
Using Machine Translation to Convert
Between Difficulties in Rhythm Games

Kevin Gold
Rochester Institute of Technology

Alex Olivier
Wellesley College

Abstract

A method is presented for converting between Guitar
Hero difficulty levels by treating the problem as one
of machine translation, with the different difficulties as
different “languages.” The Guitar Hero I and II discs
provide aligned corpora with which to train bigram-
based language models and translation models. Given
an Expert sequence, the model can create sequences of
Hard, Medium, or Easy difficulty that retain the feel of
the original, while obeying heuristics typical of those
difficulties. Training the model requires a single pass
through the corpus, while translation is quadratic in the
length of the Expert sequence. The method outperforms
a recurrent neural network in producing sequences that
match the hand-designed levels. The method may make
it easier for amateurs to produce content for the Rock
Band Network.

Introduction

With the new Rock Band Network program, rhythm game
maker Harmonix has given the general public access to the
tools necessary to author new Rock Band content. But these
amateur authors may have little interest or experience in
hand-coding note sequences that are easy enough for novice
players. The game has four different difficulty settings,
and the exercise of making four passes through the song
to decide which notes to remove or shift is tedious at best.
Moreover, the independent author may not take the time to
playtest the song with players of various skill levels. The
present paper provides a method by which independent au-
thors might author a single Expert track, and then “translate”
the track to lower difficulty levels, using a machine transla-
tion algorithm trained on Harmonix’s earlier games, Guitar
Hero I and II.

Rhythm games give players the illusion of playing actual
instruments by playing recordings of electric guitar, bass,
and drums as players hit the color-coded instrument keys in
time to the music. The mapping of actual musical notes to
colored gems is many-to-one; hitting a single note often re-
sults in a whole chord or arpeggio being played. Players are
required to hit fewer notes on easier difficulty levels. Experi-
enced players typically play on the “Expert” difficulty level,

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Left: A sample screenshot from the Guitar Hero II
Expert version of “Search and Destroy” in the Frets on Fire
emulator. Right: The official Medium version of the same
segment. Notes are omitted to make the song easier, while
retaining the melodic feel.

which tries to reproduce the rhythms of the original notes
as faithfully as possible and requires the player to slide the
hand up and down the plastic guitar controller. Casual play-
ers typically play on “Easy” or “Medium,” which typically
go no faster than eighth notes and do not require moving the
hand (Figure 1). There are only a few hard-and-fast rules for
authoring on the easier levels – no chords and only 3 note
colors on Easy, only 4 note colors on Medium – and the rest
is left to the author’s taste, balancing difficulty with captur-
ing the feel of the music.

The key idea in the present paper is that the different dif-
ficulty levels can be treated as different “languages,” and
the existing songs on the official Guitar Hero discs pro-
vide an aligned corpus with which to do machine transla-
tion. The probabilistic translation incorporates factors such
as the probability of transitions between chords, the prob-
ability that a note will be omitted if it does not fall on the
beat, and the probability that a big jump in the Expert se-
quence will be translated into a smaller jump on the easier
difficulty levels.

Related Work

The idea of “machine translation for game content” is new to
this paper, but there is ample prior work on generating game
content that achieves some target difficulty. On the game
side, there have been several approaches to automatically
generating or modifying game content to achieve an optimal
difficulty. The idea of creating challenges that are both in-
teresting and of the appropriate difficulty was pursued using

27

Proceedings of the Sixth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment

neural networks and evolutionary algorithms in a Pac-Man
game, with feedback provided by built-in metrics for diver-
sity and challenge (Yannakakis and Hallam 2004). A neural
network has been trained to predict player fun, challenge,
and frustration in Super Mario Bros. levels, based on the
number, width, and variation of pits, and whether the player
needed to change direction (Pedersen, Togelius, and Yan-
nakakis 2009). A dynamic difficulty adjustment system for
Half-Life used concepts from economics to identify when
the player’s inventory of resources such as health or am-
munition were encountering shortfalls, which could be used
to supply such resources dynamically within a level (Hu-
nicke and Chapman 2004). Most famously, the recent game
Left 4 Dead placed zombies dynamically in response to a
model of the player’s level of arousal (Booth 2009). These
dynamic approaches to difficulty balancing can make sense
when modeling a living, changing environment, but there
is also something to be said for creating a set of static chal-
lenges which the player can learn to master. In particular, the
rehearsal of content that remains the same from playthrough
to playthrough more closely resembles learning to master a
musical piece; this is the reason for the existence of musical
games’ “rehearsal modes,” in which the player can practice
specific difficult passages at slower tempos.

