
Applying Goal-Driven Autonomy to StarCraft

Ben G. Weber, Michael Mateas, and Arnav Jhala
Expressive Intelligence Studio

UC Santa Cruz
bweber,michaelm,jhala@soe.ucsc.edu

Abstract

One of the main challenges in game AI is building
agents that can intelligently react to unforeseen game
situations. In real-time strategy games, players create
new strategies and tactics that were not anticipated dur-
ing development. In order to build agents capable of
adapting to these types of events, we advocate the de-
velopment of agents that reason about their goals in re-
sponse to unanticipated game events. This results in a
decoupling between the goal selection and goal execu-
tion logic in an agent. We present a reactive planning
implementation of the Goal-Driven Autonomy concep-
tual model and demonstrate its application in StarCraft.
Our system achieves a win rate of 73% against the built-
in AI and outranks 48% of human players on a compet-
itive ladder server.

Introduction
Developing agents capable of defeating competitive human
players in Real-Time Strategy (RTS) games remains an open
research challenge. Improving the capabilities of computer
opponents in this area would add to the game playing expe-
rience (Buro 2003) and provides several interesting research
questions for the artificial intelligence community. How can
competitive agents be built that operate in complex, real-
time, partially-observable domains which require perform-
ing actions at multiple scales as well as reacting to oppo-
nents and exogenous events? Current approaches to building
game AI are unable to address all of these concerns in an in-
tegrated agent. To react to opponents and exogenous events
in this domain, we advocate the integration of autonomy in
game AI.

Goal-Driven Autonomy (GDA) is a research topic in the
AI community that aims to address the problem of build-
ing intelligent agents that respond to unanticipated failures
and opportunities during plan execution in complex envi-
ronments (Muñoz-Avila et al. 2010). One of the main
focuses of GDA is to develop agents that reason about
their goals when failures occur, enabling them to react and
adapt to unforeseen situations. Molineaux, Klenk, and Aha
(2010) present a conceptual model for GDA which provides
a framework for accomplishing this goal.

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

One of the open problems in the GDA community is
building systems capable of concurrently reasoning about
multiple goals. StarCraft provides an excellent testbed for
research in this area, because it is multi-scale, requiring
an agent to concurrently reason about and execute actions
at several levels of detail (Weber et al. 2010). In Star-
Craft, competitive gameplay requires simultaneously rea-
soning about strategic, economic, and tactical goals.

We present an instantiation of the GDA conceptual model
implemented using the reactive planning language ABL
(Mateas and Stern 2002). Our system, EISBot, plays com-
plete games of StarCraft and uses GDA to concurrently rea-
son at multiple scales. We demonstrate ABL as a candi-
date for implementing the goal management component in a
GDA system. We also show that using GDA to build game
AI enables a decoupling of the goal selection and goal exe-
cution logic in an agent. Results from our experiments show
that EISBot achieves a 73% win rate against the built-in AI
and outranks 48% of competitive human players.

Related Work
Two common approaches for building game AI are re-
active systems and planning. Reactive systems perform
no look-ahead and map game states to actions or behav-
iors. Reactive techniques for building game AI include fi-
nite state machines (FSMs) (Rabin 2002), subsumption ar-
chitectures (Yiskis 2003), and behavior trees (Isla 2005;
Champandard 2008). It is difficult to build agents capable
of reacting to unforeseen situations using these techniques,
because they do not reason about expectations. Therefore, it
is not possible for an agent to detect discrepancies between
expected and actual game states. One approach to overcome
this limitation is the use a blackboard to model an agent’s
mental state, enabling the agent to reason about expected
game state. Our system differs from this approach in that
EISBot explicitly represents discrepancies.

Planning is another technique for building game AI.
Goal-Oriented Action Planning (GOAP) (Orkin 2003) is a
planning-based approach to building AI for non-player char-
acters in games. In a GOAP architecture, a character has a
set of goals, each of which is mapped to a set of trigger con-
ditions. When the trigger conditions for a goal become true,
the system begins planning for the activated goal. Therefore,
GOAP maps game states to goals as opposed to actions. One

101

Proceedings of the Sixth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment

of the challenges in applying GOAP to game AI is detect-
ing invalid plans, because GOAP systems do not currently
generate expectations that can be used to detect discrepan-
cies. Additionally, GOAP architectures are usually applied
to only a single level of reasoning. For example, the AI in
the RTS game Empire: Total War uses GOAP for strategic
decision making, while FSMs are used for individual units1.

