
Full 3D Spatial Decomposition for the
Generation of Navigation Meshes

D. Hunter Hale and G. Michael Youngblood
The University of North Carolina at Charlotte

Game Intelligence Group, Department of Computer Science
9201 University City Blvd, Charlotte, NC 28223-0001

{dhhale, youngbld}@uncc.edu

Abstract

We present a novel algorithm developed for decomposing
world-space into arbitrary sided high-order polyhedrons for
use as navmeshes or other techniques requiring 3D world spa-
tial decomposition. The Adaptive Space Filling Volumes 3D
(ASFV3D) algorithm works by seeding world-space with a
series of unit cubes. Each cube is then provided with the op-
portunity to grow to its maximum extent before encounter-
ing an obstruction. ASFV3D implements an automatic sub-
dividing system to convert cubes into higher-order polyhe-
drons while still maintaining the convex property. This al-
lows for the generation of navigation meshes with high de-
grees of coverage while still allowing the use of large naviga-
tion regions—providing for easier agent navigation in virtual
worlds. Compared to the Space-filling Volumes and Auto-
matic Path Node Generation navigation mesh decomposition
methods, ASFV3D provides more complete coverage and a
less complex navigation mesh.

Introduction
Agents need information about the world in which they are
operating in order to behave in a believable manner. One of
the best and most commonly used methods to provide spa-
tial environmental information to agents about the world is
to create a mesh of convex shapes that represent all the ar-
eas in the virtual environment that the agent is capable of
transversing (Tozour 2004). These navigation meshes pro-
vide the agent with a variety of useful information. In addi-
tion, there are several positive effects to having a high qual-
ity navigation mesh that can prove advantageous to the en-
gine running the game. The most basic of these advantages
is improved path finding capability provided to the agent by
reducing the empty space where the agent can travel from
many thousands or millions of points down to the dozens to
hundreds of regions present in a navigation mesh. This leads
to a runtime improvement for most pathfinding algorithms.
Another application for spatial decomposition meshes is in-
formation compartmentalization, which reduces the number
of objects an agent has to reason about and interact with
to just those that reside in the same or neighboring spatial
regions. This reduces overall reasoning complexity over ob-
jects. Collision detection can also be improved if an agent

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

or other object can be quickly localized to a single walkable
region since then they are not colliding with the environ-
ment and can only collide with other objects inside that one
region.

Navigation meshes can be constructed in many different
ways from the world geometry. However, most methods for
building navigation meshes fall into one of two categories.
The first and most commonly used set of techniques to gen-
erate a navigation mesh is by vertex-based decomposition.
Using a set of rules, all of the vertices exposed by the world
geometry are connected to each other to generate a series
of triangles. These triangles can then be combined where
the result would be a convex higher-order polygon to reduce
the total number of shapes present in the navigation mesh.
Vertex-based approaches generally give very high coverage
decompositions, but can result in lots of small or strangely
shaped regions, many of which can come together at a single
point causing problems when attempting to localize objects
to a single region (because most objects are larger than a
single point in space). The other commonly used general
approach to generate a navigation mesh is the growth-based
method. Some form of geometry is sown into the world,
then each piece of this geometry is allowed to expand un-
til it hits an obstruction. These pieces of geometry are then
connected where they touch and formed into a navigation
mesh. Traditionally, growth-based methods have provided
very regular-shaped regions, but have not provided high cov-
erage breakdowns of the world. However, our prior work has
presented improved methods to decompose open space that
do produce high coverage navigation meshes (Hale, Young-
blood, and Dixit 2008). The work here extends that research.

Motivation
Most commonly used spatial decomposition techniques fo-
cus on how to decompose the ground planes of game worlds.
Worlds with multiple ground planes are generally decom-
posed one plane at a time, and special vertical transitions
are added. This method of abstracting the 3D representa-
tion of a game world to a series of 2D planes is similar
to how blueprints represent the floor plan of a multi-story
building. These techniques generally assume that the agent’s
movement is restricted to the ground plane. The problem
is that advances in level design and game play elements in
games are producing increasingly complex and interactive

142

Proceedings of the Fifth Artificial Intelligence for Interactive Digital Entertainment Conference



levels. Game levels used to be designed such that in com-
plex worlds such as cities, road levels would connect ad-
ditional levels representing individual buildings. Flat im-
age place holders for those building would be presented on
the connecting road level, and users would initiate a load
screen instead of a smooth transition into the building. Now,
the buildings are integrated with the street areas and con-
tain multiple walkable areas allowing seamless interactions
through both doors and windows, all of which are transitions
from one navigation mesh to another and require manual
linking. These higher complexity levels will require more
special case connections between different 2D decomposi-
tions, which makes generating 2D decompositions and then
linking them by hand tedious.