The idea of probabilistically replicating musical events
from an established corpus to emulate a particular composer
was used in David Cope’s famous EMI system (Cope 1990).
A recurrent neural network was trained on Sonny Rollins’
saxophone improvisations to reproduce his style (Franklin
2001). The present work might be seen as similar to these,
in that it is reproducing the work of human “composers” on
the easier difficulty settings, but also bears some similarity
to the work on AI for musical performance, since the sys-
tem is choosing which notes are most important to express.
Approaches to learning from established performances have
included recurrent neural networks (Bresin 1998) and case-
based reasoning (Arcos and de Mantaras 2001). The chal-
lenges of the present work are somewhat different from any
of these; the highly constrained choices for the algorithm at
once greatly reduce the search space, while at the same time
forcing more and different tradeoffs, since with only three
notes, the sequence often runs out of room to ascend or de-
scend.

The following work is novel in that it is the first to apply
machine translation techniques to a non-linguistic corpus of
video game content. It is also the first to specifically address
the problem of automatically generating rhythm game note
content. While the model could readily incorporate audio
track information into the decision process by conditioning
its probabilities on volume and inferred pitch, the current
work omits this step, so as to keep the focus on the idea
of simply translating game content from one “language” to
another.

Methods

The techniques used here are borrowed from statistical nat-
ural language processing; see (Manning and Schütze 1999)
for a more thorough introduction. The “languages” that we

are translating between are the different Guitar Hero diffi-
culty levels. We wish to maximize the probability of the
easy message E, given the expert message X. Using Bayes’
rule, this becomes:

P (E|X) ∝ P (X |E)P (E) (1)

P (X |E) is given by the translation model, and P (E)
comes from the language model. These two factors pro-
vide the balance between faithfulness to the original song
(translation model) and faithfulness to the target difficulty
(language model).

The model can be further broken down into note transi-
tions, note translations, and timing. Each component will be
described in detail before the search algorithm is described.

Language model: Note and chord transitions

The simplest component of the model is the language model
for the colors used in notes and chords in the target language.
This is simply a bigram model, in which the probability of
each note or chord depends only on its predecessor:

P (E) =

|E|∏

i=1

P (Ei = c′|Ei−1 = c) (2)

Though there are technically 25 − 1 = 31 different possi-
ble chord or note transitions, in practice, no difficulty level
lower than Expert uses more than two notes in a chord. Thus,
to represent this component of the model, a 15× 15 table T
is built for all possible transitions between notes or 2-note
chords.

The language model ensures that the ease of transitions
between notes and chords is appropriate for the difficulty
level, and that more difficult notes and chords are less fre-
quent for easier difficulty levels.

Translation model: Note movement and chord
translation

The overall translation probability is the product P (X |E) =
Pc(X |E)Pχ(X |E), where Pc(X |E) is the probability of a
particular color translation for the melody, and Pχ(X |E) is
the probability of a particular translation of the supporting
chords.

The primary goal in translating the notes is to ensure that
notes maintain their direction of movement as much as pos-
sible. To this end, pairs of notes on the expert difficulty are
matched to pairs of notes on the easy difficulty:

Pc(X |E) =

|E|∏

i=1

P (Xi = c′, Xi−1 = c|Ei = γ′, Ei−1 = γ)

(3)
This equation assumes that the expert and easy sequence

are of the same length, which is never actually true; but the
“Timing” section below will deal with the problem of drop-
ping notes.

Unlike the language model, the translation model does not
keep track of every possible set of chord transitions; since
the size of this probability table grows as the fourth power

28

of the number of symbols, using even just two-note chords
would give a 154 = 50,625 entry table, which we did not
think the corpus could support. Instead, these translation
probabilities use just the top note of each chord, producing
a 54 = 625 entry table.

Chord types are translated independently of color:

Pχ(X |E) =

|E|∏

i=0

P (X.chordi = χ′|E.chordi = χ) (4)

The chord types here are classified by their intervals, and
not the specific notes; the types are singleton, 1-2, 1-3, 1-4,
and 1-5, with 3-note chords lumped with 1-5 chords as diffi-
cult, Expert-level only chords. The language model will take
care of removing awkward chord transitions in the target lan-
guage; this term simply ensures that chords retain roughly
the same feel as the expert chords.

