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Abstract

This paper proposes an automatic model-based approach that
enables adaptive decision making in modern virtual games.
It builds upon the Integrated MDP and POMDP Learn-
ing AgeNT (IMPLANT) architecture (Tan and Cheng 2009)
which has shown to provide plausible adaptive decision mak-
ing in modern games. However, it suffers from highly time-
consuming manual model specification problems. By incor-
porating an automated priority sweeping based model builder
for the MDP, as well as using the Tactical Agent Personality
(Tan and Cheng 2007) for the POMDP, the work in this paper
aims to resolve these problems. Empirical proof of concept
is shown based on an implementation in a modern game sce-
nario, whereby the enhanced IMPLANT agent is shown to ex-
hibit superior adaptation performance over the old IMPLANT
agent whilst eliminating manual model specifications and at
the same time still maintaining plausible speeds.

Introduction and Related Work

Decision making in modern game agents is a hard problem
as modern game environments are well-known to contain
a high level of uncertainty as well as limited observabil-
ity. As this depicts a different problem domain from that
of classic games, traditional game theoretic methods in ar-
tificial intelligence (AI) (Hsu 2004; Schaeffer et al. 2005;
Buro 1997) cannot be directly applied to modern games.
Partially Observable Markov Decision Processes (POMDPs)
(Kaelbling, Littman, and Cassandra 1998) represent the state
of the art in decision theory that naturally models a game
agent acting in an uncertain environment with unobserv-
able attributes. Unfortunately, POMDPs solution algorithms
are notoriously computationally intractable (Burago, Rouge-
mont, and Slissenko 1996), especially so in huge modern
game worlds.

In a previous work by Tan and Cheng (2009), they have
already devised an architecture called the IMPLANT which
is based on a POMDP formulation. It tackles the intractabil-
ity problem by exploiting the fact that the partially observ-
able component of a virtual game world can be reduced into
solely representing the player model. The argument is that a
virtual game is entirely artificially crafted (fully observable)
except for the human player that is unpredictable (partially
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observable). Hence the decision making problem is decom-
posed into MDP and POMDP abstract constituents respec-
tively, with the bulk of the game environment represented
in the tractable MDP. Although they have shown good per-
formance in terms of both adaptation and speed in a limited
domain, there are two limitations in their work that cripples
generic applicability in modern games.

The first limitation is in their implementation in a sim-
plified tennis game, whereby the game dynamics was com-
pletely handcrafted. Basically this means that the transition
function in the MDP model was entirely manually specified.
Perhaps in a highly simplified small game this is possible
but the assumption was that the game environment model
can be readily obtainable in general, which is impractical.
In the context of a more complex game like a role-playing
game (RPG) or a real-time strategy (RTS) game, this task
would seem close to impossible as the number of states and
probabilistic transitions are significantly larger.

The second limitation is that the player model represented
by the POMDP was also handcrafted. Similarly in their
simplified tennis game, the player archetypes was modeled
according to common play styles extracted from a real-life
book on tennis (Matsuzaki 2004). This kind of handcrafting
is similar to other current work whereby player adaptation
architectures are highly dependant on expert knowledge to
specify the player archetypes (van der Sterren 2006; Sharma
et al. 2007; Thue et al. 2007; Barber and Kudenko 2007;
El-Nasr 2007). Other than the manual labor required in this
process, the adaptation performance would nevertheless be
also dependant on the competency of the experts’ knowl-
edge. Moreover, real-life tennis might be different from the
player types in a video game.

In general, although IMPLANT has shown to be a plausi-
ble in a simple setting, there exists applicability limitations
in typical modern games, due to the assumptions that the
MDP and POMDP models are readily obtainable. Addition-
ally, it is questionable to assume that the experts’ knowledge
in handcrafting the models were qualified enough to produce
accurate adaptation. This paper aims to addresses these is-
sues by automating both the processes via

1. using a priority sweeping reinforcement learning agent to
automatically learn the MDP model, and

2. using the TAP model (Tan and Cheng 2007) to automati-

186

Proceedings of the Sixth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment



cally specify the POMDP model.

In the remaining sections of this paper, essential back-
ground of the IMPLANT architecture is first given. Then the
automation of both the MDP and POMDP specifications are
described respectively. Next, the experimental setup is de-
picted along with the experimental results as empirical proof
of concept. Finally a discussion is made on the results and
the paper is concluded along with the plans for future work.

IMPLANT Architecture

The overall architecture of IMPLANT (Integrated MDP and
POMDP Learning AgeNT) is as shown in Figure 1. The cen-
tral idea is to decompose the game world into an MDP and a
POMDP (Kaelbling, Littman, and Cassandra 1998) abstract
with their respective policies computed. Current states and
observations are individually obtained from each abstraction
and processed via an Action Integrator (AI) function, which
computes a resultant optimal action that the agent performs
and affects the underlying game world, which then provides
a reward signal that reinforces the action.