We improve upon existing approaches for decompositions
of 3D environments that does not require the world to be
simplified into 2D planes and instead performs a true 3D
decomposition, which subdivides the open space present in
the world into a series of 3D regions. We provide a new
method inspired by the 2D Adaptive Space Filling Volumes
(ASFV) algorithm to allow spatial decompositions to oper-
ate on 3D geometry. Since we are drawing on ASFV for this
algorithm, the positive features that ASFV decompositions
contain, such as convex high-order polygons, high average
minimum interior angles across all regions, good object con-
tainment, information compartmentalization, very high to
perfect coverage of the level geometry, and a low number of
total regions, are also present in our 3D decompositions. Us-
ing our new method, we can automatically decompose levels
that include multiple ground planes and complex geometry.
We accomplish this by transforming ASFV from a 2D algo-
rithm that grows a series of quads into a 3D algorithm that
grows a series of cubes. In addition, we altered the man-
ner in which additional regions are added to the world via
seeding in order to allow a more natural and usable fit to the
affordances provided by the geometry.

Related Work
Most of the commonly used spatial decomposition tech-
niques are limited to 2D representations of the world. A
good overview of how these 2D techniques work can be
found in (Hale, Youngblood, and Dixit 2008) or (Tozour
2004). In addition to these traditional 2D techniques, there
are several algorithms that work natively in 3D.

Recently, work has been conducted to create 3D nav-
igation meshes using a rendering based approach called
Render-Generate (Axelrod 2008). This approach works by
iteratively rendering depth maps of the world and using these
maps to calculate the locations of the floors and ceilings
along with the positions of any obstacles. Using the slopes
and obstructions present in these depth maps it is possible
to find areas the agent can stand in. By connecting adjacent
standable areas a walkability map can be generated. How-
ever, decompositions generated by this algorithm are limited
to constant cell sizes, usually the size of the agent that nav-
igates the world (so that the agent can stand in every cell),
and no simplification is done on the resulting graph. This
tends to produce meshes in which relatively small areas have
a large number of regions.

Automatic Path Node Generation (Ratcliff 2008) is an-
other 3D algorithm for navigation mesh generation. In this
algorithm, the world is tessellated into a series of triangles.
This list of triangles is culled down to places that a charac-
ter in the game world could stand upon. At this point the
algorithm finds the centroids of each triangle. These cen-
teriods are transformed into rectangles by following sim-
ple space filling volume rules. These new rectangles are
checked for collisions with world geometry and any invalid
rectangles are discarded. Next, the algorithm attempts to
calculate paths between these rectangles by trying to walk a
character through the game geometry and seeing which rect-
angles are accessible to each other. This information is used
to build the final connectivity graph, which creates a navi-
gation mesh (or a series of connected disjoint meshes). This
approach works well for agents that just walk from point A
to B, but does not inherently handle cases where the agent
can move via methods other than walking such as jumping
or climbing.

Delaunay Triangulations can be directly extended into 3D
to produce a purely triangular decomposition (de Berg et al.
1998). The Delaunay algorithm is straightforward—every
vertex present in the world is connected to every other ver-
tex to generate a series of triangular prisms such that they do
not intersect any prisms already created. The algorithm then
attempts to reform the triangles that compose these prisms in
order to ensure that the average minimum interior angle of
the resulting set of triangular prisms is maximized. This al-
gorithm generates an excellent coverage decomposition that
works well for navigation, but can create problem areas of
small prism faces that cause problems with localizing ob-
jects to a single area.

Most waypoint based navigation methods can be extended
into 3D, since they are just selecting points in space and
finding the open paths between them. However, using such
methods discards many of the benefits provided by having a
navigation mesh. These benefits include such things as ef-
ficient information compartmentalization and the improve-
ments to collision detection.