Notice that in all these cases, the conditional probabilities
are perhaps the reverse of what is intuitive, because the use
of Bayes’ rule to incorporate the language model forced us
to turn around the probabilities; these are the probabilities
of the expert sequence given the easy sequence, when the
ultimate goal is to produce an optimal easy sequence.

Timing

Easier sequences tend to drop notes and chords that occur in
rapid succession or do not fall on the beat. While it might
seem natural to treat the “null note” as just another symbol in
the above models, this would make the bigram models less
helpful than they could be, since the color of a note depends
heavily on the color of the previous note, regardless of how
long ago it was played.

Instead, the choice of which notes to drop is performed
independently before color translation. The chance of drop-
ping a note depends on how long it has been since the last
easy note, as well as whether the note falls on the beat. Let K
be the sequence of length |X | that is 1 if the corresponding
expert note is kept for translation, and 0 if it is dropped. The
probability of keeping a note depends on the time since the
last voiced note on the easy sequence (T (K1...i) in Equation
5), and whether the note under consideration is on the beat
(b(Xi)):

P (K) =

|X|∏

i=1

P (Ki|T (K1...i), b(Xi)) (5)

The Guitar Hero I and II corpora consistently use 480
midi ticks to a beat, which makes the problem of calculating
and storing these probabilities from their frequency in the
training corpus relatively straightforward. However, some-
times a particular time between notes is never observed in
the training corpus. In such cases, the algorithm treats the
probability of keeping the note as e−4, and the probability
of dropping it as e−b, where b is the number of beats since
the last note. While these do not sum to 1, this has the de-
sired effect of making dropping the note more likely than
keeping it for uncommon intervals less than a measure long

(since they are probably awkward), while exponentially de-
creasing the likelihood of dropping a note after a long delay
(since the player is probably getting restless).

If a note is kept, its duration is copied directly from the
Expert sequence.

Tree search algorithms

Building the probability tables above requires only a linear
time pass through the training corpus, a huge advantage in
computation time over neural network training; but search-
ing for an optimal easy sequence given an expert sequence
requires a bit more finesse. The brute force approach of cal-

culating the probabilities of all 16|X| sequences of zero, one,
or two notes is not feasible for expert sequences of 1000
notes, so it is rather important to use a polynomial time al-
gorithm. The methods we shall describe below take O(|X |2)
steps to choose the notes to keep, and O(|E|2) steps to
choose the optimal chords and notes.

The search algorithm for the optimal timing relies on
the following insight. Suppose P (K1...j) > P (K ′

1...j) for

two sequences K and K ′, where P (K1...j) is the proba-
bility given by multiplying the first j terms of P (K). If
Kj = K ′

j = 1 (both subsequences end with the same note

being kept), then K ′ will never have a chance to “catch up”
to K , because any sequence that could be added to K ′ could
be added to K to produce a higher probability. We can say
that K ′ is dominated by K . In iterating through Xi to pro-
duce new possible sequences, the search does not need to
grow exponentially at all, because for any set of sequences
ending with a note kept at time i, one will dominate all the
others.

Thus, even though there are 2i possible sequences of K
up to note i, there are actually only i sequences that are “vi-
able” up to that point – one for each possible time of last
kept note. The timing algorithm, Algorithm 1, makes use
of this fact by building a tree of possible sequences. Each
node in the tree corresponds to a kept expert note, and each
path from the root to a leaf or interior node corresponds to a
note sequence. Each node also stores the log probability of
the sequence that leads to that node. (Log probabilities are
used to prevent underflow.) When incorporating a new note
from the expert sequence X , it only needs to be added in one
place on the tree, where the resulting sequence’s probability
is higher than anywhere else, because one sequence ending
in that note dominates all the others. All other nodes on
the tree are updated with the conditional probability of “no
note,” because they can only remain viable by not adding
the note there; they represent the optimal subsequences with
no notes kept after their own. When the algorithm finishes
processing the sequence X , the tree will have exactly |X |
nodes, with the path to each node giving the optimal expert
note sequence that ends with that node’s note as the last note
of the song. It is then a simple linear time search to find
the node that has the highest log probability, and return the
notes on the path from the root to that node.

