

DHPA* and SHPA*: Efficient Hierarchical

Game Worlds

Alex Kring, Alex J. Champandard, and Nick Samarin

Independent Researchers
awkring@gmail.com, alexjc@aigamedev.com, nicks@aigamedev.com

Abstract
In 2004, Botea et al. published the HPA* algorithm
(Hierarchical Pathfinding A*), which is the first detailed
study of hierarchical pathfinding in games. However,
HPA* can be optimized. In this paper, we introduce the
DHPA* and SHPA* hierarchical pathfinding algorithms,
along with a metric for comparing the dynamic performance
of pathfinding algorithms in games. We show that DHPA*
searches up to an order of magnitude faster than HPA*, but
consumes significantly more memory and produces slightly
less optimal paths. The SHPA* algorithm searches up to
five times faster than HPA* and consumes less memory,
but it also produces slightly less optimal paths, and is only
fit for static environments. When comparing the algorithms
in dynamic environments, our results show that DHPA*
often outperforms HPA*. Unlike many other hierarchical
pathfinding algorithms, both solutions presented in this
paper maintain a read-only terrain representation during
search, which simplifies programming and debugging, and
improves multithreaded performance.

1. Introduction
Modern video games require efficient pathfinding to sup-
port large numbers of agents moving through expansive
and increasingly dynamic environments. Recent games
Warhammer 40000: Dawn of War 2, and Splinter Cell:
Conviction, both contain large worlds where the obstacles
dynamically change the terrain representation (Jurney
2010; Walsh 2010). Hierarchical terrain representations
improve pathfinding performance by bounding path
searches to a smaller space, and restricting terrain changes
to a subset of the map..

Many hierarchical pathfinding algorithms applicable to
video games have been studied within academia (Holte et
al. 1996; Botea et al. 2004; Sturtevant and Buro 2005;
Demyen and Buro 2006; Bulitko and Björnsson 2009).
Arguably, the most appropriate hierarchical pathfinding
solution for video games is HPA*. The HPA* algorithm is

Copyright © 2010, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved.

simple to understand, easy to implement, and efficient,
making it a prime candidate for video games.

Like many other hierarchical pathfinding algorithms,
HPA* consists of a build algorithm and a search algorithm.
The build algorithm defines the hierarchy through a series
of graphs, where each graph abstracts a higher resolution
graph. While HPA* works on multiple levels of abstrac-
tion, we primarily discuss it on a single level of abstrac-
tion, since multiple levels are more difficult to implement
and show diminishing performance gains (Botea et al.
2004). After the hierarchy is prepared, the search algo-
rithm finds a path at the highest level, and refines it into a
series of segment paths along the lowest level. Botea et al.
(Botea, Müller, and Schaeffer 2004) present HPA* for use
on a grid, though it can be adapted for other terrain struc-
tures such as navigation meshes.

The HPA* build algorithm performs two offline tasks.
First, it partitions the terrain into a collection of mutually
disjoint clusters, where each cluster covers a constant
number of low-level graph nodes, and a smaller number of
abstract graph nodes. Second, the build algorithm creates a
cache of edge weights. The cache stores a weight between
each pair of connected abstract nodes, where the weight
corresponds to the optimal low-level path length between
those two nodes. The weights are then used to determine
the movement cost in the abstract search.

At runtime, the build algorithm is responsible for updat-
ing the graphs when the terrain changes. In such cases, the
build algorithm runs locally on the damaged clusters, and
reconstructs the abstract nodes and portions of the cache
corresponding to the damaged clusters.

HPA* is well fit for video games, but it is very generic.
In practice, it can be both optimized significantly for static
worlds where the graph hierarchy can be better prepared,
and in typical dynamic worlds it can also be improved to
handle frequent terrain changes. This paper first introduc-
es the SHPA* and DHPA* algorithms for efficient hierar-
chical pathfinding in static and dynamic terrain representa-
tions, and then introduces a metric for comparing the dy-
namic performance of pathfinding algorithms in games. In
section 2, we describe the SHPA* and DHPA* algorithms

Pathfinding in Dynamic and Static

39

Proceedings of the Sixth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment

in detail. In section 3, we present our dynamic perfor-
mance metric. In section 4, we provide an empirical analy-
sis comparing SHPA*, DHPA*, and HPA*. And finally,
in section 5, we summarize our conclusions, and present
possible future research directions.