Methodology
The primary contribution of this paper is a novel algorithm
inspired by ASFV to break up the free space in a 3D envi-
ronment into a series of convex polyhedrons. This collection
of polyhedrons will clearly define the empty negative space
in the world in contrast to the positive space defined by the
static world geometry (e.g., buldings). We refer to this algo-
rithm as Adaptive Space Filling Volumes 3D (ASFV3D).

The Adaptive Space Filling Volumes (ASFV) algorithm,
which inspired our 3D algorithm, operates in the following
manner. First, the ASFV calls for the placement of a grid
of unit sized quads into the world to be decomposed. These
quads are provided an iterative chance to expand in every
direction. At this point, the algorithm is very similar to the
classic Space Filling Volumes. The first difference and rea-
son for the Adaptive in this algorithm’s name occurs when
one of the growing vertices of a quad hits a piece of obstruct-
ing geometry. Unlike Space Filling Volumes, when ASFV
encounters an obstruction it has the ability to dynamically

143



increase the order of its growing quads into more complex
polygons—though it will ensure that each polygon is still
convex. After all the polygons have grown to the maxi-
mum possible extent, the algorithm will attempt to reseed
the world with more unit sized quads that are then provided
with the ability to grow. This cycle of grow and seed con-
tinues until no more seeds can be placed at which point the
world will be fully decomposed.

Adaptive Space Filling Volumes 3D
The Adaptive Space Filling Volumes 3D (ASFV3D) algo-
rithm is described in Algorithm 1. There are two constraints
on the input to ensure the validity of the decomposition.
These constraints are similar to the ones for the 2D version
of the algorithm and are as follows. First, it is assumed that
all of the positive space regions in the input are convex. If
the input regions are not natively convex they can be sub-
divided into convex regions. An important invariant which
should be pointed out here is that our own generated regions
end every phase of growth in a convex state. Second, once a
free area has been claimed by a region, then that region must
maintain its ownership of that area.

Our algorithm begins in a state we refer to as the initial
seeding state by planting a grid based pattern of single unit
regions across the environment to be decomposed. If the
proposed location of a region is contained within a positive
space area, it is discarded. This grid extends upward along
the z-axis as well. After placement, the seeds are allowed to
fall in the direction of gravity until they hit either the ground
or an obstruction at which point they stop. If this falling
results in multiple seeds landing in the same place then du-
plicates are removed. Our regions are initially spawned as
cubes with 6 faces given in a clockwise order from the clos-
est vertex to the origin point and then the top and bottom
faces. These cubes are generated to be axis aligned. After
being seeded into the world each region is iteratively pro-
vided the chance to grow. There are two possible cases for
successful growth. The base case occurs when all positive
space (impassable) regions are axis aligned. The more ad-
vanced growth case allows for non-axis aligned convex re-
gions to be present among the positive space regions.

First, we shall examine the base case for growth in our
algorithm. Each region is iteratively selected and provided
the opportunity to grow once each frame. Growth occurs
in the direction of the normal to each face of the region.
We attempt to move the entire face in a single unit in this
direction. We then take our proposed new shape and run
three collision detection tests. We want to ensure that no
points from our growing shape have intruded into a positive
space or another region and that no points from either of the
aforementioned obstructions would be contained within our
newly expanded shape. Finally, the region performs a self
check to ensure it is still convex in its new shape. Given that
all these tests return acceptable results, we will allow the
shape to finalize itself into that new configuration. If any of
those conditions are unacceptable then it means that we had
a collision. If the world is axis aligned when we reach this
state we know that we were parallel to, as well as adjacent
to, the shape we have collided with in our last size, which

Figure 1: An illustration of the various cases present in
ASFV3D. All growing negative space regions are shown
in white. Growth is shown with an arrow. (a) Shows the ba-
sic growth case, (b) shows the complex case where growth
is stopped by encountering a vertex of positive space, and
(c) shows the complex case where the negative space re-
gion splits to adapt to a single vertex colliding with positive
space. The colliding vertex is marked with a circle; the pos-
itive space is not shown to allow the algorithm’s response to
the collision to be visible. (d) Shows an example of the col-
lision case where two vertices collide with a positive space
obstruction.

is the desired ending condition for region growth as seen
in Figure 1(a). In this case, we return to our previous size
and set a flag to never attempt to grow that face again. We
then allow every other face in the region to grow in the same
manner. Once each face of a region has been provided the
chance to grow a single unit, we proceed to the next region.
This method of growth is sufficient to deal with all cases for
axis aligned positive space regions.