The time required to build the timing tree is O(|X |2),
since each note in X must be tried against each previous
note’s node (including interior nodes) to find the sequence

29

Algorithm 1 The algorithm for construction of the timing
tree.

for i = 1 to |X | do
candidateList← {root}
bestLogProb← −∞
bestParent← root
while candidateList �= ∅ do

n ← candidateList.pop()
lp← n.lp + lgProbNoteOn(Xi.time, n.time)
if lp > bestLogProb then

bestParent← n
bestLogProb← lp

end if
candidateList.push(candidate.children)

end while
for all nodes n in tree do

n.lp← n.lp + lgProbDrop(Xi.time, n.time)
end for
bestParent.children.push(newnode(Xi, bestLogProb))

end for
return pathToMaxLogProb(root)

that ends in Xi that dominates the others.

The sequence K of boolean values can then be used to
filter the expert sequence X into a shorter sequence, X ′, that
is the length of the target easy sequence E.

Once the optimal selection of notes to translate has been
found, the same approach can be used to build a second tree,
this time for colors and chords. The same insight that jus-
tified Algorithm 1 applies – namely, that for any set of se-
quences ending in a particular note or chord, one will dom-
inate all the others, because any future subsequence added
to one of the dominated subsequences could be added to
the dominating subsequence to produce a higher probabil-
ity. When translating the chord at time i, it is only necessary
to add one node to the tree for each possible one or two-
note translation, where the resulting probability is highest.
Thus, the tree gains at most 15 nodes for each step: one
for each single note or two-note translation. The full algo-
rithm is omitted for space, but is similar to Algorithm 1. The
primary difference, besides using the language model and
translation model probabilities instead of the timing proba-
bilities, is that nodes are no longer allowed to be attached
anywhere, but must be attached to a node representing the
previous note in the sequence. (This means some branches
of the tree will become dead; a further optimization could
prune them so that they are not traversed during the search.)

The algorithm can be further sped up if one assumes that
chords are only ever translated to chords of their own size or
smaller, so that a maximum of 5 nodes are added for single-
ton expert notes. Notes and chords that are prohibited on the
target difficulty level are not considered at all.

By a similar logic to the first tree, building the tree re-
quires O(|E|2) time, and finding the optimal sequence once
it is built is linear in |E|.

Experiments

The free open source software Frets on Fire (Kyöstilä et al.
2006) was used to extract the note sequences from the Gui-
tar Hero I and II Playstation 2 discs. A model for each diffi-
culty level was built using a 21,536 note corpus of 25 songs
from Guitar Hero I and Guitar Hero II. The algorithm then
translated six songs that were not in the training corpus.

For a baseline comparison, a simple Elman recurrent neu-
ral network (Elman 1990) was trained on the same corpus of
25 songs, using the PyNeurgen library (Smiley 2008). The
output layer consisted of 5 nodes, one for each color, rep-
resenting the possibility of producing any combination of
notes or no note at all for each chord in the Expert sequence.
(The network was trained with +1 representing a note and
-1 representing no note, and the test output was thresholded
at > 0.2 to produce a note.) The hidden layer contained 6
nodes. The input layer consisted of 13 nodes – 5 represent-
ing the 5 notes, 6 that were copies of the hidden layer from
the previous time step, and two inputs to represent timing.
One timing input represented how strongly the input note or
chord fell on the beat: 1 for being on the beat, 0.5 for a syn-
copated eighth note, 0 for a triplet, -0.5 for a sixteenth note,
and -1 for all other notes. The other timing input represented
the number of beats b that had passed since the last Expert
note, and was a floating point input of min(b−1, 1) to give a
range between -1 and 1. This recurrent neural network was
trained for 50 epochs on the training corpus, with a learning
rate of 0.3, resulting in a mean-squared error that changed
only 0.00002 between epochs 49 and 50.

In order to assess our model’s songs qualitatively, five
subjects of varying skill level were recruited to play-test the
sequences produced by our model. Subjects were asked to
play two versions each of two different songs using Frets on
Fire. In one comparison, subjects played an Easy song pro-
duced by RNN and an Easy song produced by our model.
For the other comparison, subjects played an original Guitar
Hero song of the difficulty of their choice, and our model’s
version of the same song at the same difficulty. Subjects
were given a practice song before beginning the experiment,
and were given each comparison in balanced presentation
order. They were then asked to provide feedback on per-
ceived difficulty, perceived entertainment value, and how
well the notes played matched the melody of the song, and
then select the song they preferred (if either).