2. Algorithms
DHPA* and SHPA* both consist of a build algorithm and
an improved search algorithm. Broadly speaking, DHPA*
reduces the run-time cost of HPA* by spending more time
and memory in the build algorithm, and less time in the
search algorithm. In contrast, SHPA* improves perfor-
mance and reduces the memory requirements of HPA* on
static terrain. Both algorithms avoid changing the terrain
representation during search, in order to simplify pro-
gramming and improve multithreaded performance.

DHPA* Build Algorithm
The DHPA* build algorithm creates clusters in the same
manner as HPA*, but caches additional information to
improve the speed of both the abstract search and the low-
level search. We run Dijkstra once for each abstract node
within a cluster, creating a separate cache for each abstract
node (Figure 1). The cache contains an entry for every
low-level node within the cluster, representing information
about the optimal path from the low-level node to the ab-
stract node, found by Dijkstra. A single cache entry con-
sists of the optimal path length between the pair of nodes,
and a path index pointing to a neighbor node within the
same cluster. Effectively, the cache represents the shortest
path tree for each abstract node. The abstract search utiliz-
es the cached path length, and the low-level search utilizes
the cached path index.

When the terrain dynamically changes within a cluster,
we run the build algorithm within that cluster and re-
compute the corresponding portion of the cache, the intra-
edges1 within that cluster, and the inter-edges connected to
that cluster. We further optimize this re-computation by
only recreating a cluster’s intra-edges and inter-edges
when necessary. It is only necessary to recreate these
edges if any of the border cells dynamically change. Oth-
erwise, the abstract graph remains the same, and only the
cache is re-computed.

The DHPA* cache requires more memory than the
HPA* cache. The cache stores O(bn2c2) entries, for b is
the total number of abstract nodes per cluster, n x n is the
size of each cluster, and c x c is the total number of
clusters. In comparison, the HPA* cache is the same size
as the number of intra-edges. This size, in the worst case,
is denoted by the following equation (Botea et. al. 2004).

n(c-2)2(2n-1) + 2(n-1) + 3(c-2)(1.5n-1)

1 The intra-edges connect the abstract nodes within each cluster. The
inter-edges connect two separate clusters.

Which can be expressed as O(n2c2). Also, DHPA*
creates the same number of abstract nodes as HPA*, be-
cause both build algorithms use the same process for creat-
ing clusters. In the worst case, there are 2n abstract nodes
per cluster (Botea et. al. 2004). Thus, the HPA* cache
stores O(n2c2) entries, and the DHPA* cache stores
O(n3c2) entries, and therefore DHPA* stores a factor of n
more cache entries in the worst case. Next, we describe
how we use the cached path lengths and indices to improve
search speed.

DHPA* Search Algorithm
The DHPA* search algorithm uses the cache that was
created in the build algorithm to generate the abstract path,
and refine it into a low-level path. We increase the speed
of the abstract search by eliminating the time consuming
“SG effort” that is present in HPA*. The SG effort is the
performance-wise effort of inserting the start and goal
nodes into the abstract graph before each search (Botea et
al. 2004). This involves searching for the edge weights
that will connect the start and goal nodes into the abstract
graph, where each edge weight represents an optimal path
length found by an A* search. For example, connecting
the start node into a cluster containing four other abstract
nodes will require four A* searches.

In contrast, DHPA* has no SG effort. At the beginning
of the abstract search, we identify the abstract graph nodes
that belong to the start cluster. These nodes are then
pushed onto the open list as the initial search space, in
place of the abstract node that HPA* adds to the graph.
The costs for each of these nodes are retrieved from the
cache that we previously built, rather than searching for the
costs as HPA* does. Then, we search the abstract graph.

Note that the termination condition is also modified to
avoid changing the terrain representation (Figures 2a and
2b). We do not add the goal node to the abstract graph,
and we do not search for the goal node. Instead, we search
for any abstract node that belongs to the cluster containing
the goal position. Searching in this manner contributes to
the path suboptimality, because it is possible that the first
abstract node encountered inside the goal cluster is not part
of the optimal path. After the search is complete, we ap-

Figure 1: DHPA* cache for a single abstract node in a cluster
of size 5. In this figure, we do not consider diagonal distance,
for simplicity.

40

pend the start and goal positions to the beginning and end
of the solution path, respectively.

Next, we refine the path by running the low-level search.
Searches that start and end in the same cluster run a tradi-
tional A* search with a Euclidean distance heuristic.
Searches that span two or more clusters use the previously
cached path indices to find the segment paths within each
cluster.