Goal-Driven Autonomy
The goal of GDA is to create agents capable of responding
to unanticipated failures that occur during plan execution in
complex, dynamic domains. GDA approaches this problem
by developing agents that reason about their goals. The re-
search area is motivated by Cox’s claim that an agent should
reason about itself as well as the world around it in a mean-
ingful way in order to continuously operate with indepen-
dence (Cox 2007). Games provide an excellent domain for
GDA research, because they provide real-time environments
with enormous decision complexities. GDA has previously
been applied to decision making for FPS bots in a team dom-
ination game (Muñoz-Avila et al. 2010).

The GDA conceptual model provides a framework for on-
line planning in autonomous agents (Molineaux, Klenk, and
Aha 2010). It consists of several components which en-
able an agent to detect, reason about, and respond to unan-
ticipated events. The conceptual model outlines the differ-
ent components and interfaces between them, but makes no
commitment to specific implementations. A simplified ver-
sion of the model is introduced in this paper.

One of the distinguishing features of the GDA concep-
tual model is the output from the planning component. The
planner in a GDA system generates plans which consist of
actions to execute as well as expectations of world state after
executing each action. Expectations enable an agent to de-
termine if a failure has occurred during plan execution and
provide a mechanism for the agent to react to unanticipated
events.

The components in our simplified version of the GDA
conceptual model are shown in Figure 1. An agent begins
with an initial goal, g0, which is given to the planner. The
planner generates a plan consisting of a set of actions, a, and
expectations, x. As actions are executed in the game world,
the discrepancy detector checks that the resulting game state,
s, meets the expected game state. When a discrepancy is de-
tected, the agent creates a discrepancy, d, which is passed to
the explanation generator. Given a discrepancy, the expla-
nation generator builds an explanation, e, of why the failure
occurred and passes it to the goal formulator. The goal for-
mulator takes an explanation and formulates a goal, g, in
response to the explanation. The goal is then passed to the
goal manager, which is responsible for selecting and execut-
ing the current active goal.

The functionality of the GDA conceptual model can be
demonstrated in a StarCraft example. Consider an agent
that selects an initial strategy of building ground units with
a ranged attack. While this strategy is effective against most
early game ground and air-based armies, it is weak against a

1http://worthplaying.com/article/2008/12/1/interviews/57018/

Figure 1: Components in the simplified Goal-Driven Auton-
omy conceptual model

fast expanding strategy or an opponent that focuses on pro-
ducing cloakable units as fast as possible. Given the agent’s
selected strategy, it has expectations that the opponent will
not build a fast expansion and that the opponent will not
build cloakable units. During the game, the agent scouts a
unit type that it has not yet encountered in the game. In
response to this event, the discrepancy detector generates a
discrepancy that an unexpected unit type was observed. If
the scouted unit type violates the expectations of the cur-
rent strategy, an explanation is generated. In this example,
scouting a building that enables an opponent to train cloak-
able units would cause the explanation generator to create
an explanation that the opponent is pursuing cloakable units.
The explanation is given to the goal formulation component,
which formulates the goal of building detector units in order
to have vision of cloaked units. Finally, the goal is given to
the planner and the agent produces a plan to train detector
units. This example demonstrates that using GDA enables
the agent to react to unexpected opponent actions.

Applying GDA to StarCraft
StarCraft is a science fiction RTS game developed by Bliz-
zard EntertainmentTM in which players manage an economy,
produce units and buildings, and vie for control of the map
with the goal of destroying all opponents. To perform well
in this game, an agent must react to events at the strategic,
economic and tactical levels. We applied GDA to StarCraft
to determine when new goals should be selected and to de-
cide which goals should be pursued at each of these levels.

EISBot uses the ABL reactive planning language to im-
plement the components specified in the GDA conceptual
model. ABL is well suited for building RTS game AI, be-
cause it was precisely designed to combine reactive, parallel

102

s e q u e n t i a l b e h a v i o r d e t e c t () {
p r e c o n d i t i o n {

(EnemyUnit t y p e : : t y p e)
! (U n i t T y p e D i s c r e p a n c y t y p e == t y p e)

}

m e n t a l a c t {
workingMemory . add (new

U n i t T y p e D i s c r e p a n c y (t y p e)) ;
}

}

Figure 2: An ABL behavior for detecting new unit types

goal pursuit with long-term planfulness (Mateas and Stern
2002). Additionally, ABL supports concurrent action ex-
ecution, represents event-driven behaviors, and provides a
working memory enabling message passing between com-
ponents.