The advanced case for growth in the algorithm deals with
positive space regions that are not axis aligned. For the ad-
vanced cases, the algorithm begins by incorporating every
step in the base case and expands on it. The algorithm cy-
cles through each region and provides each face in the region
with an opportunity for growth. Here, unlike the base case,
we cannot use the properties of the axis aligned world to
conclude that we are parallel to the object we have collided
with. Hence, we will need to take some additional steps to
ensure that we arrive at a decomposition with good cover-
age. In particular, we have to consider four separate cases
of collision. Of these four cases, three cases are based on
the number of the vertices in the growing face that have col-
lided with a positive space area. The fourth case arises when

144



Figure 2: An illustration of ASFV3D seeding its way up a
stair case. In each timestep a new seed is placed and then
allowed to grow as much as possible. Positive space re-
gions are shown in grey, negative space regions are shown
in white. The world is viewed from the side and extends to-
wards and away from the viewer. (a) Shows the results of
seeding a world without applying a gravity model to place
seeds. (b) Shows the results of seeding a world using gravity
to modify the seeds locations. Shows the results of seeding
a world without applying a gravity model to place seeds.

a vertex from a positive space object intersects a negative
space region.

The first advanced collision case occurs when three or
more vertices on the face of a region intersect a positive
space in the same growth step. It follows that we have en-
countered a plane which is parallel to this growing negative
space region. In this case, despite the fact the entire world
is not axis aligned, the two faces we are currently consider-
ing are axis aligned and this can be addressed by the base
collision case in which we simply stop growing.

The collision case resulting from encountering one or
more vertices of a positive space object is actually the sim-
plest of all collision cases. In this case, the face that inter-
sected the object steps back to its last non-colliding location
and further growth is ceased in that direction. It might seem
strange that when a positive space region is encountered in
this manner that the algorithm stops trying to decompose in
that direction, but there is no way to achieve a better approx-
imation of the colliding object without introducing concave
regions or reducing our coverage as shown in Figure 1(b).
The gaps in the decomposition resulting from this case will
be filled via seeding and will be discussed later.

Algorithm 1: ASFV3D(NegativeSpaceRegions)
StillGrowing = true ;
/* Populate the world with the initial

user defined seeds */
if NegativeSpaceRegions.isEmpty() then

seedWorld();
while StillGrowing do

StillGrowing = false ;
for NegativeSpaceRegion in World do

for Face in NegativeSpaceRegion do
Face.Translate(Face.Normal);
if Face.isNotColliding() then

StillGrowing = true ;
else

/* A collision has occurred.
First check to see if it
possible to increase the
order of the polyhedron */

if Face.isSplittable() then
/* Adapt the face to

follow the surface it
intersected. Insert an
additional face at the
point of collision
which shares edges with
every face that
contained the vertices
that are being split.
*/

Face.SplitPoint();
/* Lock the growth of the

newly created vertices
to lie on the equation
of the plane they
intersected */

Face.ConstrainPoint();
StillGrowing = true ;

else
/* The collision cannot be

handled by splitting */
Face.Translate(−1 *
Face.Normal);
Face.canGrow = false;

List seedPoints = new List ;
/* Find places to place new Seeds in the

world */
seedPoints.Append(World.Seed());
if not seedPoints.isEmpty() then

/* Restart growth algorithm on the new
points */

ASFV3D(seedPoints);
/* Run combining and clean up procedures

*/
World.combineConvexShapes();
World.removeColinearPoints();
World.RemoveDegenerateFaces();

145



The final two cases for collisions with world geometry
involve inserting an additional face into the expanding re-
gion to closely adapt to the positive space geometry it en-
countered. The first case occurs when a single vertex from
a growing negative space region intersects with a positive
space obstruction. In this case, the vertex and each edge
leading to it is split into a new face composed of three new
vertices. The normal of this face is set to the negation of
the normal of the positive space face it collided with and
three points defined to lay directly on the positive space
face. From this point forward the new points are restricted
to only lie on the plane with which they have intersected.
This means that when the other faces of the negative space
regions grow they will pull this new face across the face it
intersected. These new points are restricted from growing
beyond the plane to prevent more non-axis aligned geom-
etry from being exposed to the world. The results of this
decomposition are shown in Figure 1(c).