Results

Figure 2 compares the output of our algorithm and the re-
current neural network to the note sequences on the original
Guitar Hero discs for the Hard, Medium, and Easy difficul-
ties.

The algorithm differences from the “official” versions
can be broken down into two categories: Timing and
Color/Chord. For timing, we can define precision as the
proportion of notes produced that fell on the same beat as
a note in the official sequence, and recall as the number of
notes in the official version with corresponding notes at the
same time in the algorithm output. (Note that “recall” is be-
ing used in a technical IR sense; the algorithm never saw the

30

Figure 2: Comparing the algorithm and RNN sequence out-
put to the original songs on the Guitar Hero discs, for the
six songs in the test set. Differences (right side of dotted
line) are arranged from left to right according to decreasing
desirability. From top to bottom: Hard, Medium, and Easy.

easy versions of the target songs.) Under this metric, timing
precision was 0.88, 0.64, and 0.70 for Hard, Medium, and
Easy for our algorithm, compared to 0.60, 0.24, and 0.21 for
the recurrent neural network. Timing recall was 0.93, 0.92,
and 0.68 for our algorithm, compared to 0.75, 0.26, and 0.15
for the RNN. Thus, our algorithm was superior in precision
and recall across all difficulties.

For the notes and chords that match in time, we can di-
rectly compare their colors, treating notes that move in the
same direction and share the same chords as the original as
correct responses. (Our algorithm was incapable of produc-
ing difficulty-inappropriate colors, so exact color is assumed
not to matter much.) Color/Chord accuracy is then 91%,
78%, and 81% for our algorithm on Hard, Medium, and
Easy, compared to 46%, 41%, and 49% for the RNN.

Chi-square tests confirm that our model is significantly
more likely than the RNN to produce exact matches (p <<
0.0001 for each difficulty).

Figure 3: The machine-translated version of the same pas-
sage as Figure 1, translating from Expert to Medium using
a corpus that did not include the target song. Though dif-
ferent from the hand-designed “ground-truth,” the song is
comparable in difficulty while actually capturing more of the
melodic movement.

Figure 3 shows some sample output for our algorithm
on the Medium difficulty for the same passage as Figure 1.
The figure demonstrates that being different from the ground
truth does not necessarily make the sequence bad. If any-
thing, the illustrated sequence captures more of the melodic
movement than the official version, while remaining simi-
lar in difficulty; it contains more notes, but does not use the
pinky to hit the blue key.

Though leave-one-out cross-validation was too computa-
tionally expensive for the RNN to be feasible over the large
corpus, it was run on all 31 songs for our algorithm to ensure
that the results were not an artifact of the particular songs
chosen. All measures were within 3% of the reported val-
ues for the 6 target song case, except timing recall on Hard
(85%) and Medium (87%). The full results are omitted for
space.

Out of five participants, four preferred our model’s se-
quence to the sequence produced by the RNN, while one
subject had no preference. The subject that preferred neither
version remarked that she felt unprepared for the difficulty
of either song, which may explain her indifference. When
asked to compare a sequence produced by our model with
the original Guitar Hero sequence, four subjects reported
that the quality of the sequence produced by our model was
negligibly different from that of the official Guitar Hero se-
quence. Only one subject voiced a strong preference for
the official sequence; this was on “Rock This Town,” a fast-
tempo song in which the model had included quarter notes
that were too fast for the inexperienced subject to reliably
play (see conclusions).

Figure 4 shows the “Percent correct” for each subject on
the original version and the model-produced version of their
chosen song and difficulty.

Conclusions

Given the novelty of the approach, the authors were some-
what surprised at its efficacy. Designing the model to be de-
scriptive but not too sparse was a careful balancing act, but

31

Figure 4: Subjects’ percent correct on their chosen songs
and difficulties, for the original song and the model-
produced song.

the corpus proved to be large enough that chords and con-
ditioning on the beat were added late in development with
no problem. The primary stumbling block during devel-
opment was how to account for a varying number of note
events; our early approaches suffered from a bias toward
short sequences. Once the timing step and color/chord step
were separated, and the number of events in the timing equa-
tion fixed, the algorithm produced reasonable sequences that
were relatively satisfying to play.