Our system contains a collection of behaviors for each
of the GDA components. The agent persistently pursues
each of these behaviors concurrently, enabling the agent to
quickly respond to events. The majority of the agent’s func-
tionality is contained in the goal manager component, which
is responsible for executing the agent’s current goals. The
different components communicate using ABL’s working
memory as a blackboard. Each of the components is dis-
cussed in more detail below.

Discrepancy Detector
The discrepancy detector generates discrepancies when the
agent’s expectations are violated. In contrast to previous
work that creates a new set of expectations for each gen-
erated plan, our system has a fixed set of expectations. Also,
EISBot does not explicitly represent expectations, because
there is a direct mapping between expectations and discrep-
ancies in our system. Instead, the agent has a fixed set of
discrepancy detectors that are always active.

Discrepancies serve the purpose of triggering the agent’s
goal reasoning process and provide a mechanism for re-
sponding to unanticipated events. Our system generates dis-
crepancies in response to detecting the following types of
game events:

• Unit Discrepancy: opponent produced a new unit type

• Building Discrepancy: opponent built a new building type

• Expansion Discrepancy: opponent built an expansion

• Attack Discrepancy: opponent attacked the agent

• Force Discrepancy: there is a shift in force sizes between
the agent and opponent

The discrepancies are intentionally generic in order to en-
able the agent to react to a wide variety of situations.

EISBot uses event-driven behaviors to detect discrepan-
cies. An example behavior for detecting new units is shown
in Figure 2. The behavior has a set of preconditions that
checks for an enemy unit, binds its type to a variable, and

s e q u e n t i a l b e h a v i o r e x p l a i n () {
p r e c o n d i t i o n {

(U n i t T y p e D i s c r e p a n c y t y p e == LurkerEgg)
! (E x p l a n a t i o n t y p e ==EnemyCloaking)

}

m e n t a l a c t {
workingMemory . add (new E x p l a n a t i o n (

EnemyCloaking)) ;
}

}

Figure 3: A behavior that generates an explanation that the
opponent is building cloaked units in response to noticing a
lurker egg.

checks whether a discrepancy for the unit type currently is
in working memory. If there is not currently a unit type dis-
crepancy for the bound type, a mental act is used to place a
new discrepancy in working memory.

Explanation Generator
The explanation generator takes as input a discrepancy and
outputs explanations. Given a discrepancy, zero or more of
the following explanations are generated:
• Opponent is teching
• Opponent is building air units
• Opponent is building cloaked units
• Opponent is building detector units
• Opponent is expanding
• Agent has force advantage
• Opponent has force advantage
The explanation generator is implemented as a set of behav-
iors that apply rules of the form: if d then e. At the strategic
level, explanations are created only for discrepancies that
violate the agent’s current high-level strategy. An example
behavior for generating explanations is shown in Figure 3.
The behavior checks if the opponent has morphed any lurker
eggs, which hatch units capable of cloaking. In response to
detecting a lurker egg, the agent creates an explanation that
the opponent is building cloakable units.

Goal Formulator
The goal formulator spawns new goals in response to expla-
nations. Given an explanation, one or more of the following
goals are spawned:
• Execute Strategy: selects a strategy to execute
• Expand: builds an expansion and trains worker units
• Attack: attacks the opponent with all combat units
• Retreat: sends all combat units back to the base
Goal formulation behaviors implement rules of the form: if
e then g. EISBot contains two types of goal formulation be-
haviors: behaviors that directly map explanations to goals,

103

s e q u e n t i a l b e h a v i o r f o r m u l a t e G o a l () {
p r e c o n d i t i o n {

(E x p l a n a t i o n t y p e == ForceAdvan tage)
}

spawngoal expand () ;
spawngoal a t t a c k () ;

}

Figure 4: A behavior that spawns goals for expanding and
attacking the opponent in response to an explanation that the
agent has a force advantage.

as in the example of mapping an enemy cloaking explana-
tion to the goal of building detector units, and behaviors that
select among one of several goals in response to an expla-
nation. An example goal formulation behavior is shown in
Figure 4. The behavior spawns goals to attack and expand
in response to an explanation that the agent has a force ad-
vantage. In ABL, spawngoal is analogous to creating a new
thread of execution, and enables the agent to pursue a new
goal in addition to the currently active goal.