The next case occurs when two points simultaneously in-
tersect the same positive space face. In this case, a new face
needs to be inserted into the negative space region in order
to better approximate a positive space obstruction. Both of
the intersecting points are split in this case resulting in four
points that will form a new quad shaped face. It follows
that if exactly two vertices intersect the same face of another
shape then the entire edge between these points also inter-
sects that shape. This means that we are, in effect, splitting
that edge to become a new face. This new face is once again
created using the negation of the normal of the face it in-
tersected (as its normal) and made coplanar with the face it
intersected. These new points are locked such that they can
only move on the face that they intersected (for the same rea-
son as in the previous case). This case is illustrated in Figure
1(d). This will allow near complete decomposition of the
free space in close proximity of negative space without vio-
lating any of the underlying assumptions of the algorithm.

The growth techniques described above decompose the
world reasonably well, but to assure a complete decompo-
sition additional steps are required. As in traditional ASFV,
we employ a seeding algorithm to decompose the free space
that might have been initially missed. This procedure is
outlined in Algorithm 2. Once all of the regions initially
placed into the world have grown to their maximum extent
the seeding algorithm is initialized. Each face of every re-
gion is given an opportunity to produce a seed in the world.
The best approach for this seeding is to locate each distinct
pocket of free space adjacent to a face and place a seed in
it. It is extremely important for the quality of the decom-
position that these seeds are allowed to fall according to the
world gravity model, stopping only when they hit some pos-
itive space.

Applying gravity to seeding produces a much cleaner and
more usable decomposition. Consider the two examples
given in Figure 2, which shows possible methods of seed-
ing a staircase from a negative space region at the bottom of
the stairs. In the case shown in Figure 2(a), gravity is not
applied to the seeding, and the initial seed grows out skip-
ping over the first stair. Additional seeds are then placed
above and below this first region until the entire stair case is

decomposed. This creates a navigation meshes that implies
that agents can float up from the bottom of the stairs and end
up half way up the stair case, which most likely is not true.
In the better decomposition shown in Figure 2(b), seeds are
affected by gravity. In this case, a seed is generated from
the first negative space region and then allowed to fall to the
floor of the stair directly adjacent to it. This seed then grows
to fill this single stair and all of the space above it. After
growing, this new region will generate another seed that fills
another stair completely. This cycle will continue until the
staircase is completely decomposed. By comparing the two
generated decompositions for the staircase it is obvious the
decomposition with gravity generates a more usable decom-
position as it is possible to stand in a single region on a stair.
This is not possible for most of the stairs in the non-gravity
based seeding algorithm, as many of the regions on the stairs
do not properly represent how stairs are used.

Aside from the incorporation of gravity-based seeding,
the seeding system in ASFV3D is identical to the 2D ver-
sion and allows the algorithm to achieve complete decom-
positions of free space. This seeding system is especially
effective in the case discussed above where an obstruction
intersects the face of a free space region. After the seed-
ing algorithm has concluded, the main growth algorithm is
called again on the newly placed seeds providing them with
an opportunity for growth. This cycle of seeding and grow-
ing continues until no new seeds are placed in the world at
which point the world is fully decomposed and the algorithm
terminates.