Figure 1: An overview of the IMPLANT architecture. The
agent maps a separate MDP and POMDP abstract from the
game world and finds optimal policies according to each ab-
stract. For each game state and observation, the agent then
obtains a single action via the Action Integrator from the two
policies. The action is then reinforced by the reward after-
wards.

Given any game world, it is manually modeled into an

MDP abstract, Mco, and a POMDP abstract, Mpo:

Mco = 〈Ŝco, Âco, T̂co, R̂co, γ〉, and (1)

Mpo = 〈Ŝpo, Âpo, T̂po, R̂po, γ, Ô, Ô, b0〉,

where the subscripts co and po label the MDP and POMDP
parameters respectively.

With the MDP and POMDP abstracts defined, they are
solved to produce the optimal policies πco and πpo respec-
tively. With the policies generated, the agent decides the
current resultant action a to take, computed via the Action
Integrator which consists of a two-stage process. The first
stage obtains a combined abstract action â whereby:

â =

{
âco

⋂
âpo if âco

⋂
âpo �= ∅,

âco

⋃
âpo else.

(2)

This process aims to choose a set of actions optimal to both
the POMDP abstract (player model) and the MDP abstract
(game environment). This set will either be the intersection
between âco and âpo, or the union between them when the
intersection set is empty, in which the agent falls back to
choose any action that is optimal to either the POMDP or
MDP abstract.

The second stage in the AI function defines a further ac-
tion selection process which determines a single most opti-
mal action a ∈ â based on the in-game situation. Since the
offline policy already defines an action set optimal to both
the POMDP and MDP abstracts, only a minimal amount of
learning needs to be performed online. A simple and effi-
cient learning algorithm is adapted from a previous work by
Tan and Cheng (2008a), whereby each action a is assigned
a weight ωa. Action selection then follows a standard ε-
greedy algorithm (Sutton and Barto 1998) and weight up-
dates are performed via the function ωa = ωa +α(γτ −γτ ),
where γτ is a variable reward signal generated at time τ , rT

is a reference point to determine the relative size of γτ , and
α is a positive step-size parameter to control the magnitude
of change.

The IMPLANT architecture has shown to perform bet-
ter than naive implementations of reinforcement Q-learning
(Sutton and Barto 1998) as well as a pure POMDP AI agent
in a simplified tennis game (Tan and Cheng 2009).

Automatic MDP Specification

As mentioned, the first limitation in the IMPLANT archi-
tecture was that the model of the game environment (the
transition function in particular) was presumably easy to ob-
tain. In the previous tennis implementation (Tan and Cheng
2009), it was relatively straightforward to hand-code all the
transition probabilities as the mechanics of tennis gameplay
is simple and well-defined. The same cannot be said of game
genres with complicated game mechanics (like an RPG) and
a manual specification of the probabilities would be close to
impossible. To address the issue of practicality in modern
games, this problem cannot be overlooked. Hence an auto-
mated approach to transition function specification would be
advantageous as a pre-processing stage.
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Automatically learning a model of the environment is not
a new problem and mature solutions are available in the re-
search literature of the reinforcement learning domain. The
specific method to be employed is a procedure adapted from
prioritized sweeping. Prioritized sweeping is a model-based
reinforcement learning method that is shown to converge
fast. It ensures that the game mechanics (transition probabil-
ities and rewards) are populated in the most efficient manner.
Performing prioritized model updates in such a way targets
areas where there are large changes in current estimates first.
The model building process is as shown in Algorithm 1. This
acts as a pre-processing step for the IMPLANT agent.

Input: set of all states S and set of all actionsA
Output: the game environment model defined by the

transition function T and reward function R
initialize PQ, T , R, resultantStateCount and
totalCount;
while simulation is running do

get current state s ∈ S;
get least tried action a;
set totalCount(s, a)=totalCount(s, a) + 1;
execute a and record resultant state s′ and reward r;
set resultantStateCount(s, a, s′)=
resultantStateCount(s, a, s′) + 1;

set T (s, a, s′)= resultantStateCount(s,a,s′)
totalCount(s,a) ;

set R(s, a)=r;
insert s into top of PQ;
while there is computation time left do

get s from top of PQ;
store the old value V old=V (s);
update the new value V (s) =
maxa∈A(R(s, a) + γ

∑
s′∈S

T (s, a, s′)V (s′));

compute the value change ΔV =V old − V (s);
set prioritys = 0;
foreach predecessor state s̃ and action ã
leading into s do

set prioritys̃ =
max(ΔV × T (s̃, ã, s′), prioritys̃);
insert s̃ into PQ according to prioritys̃;

end

end

end

Algorithm 1: The IMPLANT model building algorithm.
A procedure based on the prioritized sweeping method in
reinforcement learning. As a pre-processing stage, the al-
gorithm is encoded in a model building agent which itera-
tively populates the transition probabilities and rewards in
a prioritized manner.