Goal Manager
In our system, the goal manager and planner components
from Figure 1 are merged into a single component. Goals
that are selected by the goal formulation component imme-
diately begin execution by pursuing behaviors that match the
spawned goal name. While our system supports concurrent
goal execution, only a single goal can be active at each of the
strategic, economic, and tactical levels. The agent can pur-
sue the goal of expanding while attacking, but cannot pursue
two tactical goals simultaneously. For example, the current
agent cannot launch simultaneous attacks on different areas
of the map.

The goal manager is based on the integrated agent archi-
tecture of McCoy and Mateas (2008). It is composed of
several managers that handle distinct aspects of StarCraft
gameplay. The strategy manager handles high-level deci-
sion making, which includes determining which structures
to build, units to produce, and upgrades to research. The
strategy manager actively pursues one of the following high-
level strategies:

• Mass Zealots: focuses on tier 1 melee units

• Dragoon Range: produces tier 1 range units

• Observers: builds detectors and range units

• Carriers: focuses on building air units

• Dark Templar: produces cloaked units

The current goal to pursue is selected by the goal formulator
by spawning Execute Strategy goals.

Expansion goals are carried out by the income manager.
The manager is responsible for producing the expansion
building as well as training and assigning worker units at
the expansion. The attack and retreat goals are handled by
the tactics manager. Given an attack goal, the manager sends

all combat units to the opponent base using the attack move
command. To retreat, the manager sends all combat units to
the agent’s base.

Agent Architecture
EISBot is implemented using the ABL reactive planning lan-
guage. Our architecture builds upon the integrated agent
framework (McCoy and Mateas 2008), which plays com-
plete games of Wargus. While there are many differences
between Wargus and StarCraft, the conceptual partitioning
of gameplay into distinct managers transfers well between
the games. We made several changes to the managers to sup-
port the StarCraft tech tree and added additional behaviors
to the agent to support micromanagement of units (Weber et
al. 2010). Currently, the agent plays only the Protoss race.

An overview of the agent architecture is shown in Figure
5. The ABL agent has two collections of behaviors which
perform separate tasks. The GDA behaviors are responsible
for reacting to events in the game world and selecting which
goals should be pursued, while the manager behaviors are
responsible for executing the goals selected by the GDA be-
haviors. The ABL components communicate using ABL’s
working memory as a blackboard (Isla et al. 2001). By uti-
lizing the GDA conceptual model, we were able to cleanly
separate the goal selection and goal execution logic in our
agent.

The agent interacts with StarCraft using the BWAPI in-
terface2. Brood War API is a recent project that exposes the
underlying interface of StarCraft, allowing code to directly
view game state, such as unit health and locations, and to
issue orders, such as movement commands. This library is
written in C++ and compiles into a dynamically linked li-
brary that is launched in the same process space as StarCraft.
Our ABL agent is compiled to Java code, which runs as a
separate process from StarCraft. ProxyBot is a Java compo-
nent that provides a remote interface to the BWAPI library
using sockets. Every frame, BWAPI sends a game state up-
date to the ProxyBot and waits for a response containing a
set of commands to execute.

Evaluation
We evaluated our GDA approach to building game AI by ap-
plying it to the task of playing complete games of StarCraft.
Currently, EISBot plays only the Protoss race. The system
was tested on a variety of maps against both the built-in AI
of StarCraft as well as human opponents on a ladder server.
We also plan on evaluating the performance of EISBot by
participating in the AIIDE 2010 StarCraft AI Competition3.