A path index refers to the following node that lies on the
optimal path from the current node to the abstract node. It
specifies one of the eight adjacent move directions sur-
rounding the current grid cell, similar to a Movement Vec-
tor (Jansen and Sturtevant 2008).

The path index enables us to recover any path between
any pair of nodes (s,g), where either s or g is an abstract
node. Planning any such path involves only l operations,
where l is the length of the path, and the basic operation is
to retrieve the path index from the cache. Thus, the
DHPA* refinement search performs exactly l operations
for a single cluster, since every refinement search either
starts or ends with an abstract node (except for refinement
searches that start and end in the same cluster).

HasHPASearchSuccessfullyCompleted(currNode)
1 if (currNode.ID == goalNode.ID) then
2 return true
3 end if
4 return false

HasDHPASearchSuccessfullyCompleted(currNode)
1 if (currNode.clusterID == goalClusterID) then
2 return true
3 end if
4 return false

Figure 2 (a, b): HPA* and DHPA* termination conditions.
“currNode” denotes the node most recently removed from the
open list and added to the closed list. SHPA* uses the same
termination condition as DHPA*.

In comparison, HPA* uses A* for its refinement search.

A* is O(n2) in the worst case, and O(l) in the best case,
for a cluster of size n x n and a path of length l. The
basic operation of A* expands a single node, which re-
quires a constant number of priority queue operations, and
is much more expensive than the constant-time cache loo-
kup performed by the basic operation of the DHPA* re-
finement search. The priority queue operations can be
done in time logarithmic in the number of nodes in the
queue, where a single operation consists of either removing
a node from the queue or updating one of the eight node
neighbors (Jansen and Buro 2007). If we assume an aver-
age path length of n, which is often the approximate seg-
ment path length according to our experimental results2,
then the HPA* refinement search is O(n2 log(n2)) in the
worst case, and O(n log(n)) in the best case. Therefore,
for paths of length n that either start or end in a cell with an
abstract node, the DHPA* refinement search requires a

2 After running DHPA* in our second experiment, we found that the
segment path lengths differ from n by approximately 5%, on average.

factor of log(n) fewer operations than HPA*’s best case
search, and a factor of n log(n2) fewer operations than
HPA*’s worst case search.

SHPA* Build Algorithm
The SHPA* build algorithm directly addresses the concern
with using a simple clustering method, and the desire to
explore more sophisticated clustering methods (Botea et al.
2004). It runs only once to setup the clusters, and does not
repair the clusters dynamically. The build algorithm is the
same as described by van der Sterren (2008), and decom-
poses the map into many variable-sized fully connected
clusters based upon a greedy heuristic, rather than decom-
posing the map into many same-sized clusters as HPA*
does. The heuristic attempts to merge clusters based on
two different properties. It merges clusters that have a
large number of abstract nodes relative to their size, and
avoids merging clusters that exceed a maximum combined
size. By building fully connected clusters with similar
properties, we are able to achieve better spatial decomposi-
tion and improve the search algorithm, as we describe next.

SHPA* Search Algorithm
The SHPA* search is similar to the DHPA* search, but it
does not use a cache. Instead, it uses a Euclidean distance
heuristic to compute edge weights, and it searches for low-
level paths using A*. The exact details of the search are
described by Kring (2010).

Shared Properties
There are three noteworthy properties shared by both
DHPA* and SHPA*. First, we are able to deterministical-
ly predict the state of the path planner after the first A*
cycle, without searching (Kring 2010). The InitializeHie-
rarchicalSearchStart function in Figures 3 and 4 demon-
strates how we make use of the cached path length to avoid
searching. Eliminating the SG effort clearly improves
performance, but it also allows us to provide an initial
search space without modifying the abstract graph.

Second, DHPA* and SHPA* are both simpler to imple-
ment than HPA*, and more suited for multithreading.
SHPA* does not require dynamically rebuilding clusters,
but more significantly, both algorithms do not modify the
terrain during search. HPA* modifies the terrain by insert-
ing and removing the start and goal nodes at the beginning
and end of each search. The programmer must manage
these terrain modifications for each search, further compli-
cating programming and debugging. Such a system is
more tightly coupled, since it requires the state of the ter-
rain to be dependent upon the state of the path searches.
Furthermore, modifying the terrain is worse for multith-
reading, as it increases the chance of performance bottle-
necks if multiple searches on separate threads need to
access the terrain data. By minimizing terrain changes, we
have less memory contention for the terrain representation.