There are two directions in which this work could be pur-
sued. One is to incorporate more music-specific informa-
tion to achieve a better translation. The most noticeable er-
rors in the current approach occur when a sustained note is
omitted, often because it occurs off the beat. The algorithm
could probably achieve better performance if the timing step
took into account the duration of a note, in deciding whether
to keep it. The algorithm also does not currently make use
of any information at all in the accompanying sound file; it
would be a natural next step to add the relative volume or
energy of a note to the decision process. Tempo probably
should also play a role in the timing algorithm; the results
currently vary most from the official version on fast songs
like “Rock This Town,” since the algorithm does not take
into account the fact that notes are significantly more dif-
ficult when the tempo is sped up. To achieve the best per-
formance, these additional factors will have to be weighed
against the curse of dimensionality that they introduce; some
may not be worth the additional sparsity in the data.

It would be interesting to see whether a model with more
long-distance structure, such as a probabilistic context-free
grammar (PCFG), could achieve better performance than the
bigram model presented here. The current model does not
necessarily use a consistent sequence for a repeated passage,
which goes against the Harmonix authoring guidelines. If
simple memoization of previously translated subsequences
achieves this effect, more complicated approaches may be
unnecessary.

Musical structure aside, the second interesting possibil-
ity is applying machine translation to other kinds of game

content. It is common for fan-made content for first-person
shooter, real-time strategy, and roleplaying games to be
adapted to work with a game’s sequel when it comes out;
but finding equivalent units and terrain types must be done
by hand, and much content remains “untranslated.” Given
some examples, could machine translation convert Star-
craft scenarios to Starcraft II scenarios, or Doom WADs to
Doom 3 content, or Neverwinter Nights content to Never-
winter Nights 2? Translation of a linear genre, such as the
sidescroller or shooter-on-rails, should be very similar to this
work, while translating 2D and 3D “languages” would pose
an interesting research problem.

Acknowledgments

This work was supported by the Norma Wilentz Hess fel-
lowship of Wellesley College.

References

Arcos, J. L., and de Mantaras, R. L. 2001. An interac-
tive case-based reasoning approach for generating expres-
sive music. Applied Intelligence 14(1):115–129.

Booth, M. 2009. The AI systems of Left 4 Dead. AIIDE ’09
Invited Talk(October 15, 2009).

Bresin, R. 1998. Artificial neural networks-based models
for automatic performance of musical scores. Journal of
New Music Research 27(3):239–270.

Cope, D. 1990. Pattern matching as an engine for the com-
puter simulation of musical style. In Proceedings of the 1990
International Computer Music Conference, 288–291. San
Francisco, CA: International Computer Music Association.

Elman, J. 1990. Finding structure in time. Cognitive Science
14:179–211.

Franklin, J. A. 2001. Multi-phase learning for jazz impro-
visation and interaction. In Eighth Biennial Symposium on
Art and Technology.

Hunicke, R., and Chapman, V. 2004. AI for dynamic diffi-
culty adjustment in games. In Proceedings of the Challenges
in Game AI Workshop, Nineteenth National Conference on
Artificial Intelligence.

Kyöstilä, S.; Inkilä, T.; Kerttula, J.; and Korkiakoski, K.
2006. Frets on fire. http://fretsonfire.sourceforge.net.

Manning, C. D., and Schütze, H. 1999. Foundations of
Statistical Natural Language Processing. Cambridge, MA:
MIT Press.

Pedersen, C.; Togelius, J.; and Yannakakis, G. N. 2009.
Modeling player experience in Super Mario Bros. In Pro-
ceedings of the IEEE Symposium on Computational Intelli-
gence and Games.

Smiley, D. 2008. Pyneurgen neural network library.
http://pyneurgen.sourceforge.net.

Yannakakis, G. N., and Hallam, J. 2004. Evolving oppo-
nents for interesting interactive computer games. In Pro-
ceedings of the 8th International Conference on the Simula-
tion of Adaptive Behavior ’04: From Animals to Animats 8,
499–508. MIT Press.

32

	AIIDE10
	Contents
	Index
	Help
	Terms
	AIIDE 2010