The map pool used to evaluate EISBot is the same as
the pool that will be used in tournament 4 of the StarCraft
AI competition. It includes maps that support two to four
players and encourages a variety of play styles. For exam-
ple, the mineral-only expansion on Andromeda encourages
macro-focused gameplay, while the easy to defend ramps on
Python encourage the use of dropships. A detailed analysis

2http://code.google.com/p/bwapi/
3http://eis.ucsc.edu/StarCraftAICompetition

104

Figure 5: Agent architecture

Table 1: Win rates versus the built-in AI
Versus

Protoss Terran Zerg Overall
Andromeda 65% 65% 45% 58%
Destination 50% 85% 75% 70%
Heartbreak Ridge 75% 95% 85% 85%
Python 65% 90% 70% 75%
Tau Cross 65% 95% 70% 77%
Overall 64% 86% 69% 73%

of the characteristics of the maps and the gameplay styles
they support is available at Liquipedia4.

The first experiment evaluated EISBot versus the built-in
AI of StarCraft. The default StarCraft AI works by select-
ing a specific script to run at the beginning of a match and
then executing that script. For each race, there are one or
more scripts that can be executed. For example, a Protoss
computer opponent will either perform a mass zealot tim-
ing attack or a dark templar rush. The AI attacks in waves,
which commit units to attacking the player and never retreat-
ing. Players are able to defeat the built-in AI by building
sufficient defenses to defend against the initial rush while
gaining an economic or strategic advantage over the AI.

Results from the first experiment are shown in Table 1.
Overall, the agent achieved a win rate of 73% against the
built-in AI. To ensure that a variety of scripts were executed
by the AI, 20 games were run on each map for each oppo-
nent race. In total, 300 games were run against the built-in
AI. EISBot performed best against Terran opponents, which
execute a single fixed strategy. The agent performed worse
against the other races due to well-executed timing attacks
by the opponent. For example, the Zerg opponent will of-
ten 4-pool rush against the agent, which is the fastest rush
possible in StarCraft.

There are two maps that had average win rates that were
different from the rest of the pool. The agent performed best
on Heartbreak Ridge, which resulted from the short distance
between bases and lack of ramps. EISBot performed worst

4http://wiki.teamliquid.net/starcraft/

Table 2: Results versus human opponents

Versus
Protoss Terran Zerg Overall

Win-loss record 10-23 8-21 19-19 37-63
Win ratio 30% 28% 50% 37%
ICCup Points: 1182
ICCup Rank: 33,639 / 65,646

on Andromeda, which resulted from the large distance be-
tween bases and easy to defend ramps. EISBot performed
better on smaller maps, because it was able to attack the
opponent much quicker than on larger maps. Additionally,
EISBot performed better on maps without ramps, due to a
lack of behaviors for effectively moving units as groups.

The second experiment evaluated EISBot against human
opponents. Games were hosted on the International Cy-
ber Cup (ICCup)5, a ladder server for competitive StarCraft
players. All games on ICCup were run using the map Tau
Cross, which is a three player map with no ramps. The re-
sults from the second experiment are shown in Table 2. EIS-
Bot achieved a win rate of 37% against competitive humans.
The agent performed best against Zerg opponents, achiev-
ing a win rate of 50%. A screen capture of EISBot playing
against a Zerg opponent is shown in Figure 6. Videos of
EISBot versus human opponents are available online6.

The International Cyber Cup has a point system similar
to the Elo rating system in chess, where players gain points
for winning and lose points for losing. Players start at a pro-
visional 1,000 points. After 100 games, EISBot achieved a
score of 1182 and was ranked 33,639 out of 65,646. Our
system outperformed 48% of competitive players. The abil-
ity of the system to adapt to the opponent was best illus-
trated when humans played against EISBot multiple times.
There were two instances in which a player that previously
defeated EISBot lost the next game.

5http://www.iccup.com
6http://www.youtube.com/user/UCSCbweber

105

Figure 6: EISBot (orange) attacking a human opponent

Conclusion and Future Work
We have presented an approach for integrating autonomy
into a game playing agent. Our system implements the
GDA conceptual model using the ABL reactive planning
language. This approach enables our system to reason about
and react to unanticipated game events. We provided an
overview of the GDA conceptual model and discussed how
each component was implemented. Rather than map states
directly to actions, our approach decouples the goal selec-
tion and goal execution logic in our agent. This enables the
system to incorporate additional techniques for responding
to unforeseen game situations.

EISBot was evaluated against both the built-in AI of Star-
Craft as well as human opponents on a competitive ladder
server. Against the built-in AI, EISBot achieved a win rate
of 73%. Against human opponents, it achieved a win rate of
37% and outranked 48% of players after 100 games.