Finally, both of our algorithms are well poised for in-
cremental pathfinding, because we do not modify the ter-

41

rain representation. It is common practice to incrementally
solve paths in games. Higgins (2002) was one of the first
to illustrate the importance of architecting a navigation
system capable of incremental pathfinding. More recently,
Sturtevant (2010) reported working on an incremental
pathfinding system for Dragon Age: Origins. Since HPA*
modifies the terrain representation at the beginning and end
of each search, it is unclear as to how the algorithm would
maintain the temporary terrain state when several agents
are simultaneously solving paths across multiple frames.
We do not modify the terrain representation during search,
so maintaining a temporary terrain state is not a concern
for either of our algorithms.

HierarchicalSearch(startPos, goalPos)

1 InitializeHierarchicalSearchStart(startPos,goalPos)
2 goalCluster = GetCluster(goalPos)
3 StoreGoalClusterID(goalCluster.ID)
4 abstractPath = SearchForPath(startPos, goalPos)
5 lowLevelPath = RefinePath(abstractPath)
6 return lowLevelPath

Figure 3: DHPA* hierarchical search

InitializeHierarchicalSearchStart(startPos, goalPos)
1 startCluster = GetCluster(startPos)
2 for each abstract node b in startCluster
3 b.g = GetPathLengthFromCache(startPos, b)
4 b.h = ComputeHeuristicCost(b.pos, goalPos)
5 AddToOpenList(b)
6 end for

Figure 4: Initialize DHPA* hierarchical search start. SHPA*
uses this same algorithm, only it uses a Euclidean distance to
compute the cost in line 3.

3. Dynamic Performance Metric
Often research papers on hierarchical pathfinding in games
make conjectures about dynamic performance, but rarely
are they backed by experimental data. Here, we define a
dynamic performance metric for hierarchical pathfinding in
games. The metric is a measure of the total time spent on
path requests per dynamic change.

Since hierarchical pathfinding usually consists of build-
ing and searching, we propose the following experimental
steps for measuring the dynamic performance of a hierar-
chical pathfinding algorithm.

1. Build any data needed for the path searches.
2. Run x path searches.
3. Randomly move all dynamic obstacles on the map.

A single data point amounts to the total time spent

building and searching, after completing the steps above.
All of these steps take place online, and any offline compu-
tations do not factor in to the dynamic performance. Fur-
thermore, the dynamic obstacles must occupy a constant
percentage of each map, in order to compare the dynamic
performance across multiple maps. In our third experiment

in the following section, we use this metric to compare the
dynamic performance of DHPA* to HPA*.

4. Empirical Evaluation
We conducted our experiments on 120 maps from Baldur’s
Gate (BioWare Corp. 1998), using the same maps used in
the experiments by Botea et al. (2004). The maps range in
size from 50 x 50 to 320 x 320. For all search results,
we randomly pick start and goal nodes. The timings were
performed on a 2.53 GHz Intel Core2 Duo CPU E7200
with 2 GB of memory. The experiments were imple-
mented in The AI Sandbox (Champandard 2010), compiled
using Visual Studio 2008, and run under Windows XP Pro.

The first experiment compares the build performance of
DHPA* to HPA* (Figure 5). We accumulated the build
times of both algorithms for each cluster on all 120 Bal-
dur’s Gate maps. We conducted the experiment for clus-
ters of size five, ten, and twenty. In all three experiments,
the HPA* build algorithm is marginally faster than the
DHPA* build algorithm, which agrees with our hypothesis
and the results found by Jansen and Buro3 (2007).

Cluster

size
Total clusters Total HPA*

build time
(sec)

Total DHPA*
build time (sec)

5 32044 33.826 37.223
10 10121 30.318 31.525
20 3338 19.779 21.087

Figure 5: Comparison of total build times for HPA* and DHPA*.

In the largest map that we tested, when using a cluster
size of 10, DHPA* created 809 clusters and 547441 cache
entries. Each cache entry occupies eight bytes (one float
and one integer), resulting in a total cache size of approx-
imately 4.2 MB. On the same map, HPA* created a cache
with 36488 entries, occupying 142 KB when storing the
entries as floats.