Automatic POMDP Model specification

The other limitation in the IMPLANT architecture was that
it was not known how the POMDP player model can be ob-
tained in general. In this paper we propose to use the Tac-
tical Agent Personality (TAP) representation formulated by
Tan and Cheng (2007). A description of the TAP model is

given next, followed by a justification of why the TAP is
well-suited for this purpose.

Tactical Agent Personality

Generally, the TAP model can be described as a statistical
record of agent actions. The TAP model directly takes the
available agent actions as the player archetypes, which can
be directly specified without any human intervention.

For any agent in the game (PC or NPC), its TAP consists
of a set of actions each tagged with a relative weight value
(between 0 and 1) as shown in Figure 2. Formally defined, if
P is the set of all agent personalities, the agent personality,
Pk ∈ P , of an agent k is a function that assigns a value to
each action.

Pk : A→ [0, 1], (3)

where A is the set of all allowable actions.

Figure 2: An example Tactical Agent Personality (TAP).
Each action is tagged with a relative weight value that can
be evaluated into a probability of choosing it.

Although the concept of TAP is simple, it is shown to
be a powerful asset when used in an adaptation framework
whereby a game agent’s actions is determined automatically
via a classifier that receives ally agent TAPs as input. It also
models the natural phenomenon that a human’s personality
is directly reflected in their actions. This is shown to work
plausibly in various modern game implementations (Tan and
Cheng 2007; 2008b; 2008a; 2008c). Moreover, the simplic-
ity of the TAP representation provides a great ease of ap-
plication which should entice game practitioners to use it in
actual commercial games.

The TAP Belief State

To see why the TAP model fits the requirement of the
POMDP belief state in IMPLANT, we look at the definitions
of the belief state and the TAP.

Definition A POMDP belief state represents the sufficient
statistical information that an agent needs in order to act op-
timally on its next action.
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Definition A TAP model of Agent A represents the suffi-
cient statistical information that an Agent B needs in order
to act optimally towards the Agent A.

In the IMPLANT architecture, the POMDP is purely respon-
sible for player-specific adaptation, thus the belief state ac-
tually needs to only capture information needed to represent
the player’s behavior. This is exactly what the TAP does.
Hence it can be seen that the TAP can actually be used to
represent the belief state in the POMDP component of the
IMPLANT architecture.

The POMDP component of the IMPLANT architecture

is represented by Mpo = 〈Ŝpo, Âpo, T̂po, R̂po, γ, Ô, Ô, b0〉.

The task now is to define the set of states Ŝpo. Specifically,
the action nodes a in the player’s TAP P now defines the set

of POMDP states Ŝpo:

Ŝpo = {a|∀a ∈ P}.

This means that the belief state now captures sufficient
information to represent the behavior of the player such that
adaptive actions can be performed by the IMPLANT agent.
This is verified by the extensive evaluations that have been
performed on the TAP model (Tan and Cheng 2007; 2008b;
2008a; 2008c). This claim will be further verified em-
pirically in an implementation of the enhanced IMPLANT
model in the next section on evaluation.

By utilizing the TAP representation to define the states of
the POMDP component, it also means that a weak bound
is imposed on the number of states in the POMDP. This is
crucial as tractability is the main hindrance to practical ap-
plications of POMDPs. Hence now, the POMDP states in
the IMPLANT architecture is bounded by the equation

|Ŝpo| ≤ |A|.

In other words, the number of POMDP states is at most the
number of actions in the ground MDP of the game environ-
ment. Although there is no strict rule on the number of ac-
tions an agent can have in a modern game, this size will most
likely not be very large as it defines the number of primitive
actions an agent can perform. For example in a fairly com-
plex game like World of Warcraft, the maximum number of
actions available to an agent is around 20, which actually
falls within the higher range of modern games with a large
number of actions.

Evaluation

The improved IMPLANT architecture is implemented in a
typical RPG boss battle scenario with a screenshot as shown
in Figure 3. The results show that the TAP model is essen-
tial in providing better adaptation performance, and that the
reinforcement learning model builder works in reasonable
time. The details are described in the subsections that fol-
low.

Experimental Methodology

The experiments in this section aims to achieve two goals,
namely to test whether

Figure 3: A screenshot of the TAP-enhanced IMPLANT
RPG agent (the robot at the bottom right) in the RPG ex-
perimental setups. The agent at the bottom left is the player,
the agent at the top left is the boss agent and the agent at the
top right is its enemy helper agent.