Algorithm 2: Seed()
List seedPoints = new List;

for NegativeSpaceRegion in World do
for Face in NegativeSpaceRegion do

List possibleSeeds =
Face.GenerateSeeds();
for seedPoint in possibleSeeds do

while seedPoint.isInOpenSpace() do
seedPoint.translate(GRAV DIR);

seedPoint.translate(-GRAV DIR);
seedPoints.extend(possibleSeeds);

seedPoints.removeDuplicates();
return seedPoints;

Experimentation
We evaluated the ASFV3D algorithm by comparing it with
two 3D spatial decomposition algorithms: Extruded Space
Filling Volumes (ESFV) and Automatic Path Node Gener-
ation (APNG). For our testing environment we wanted a
game world feature that would be a stumbling block for most
2D based decomposition algorithms. Hence, we chose a
staircase with a non-axis aligned ramp leading up to it as our
test example. There are three main reasons for this. First, a
set of stairs contains many walkable steps, each of which
is set at a unique height above the ground, so even individ-
ually a staircase is actually difficult to decompose. Algo-

146



rithms dependent on projecting each ground plane level into
2D must project each step into 2D separately which is time
consuming, or the stair case decomposition will have to be
performed by hand and linked into the different levels of de-
composition it connects as a special case. Secondly, while
there are multiple possible decompositions for this test case,
some forms of decompositions are dramatically better than
others for use in agent navigation as shown above (Figure 2).
Third, due to the number of regions present in more complex
decompositions, it is hard to visualize the decomposition, so
we felt a simple but difficult test case would best illustrate
the capabilities of ASFV3D. The three algorithms generated
the decompositions seen in Figure 3.

Figure 3: A comparison of multiple decomposition meth-
ods when building a navigation mesh for a stair case. (a)
Extruded Space Filling Volumes. (b) Automatic Path Node
Generation. (c) ASFV3D

Table 1: Comparison of Multiple Spatial Decomposition
Algorithms

Algorithm Number of Regions Coverage
SFV 5 70%

PATH NODE 12 90%
ASFV3D 5 100%

The results of decomposition for each of the three algo-
rithms were compared in terms of how many regions were
produced and the coverage (i.e. the percentage of the empty
space in the world contained in the decomposition). These
results are summarized in Table 1. ASFV3D outperforms

both ESFV and APNG in terms of coverage, and is the only
decomposition algorithm to provide complete coverage of
the world. Having a high coverage decomposition is im-
portant for tasks such as pathfinding, information compart-
mentalization, or collision detection. This is because, as the
coverage percentage drops, gaps and unwalkable areas form
in the navigation mesh, which dramatically reduces its use-
fulness. Results also indicate that ASFV3D is comparable
with SFV when it comes to producing the fewest regions.
This is an important consideration as fewer regions means
a reduced search space for path finding algorithms or other
graph search algorithms. Overall, when both coverage and
number of regions are taken into account ASFV3D produces
the best decomposition for the difficult test case presented
here.

Conclusion
Adaptive Space Filling Volumes 3D provides a fresh take on
decomposing space in 3D. Instead of using 2D simplifica-
tions and extrusions it operates in the 3D free space present
in the world environment. This technique provides higher
coverage and good decomposition even in difficult to de-
compose areas such as stairs or other vertical transitions. In
addition, since this algorithm decomposes the entire world at
once, it removes the need to join multiple different sections
(e.g. floors) of decompositions by hand.

Acknowledgments
This material is based on research sponsored by the US
Defense Advanced Research Projects Agency (DARPA).
The US Government is authorized to reproduce and dis-
tribute reprints for Governmental purposes notwithstanding
any copyright notation thereon. The views and conclusions
contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of DARPA or
the US Government.

References
Axelrod, R. 2008. AI Game Programming Wisdom 4.
Charles River Media. chapter 2.6 Navigation Graph Gen-
eration in Highly Dynamic Worlds, 125–141.
de Berg, M.; van Kreveld, M.; Overmars, M.; and
Schwarzkopf, O. 1998. Computational Geometry : Al-
gorithms and Applications. Springer.
Hale, D. H.; Youngblood, G. M.; and Dixit, P. 2008.
Automatically-generated Convex Region Decomposition
for Real-time Spatial Agent Navigation in Virtual Worlds.
In Artificial Intelligence and Interactive Digital Entertain-
ment (AIIDE).
Ratcliff, J. W. 2008. AI Game Programming Wisdom 4.
Charles River Media. chapter 2.8 Automatic Path Node
Generation for Arbitrary 3D Environments, 159–172.
Tozour, P. 2004. AI Game Programming Wisdom 2.
Charles River Media. chapter 2.1 Search Space Represen-
tations, 85–102.

147


	AIIDE09
	Contents
	Index
	AAAI Website