Storage utilization can be optimized by keeping only the
necessary parts of the cache in memory, and by reducing
the size of each cache entry. Each search requires only the
parts of the cache corresponding to the clusters covered by
that search, which is also the case for HPA* (Botea et al.
2004). In a cluster of size 10, each cache entry only needs
three bytes—two for the path length and one for the path
index. The maximum path length is 100, and we only use
two digits of precision, because we approximate diagonally
connected grid cells with a weight of 1.42. This requires
seven bits for the digits to the left of the decimal point, and
seven bits for the digits to the right. The path index re-
quires three bits, because it can specify eight directions. If
we had used three bytes per cache entry, we would have

3 Jansen and Buro’s experiment measured the build time taken to create
the HPA* edge weight cache, comparing A* to Dijkstra’s algorithm.

42

only needed 1.6 MB for the cache. If greater memory
efficiency is desired, one can consider a minimal-memory
abstraction (Sturtevant 2007), though build time will in-
crease and dynamic performance will likely decrease as a
result.

Figure 6: Relative search speed increase over HPA*.

The second experiment compares the search perfor-
mance of HPA*, DHPA*, and SHPA* (Figure 6). Each
data point on the graph represents a single bucket of
searches categorized by A* path length. A single bucket
contains the average results of running many searches with
the same A* path length, and each bucket stores all paths
within a range of length ten. For example, the first bucket
stores all paths of length [2,9], the second bucket stores all
paths of length [10,19], and so on. As a result, the experi-
ment represents a total of ~24,000 searches spread across
seventy-three buckets. For this experiment, we used a
cluster size of ten.

The best case for the DHPA* search occurs when
searching across two clusters, where DHPA* is ~11 times
faster than HPA*. On average, the DHPA* search is 1.9
times faster. DHPA* is less than 1% suboptimal to HPA*
in all of our results.

The best case for the SHPA* search also occurs when
searching two clusters, where SHPA* is ~5 times faster
than HPA*. On average, the SHPA* search is 1.3 times
faster. SHPA* is at most 6.7% suboptimal, or 4.7% less
optimal than HPA*. On average, SHPA* is 1.8% subop-
timal, or 0.5% less optimal than HPA*.

There are two interesting points made apparent by com-
paring the three search algorithms. First, the DHPA*
search outperforms both of the other search algorithms
because it avoids the SG effort, and it does not have to
search for a low-level path. Both SHPA* and HPA*, on
the other hand, must search for their low levels paths.

Second, both DHPA* and SHPA* see the greatest perfor-
mance gains when searching for shorter paths. In many
games, agents more often search for shorter paths, because
most of the action engages in the space local to the player.

The third experiment measures the dynamic perfor-
mance of DHPA* versus HPA* (Figure 7). We ran our
experiment on both DHPA* and HPA*, using a cluster size
of ten. A single run of the experiment consists of complet-
ing the same steps listed for the dynamic performance
metric, ten times for each of the 120 maps. We ran the
experiment for x={10i|i=[1,10]} searches between
each build. Each dynamic obstacle is size 2 x 2, and 2%
of each map is occupied by dynamic obstacles.

HPA* demonstrates superior dynamic performance
when there are twenty or fewer searches per build, and
DHPA* is superior when there are more than twenty
searches per build. Thus, each algorithm is equipped to
handle different levels of dynamic change in the environ-
ment, and DHPA* demonstrates superior dynamic perfor-
mance in most cases.

In Figure 7a, we show that the accumulated DHPA*
build time is marginally slower. However, the HPA*
search time is increasingly slower than the DHPA* search
time, as the number of searches per build increases (Figure
7b). In Figure 7c, we see the point where DHPA* begins
to outperform HPA*, when there are twenty searches be-
tween builds. The graph also shows that the overall per-
formance of DHPA* improves as the environment be-
comes less dynamic.

5. Conclusions and Future Work
In this paper, we showed how to improve hierarchical
pathfinding in games by providing algorithms that are
efficient and simple to implement. Both DHPA* and
SHPA* are useful in different circumstances. DHPA*
searches at best eleven times faster than HPA*, and pro-
vides improved performance in dynamic environments
when there are more than twenty searches between builds.
Though, DHPA* costs more memory and produces slightly
less optimal paths. SHPA* is at best five times faster than
HPA* for static environments, and costs less memory, but
it also produces slightly less optimal paths. Furthermore,
both DHPA* and SHPA* simplify coding and enhance
multithreaded performance by minimizing changes to the
terrain representation.

In the future, we believe that we can reduce the memory
cost and increase the performance of DHPA*. We have
identified memory consumption as the biggest drawback to
DHPA*, and we would like to further investigate efficient
ways to encode the cache. We also would like to empiri-
cally test our theoretical claims about increasing speed in
multithreaded environments, to further demonstrate the
importance of maintaining a read-only terrain representa-
tion during search.

