.), they are
rarely stored in computational formats that facilitate sym-
bolic reasoning. Independent efforts are underway to cre-
ate tools and techniques that simplify the creation of story
corpora (Elson and McKeown 2007) and to mine stories
from the web (Swanson and Gordon 2008). Furthermore,
recent interest in machine reading (Etzioni, Banko, and Ca-
farella 2007) has led to techniques for automatically ac-
quiring knowledge from primary sources without significant
knowledge-engineering.
One of the limitations of our technique for analogical

story transformation is that it requires the source and target
domains to be represented at approximately the same level
of abstraction. That is, one domain cannot use extremely ab-
stract operators while another domain uses more primitive
operators because CAB will not be able to find the structural
similarities between operators. Further, the source and target

165



domains must be fairly analogical to begin with so that cor-
respondences between operators and state propositions can
be found. We feel this is a reasonable assumption to make
because story worlds mimic the real world to some degree
and thus most story world domains, represented at the same
level of abstraction, should afford correspondences. One ob-
servation we have made is that the less analogical the do-
mains, the more gaps appear in the target story. Further,
the more gaps, the less likely CAB will be able to find cor-
respondences between operators after the gaps because the
source and target state information become “out of sync.”
We have not yet determined how to measure the degree of
analogical similarity between domains. Our system has not
been tested on story world domains of significant complex-
ity, in terms of number of characters or number of distinct
propositional statements.
One interesting conclusion of our work to date is that

the story transformation process can work with relatively
little extraneous information. However, having more con-
textual knowledge is almost always advantageous in ana-
logical mapping. Some sources of contextual knowledge
we have considered for future work are WordNet or other
sources of ontological information. The knowledge pro-
vided by such knowledge-bases can potentially increase the
processing speed, provide more accurate results, and ease
authoring of domain knowledge. In particular, the technique
described in (Hervás et al. 2006) finds similarities between
characters in different stories based on their role. This work
is complimentary to our own and could contribute to our
story transformation process by preprocessing correlations
between characters in the two domains.

Conclusions

Analogical reasoning has been demonstrated to be effective
in discovering whether two stories are analogues. However,
in order generate an analogue to an existing story, analogi-
cal reasoning cannot be applied directly to the existing story
content. Instead, we use analogical reasoning to find map-
pings between concepts in story world domain knowledge
provided about the source story world and the target story
world. By finding mappings between entities and opera-
tors that comprise disparate story world domains, we can
use those mappings to directly translate a story from one do-
main to another. The work described in this paper is a step
towards instilling greater capability for creativity into com-
putational systems. Analogical reasoning is often cited to
be an integral component in human creativity (Boden 2004;
Kolodner 1993b). Consequently, for this work, we have fo-
cused on generating story analogues as a demonstration of
computational creativity in the context of novel story con-
tent production.

References

Boden, M. 2004. The Creative Mind: Myths and Mecha-
nisms, 2nd Edition. Routledge.
Elson, D., and McKeown, K. 2007. A platform for sym-
bolically encoding human narratives. In Proc. of the AAAI
Fall Symposium on Intelligent Narrative Technologies.

Etzioni, O.; Banko, M.; and Cafarella, M. 2007. Machine
reading. In Proceedings of the AAAI Spring Symposium on
Machine Reading.
Falkenhainer, B.; Forbus, K.; and Gentner, D. 1989. The
structure-mapping engine: Algorithms and examples. Ar-
tificial Intelligence 41:1–63.
Gervás, P.; Dı́az-Agudo, B.; Peinado, F.; and Hervás, R.
2005. Story plot generation based on CBR. Journal of
Knowledge-Based Systems 18(4–5).
Giora, R. 2003. On Our Mind: Salience, Context, and
Figurative Language. Oxford University Press.
Hervás, R.; Pereira, F.; Gervás, P.; and Cardoso, A. 2006.
Cross-domain analogy in automated text generation. In
Proceedings of the 3rd Joint Workshop on Computational
Creativity.
Kolodner, J. 1993a. Case-Based Reasoning. Morgan Kauf-
mann Publishers.
Kolodner, J. 1993b. Understanding creativity: A case-
based approach. In 1st European Workshop on Case-Based
Reasoning.
Larkey, L., and Love, B. 2003. CAB: Connectionist anal-
ogy builder. Cognitive Science 27:781–794.
Lebowitz, M. 1987. Planning stories. In Proceedings of the
9th Annual Conference of the Cognitive Science Society.
Meehan, J. 1976. The Metanovel: Writing Stories by Com-
puter. Ph.D. Dissertation, Yale University.
Pérez y Pérez, R., and Sharples, M. 2001. MEXICA: A
computer model of a cognitive account of creative writing.
Journal of Experimental and Theoretical Artificial Intelli-
gence 13.
Propp, V. 1968. Morphology of the Folktale. Austin, TX:
University of Texas Press.
Riedl, M. O., and Sugandh, N. 2008. Story Planning
with Vignettes: Toward Overcoming the Content Produc-
tion Bottleneck. In Proceedings of the 1st Joint Interna-
tional Conference on Interactive Digital Storytelling.
Riedl, M. O., and Young, R. M. 2004. An Intent-Driven
Planner for Multi-Agent Story Generation. In Proceedings
of the 3rd International Conference on Autonomous Agents
and Multi-Agent Systems (AAMAS).
Swanson, R., and Gordon, A. 2008. Say Anything: A mas-
sively collaborative open domain story writing companion.
In Proceedings of the 1st International Conference on In-
teractive Digital Storytelling.
Swartjes, I.; Vromen, J.; and Bloom, N. 2007. Narrative
inspiration: Using case based problem solving to support
emergent story generation. In Proceedings of the Interna-
tional Joint Workshop on Computational Creativity.
Turner, S. 1992. MINSTREL: A Computer Model of Cre-
ativity and Storytelling. Ph.D. Dissertation, University of
California , Los Angeles.
Young, R. 1999. Notes on the use of plan structures in
the creation of interactive plot. In Proceedings of the AAAI
Fall Symposium on Narrative Intelligence.

166


	AIIDE09
	Contents
	Index
	AAAI Website