While our initial results are encouraging, there are a num-
ber of ways in which EISBot could be improved. Future
work could focus on adding more behaviors to the strategy
and tactics managers in our agent. EISBot does not currently
have the capability to fully expand the tech tree. Also, sev-
eral behaviors are missing from our agent, such as the ability
to utilize transport units and efficiently move forces through
chokepoints.

Currently, EISBot has a small library of discrepancies,
explanations, and goals. Increasing the size of this li-
brary would enable our system to react to more types of
events. Additional explanations could be generated by ana-
lyzing how humans describe gameplay (Metoyer et al. 2010)
or utilizing richer representations (Hoang, Lee-Urban, and
Muñoz-Avila 2005).

Another possible research direction is to automate the
process of building discrepancies, explanations, and goals.
The current implementations of the GDA components utilize
trigger rules for responding to events. Future work could uti-
lize opponent modeling techniques to build explanations of
the opponent’s actions (Weber and Mateas 2009), and learn-
ing from demonstration to formulate new goals to pursue.

References
Buro, M. 2003. Real-Time Strategy Games: A New AI Re-
search Challenge. In Proceedings of the International Joint
Conference on Artificial Intelligence, 1534–1535.
Champandard, A. 2008. Getting Started with Decision Mak-
ing and Control Systems. In Rabin, S., ed., AI Game Pro-
gramming Wisdom 4. Charles River Media. 257–264.
Cox, M. 2007. Perpetual Self-Aware Cognitive Agents. AI
Magazine 28(1):32–45.
Hoang, H.; Lee-Urban, S.; and Muñoz-Avila, H. 2005. Hier-
archical Plan Representations for Encoding Strategic Game
AI. In Proceedings of Artificial Intelligence and Interactive
Digital Entertainment. AAAI Press.
Isla, D.; Burke, R.; Downie, M.; and Blumberg, B. 2001. A
Layered Brain Architecture for Synthetic Creatures. In Pro-
ceedings of the International Joint Conference on Artificial
Intelligence, 1051–1058.
Isla, D. 2005. Handling Complexity in the Halo 2 AI. In
Proceedings of the Game Developers Conference.
Mateas, M., and Stern, A. 2002. A Behavior Language for
Story-Based Believable Agents. IEEE Intelligent Systems
17(4):39–47.
McCoy, J., and Mateas, M. 2008. An Integrated Agent
for Playing Real-Time Strategy Games. In Proceedings of
the AAAI Conference on Artificial Intelligence, 1313–1318.
AAAI Press.
Metoyer, R.; Stumpf, S.; Neumann, C.; Dodge, J.; Cao, J.;
and Schnabel, A. 2010. Explaining How to Play Real-Time
Strategy Games. Knowledge-Based Systems 23(4):295–301.
Molineaux, M.; Klenk, M.; and Aha, D. W. 2010. Goal-
Driven Autonomy in a Navy Strategy Simulation. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
1548–1554. AAAI Press.
Muñoz-Avila, H.; Aha, D. W.; Jaidee, U.; Klenk, M.; and
Molineaux, M. 2010. Applying Goal Driven Autonomy to a
Team Shooter Game. In Proceedings of the Florida Artificial
Intelligence Research Society Conference, 465–470. AAAI
Press.
Orkin, J. 2003. Applying Goal-Oriented Action Planning to
Games. In Rabin, S., ed., AI Game Programming Wisdom 2.
Charles River Media. 217–228.
Rabin, S. 2002. Implementing a State Machine Language.
In Rabin, S., ed., AI Game Programming Wisdom. Charles
River Media. 314–320.
Weber, B., and Mateas, M. 2009. A Data Mining Approach
to Strategy Prediction. In Proceedings of the IEEE Sympo-
sium on Computational Intelligence and Games, 140–147.
IEEE Press.
Weber, B.; Mawhorter, P.; Mateas, M.; and Jhala, A. 2010.
Reactive Planning Idioms for Multi-Scale Game AI. In Pro-
ceedings of the IEEE Conference on Computational Intelli-
gence and Games, To appear. IEEE Press.
Yiskis, E. 2003. A Subsumption Architecture for Character-
Based Games. In Rabin, S., ed., AI Game Programming
Wisdom 2. Charles River Media. 329–337.

106

	AIIDE10
	Contents
	Index
	Help
	Terms
	AIIDE 2010