0

2

4

6

8

10

12

1 11 21 31 41 51 61 71

N
um

be
r o

f t
im

es
 fa

st
er

Solution length (bucket)

DHPA* SHPA* HPA*

43

Figure 7 (a,b,c): Dynamic performance of HPA* vs. DHPA*.

References
BioWare Corp. 1998. Baldur’s Gate.
http://www.bioware.com/bgate/.
Botea, A.; Müller, M.; and Schaeffer, J. 2004. Near
optimal hierarchical path-finding. Journal of Game
Development 1: 7–28.
Bulitko, V., and Björnsson, Y. 2009. kNN LRTA*: Simple
Subgoaling for Real-Time Search. In Proceedings of the
Fifth Artificial Intelligence and Interactive Digital
Entertainment Conference, 2-7. Menlo Park, Calif.: AAAI
Press.
Champandard, A. J. 2010. The AI Sandbox.
http://AiSandbox.com/.
Demyen, D., and Buro, M. 2006. Efficient triangulation-
based pathfinding. In Proceedings of the Twenty-First
AAAI Conference on Artificial Intelligence, 942–947.
Menlo Park, Calif.: AAAI Press.
Higgins, D. 2002. Pathfinding Design Architecture. In
Steve Rabin, editor, AI Game Programming Wisdom, 128-
130. Charles River Media, Inc.
Holte, R.; Perez, M.; Zimmer, R.; and MacDonald, A.
1996. Hierarchical A*: Searching Abstraction Hierarchies
Efficiently. In Proceedings of the Thirteenth National
Conference on Artificial Intelligence, 530-535. Menlo
Park, Calif.: AAAI Press.
Jansen, M. R., and Buro, M. 2007. HPA* Enhancements.
In Proceedings of the Third Artificial Intelligence and
Interactive Digital Entertainment Conference, 84-87.
Menlo Park, Calif.: AAAI Press.
Jansen, M. R., and Sturtevant, N. 2008. Direction Maps for
Cooperative Pathfinding. In Proceedings of the Fourth
Artificial Intelligence and Interactive Digital
Entertainment Conference, 185-190. Menlo Park, Calif.:
AAAI Press.

Kring, A. 2010. SHPA*: Improving Hierarchical
Pathfinding Performance by Maintaining A Static
Hierarchy with HPA*. http://aigamedev.com/premium/
articles/static-hierarchical-pathfinding/.
Sturtevant, N. 2007. Memory-Efficient Abstractions for
Pathfinding. In Proceedings of the Third Artificial
Intelligence and Interactive Digital Entertainment
Conference, 31-36. Menlo Park, Calif.: AAAI Press.
Sturtevant, N., and Buro, M. 2005. Partial Pathfinding
Using Map Abstraction and Refinement. In Proceedings of
the Twentieth National Conference on Artificial
Intelligence, 1392-1397. Menlo Park, Calif.: AAAI Press.
Sturtevant, N., and Champandard, A. J. 2010. High-
Performance and Memory-Efficient Pathfinding in Dragon
Age with Nathan Sturtevant.
http://aigamedev.com/premium/interviews/pathfinding-
dragon-age/.
Teich, T.; Jurney, C.; and Champandard, A. J. 2010. Case
Studies: AI in Recent Games. Game Developers
Conference.
van der Sterren, W., and Champandard, A. J. 2008.
Automated Terrain Analysis with William van der Sterren.
http://aigamedev.com/premium/masterclass/automated-
terrain-analysis/.
Walsh, M. Dynamic Navmesh - AI in the Dynamic
Environment of Splinter Cell: Conviction. 2010. Game
Developers Conference.

0

50

100

150

200

250

10 30 50 70 90 11
0

13
0

15
0

17
0

19
0

Ti
m

e
(s

)

num. searches per build

Build Time

HPA* DHPA*

0

100

200

300

400

10 30 50 70 90 11
0

13
0

15
0

17
0

19
0

Ti
m

e
(s

)

num. searches per build

Search Time

HPA* DHPA*

0
100
200
300
400
500
600

10 30 50 70 90 11
0

13
0

15
0

17
0

19
0

Ti
m

e
(s

)

num. searches per build

Total Time

HPA* DHPA*

44

	AIIDE10
	Contents
	Index
	Help
	Terms
	AIIDE 2010