1. the inclusion of the TAP model into the IMPLANT ar-
chitecture truly improves the effectiveness within efficient
in-game speeds, and

2. whether the priority sweeping model builder builds the
MDP in plausible offline speeds.

An auxiliary goal is to prove the feasibility of the IMPLANT
architecture’s generality in a different game genre - a more
complicated RPG game as opposed to the previous simpli-
fied sports game (Tan and Cheng 2009). In general, we are
testing for effectiveness and efficiency of the improved IM-
PLANT architecture. The sections that follow describe the
game setups that aim to fulfil these test goals.

Game Mechanics

The game is set as a boss battle in an RPG game, commonly
encountered in climactic moments or locations in the game.
This battle basically involves the player (and the ally agent)
facing against a superior enemy agent called the boss agent.
The boss agent is generally far stronger than any enemy
agents the player has encountered in that section of the game
world. The boss agent also has a helper enemy agent. Hence
it is a battle between the team consisting of player agent and
IMPLANT agent versus the enemy team consisting of the
boss agent and the enemy helper agent.

Basically the states indicate the targets, health points (HP)
and status of each agent. The TAP model is represented by
a single player model attribute which is instantiated by the
actions available to the player as defined by the TAP frame-
work. The game agents possess a wide variety of actions
like target, slash, cyclone, fireball, snowblast, heal, rage and
evade. The actions are differentiated in terms of range, state
modifications, damage modifier probabilities and re-useable
time. For example the snowblast action inflicts a 5hp dam-
age to all agents within 3 tiles of range and performs double
the damage with a probability of 0.3. The full descriptions
are omitted in this paper due to space limitations. The tran-
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Figure 4: Effectiveness test results for the TAP-enhanced
IMPLANT RPG Agent: histogram of number of rounds
won by ally team. A plot of the number of rounds won by
the ally team (the player agent and the AI agent). Higher
means better performance. Each bar set represents a com-
parison between the TAP-enhanced IMPLANT RPG Agent
(IMPLANTTAP) and the stripped-down IMPLANT agent
(with the TAP component removed). Each set represents an
experimental setup with a particular player model.

sitions and rewards are automatically specified by the prior-
itized sweeping model builder as described.

Experiments and Results

The experiments devised aim to test the effectiveness and
efficiency criterions as described above.

Effectiveness Test In a single experimental set, two vari-
ations of the agent architecture are implemented. The
first variation (IMPLANTTAP) is the improved IMPLANT
architecture with the TAP model. The second variation
(IMPLANT) is the IMPLANT architecture with the player
model component removed. The aim is to show whether the
TAP model is effective in improving the adaptation perfor-
mance of the agent.

To achieve robustness, the game is ran for 1000 rounds
for each player model and scores are plotted in Figures 4
and 5. To test the versatility of the improved architecture
across different player types, each experimental set contains
a different setup of the player, namely the melee, ranged,
and healer models, based on the abstract actions in the TAP-
defined POMDP model.

As seen in Figures 4 and 5, the IMPLANTTAP architec-
ture generally outperforms the stripped-down IMPLANT ar-
chitecture constantly throughout all the player models, both
in the number of wins as well as the score. This shows that
the inclusion of the player model component (TAP) is essen-
tial to improving the performance of the game agent. Con-
sequently, it also means that adapting to the player is as im-
portant as adapting to the game environment.

To determine the significance of the results, unpaired two-
sample one-tailed heteroscedastic Student’s t-tests are per-
formed on each pair of scores. The null hypothesis is that
there is no different between the performance of the IM-
PLANTTAP and IMPLANT teams. The alternative hypoth-

Figure 5: Effectiveness test results for the TAP-enhanced
IMPLANT RPG Agent: Histogram of the score values.
Higher means better performance. Each bar set represents
a comparison between the TAP-enhanced IMPLANT RPG
Agent (IMPLANTTAP) and the stripped-down IMPLANT
agent (with the TAP component removed). Each set repre-
sents an experimental setup with a particular player model.

esis we want to achieve is that the IMPLANTTAP architec-
ture performs better than the IMPLANT architecture. Hence
a one-tailed test is used on each corresponding pair of scores.
As no assumption can be made about the variances of each
distribution, the heteroscedastic (unequal variance) t-test is
used. The results of the t-test are as shown in Table 1. It
can be seen that the p-values are all lower than 0.01 which
implies that we can say with 99% confidence that our results
are significant.

Melee Shoot Heal

T-test p-value < 0.010 < 0.010 < 0.010

Table 1: Effectiveness test results for the TAP-enhanced IM-
PLANT RPG Agent: Table of t-test p-values. These values
verify the significance of the results that the IMPLANTTAP
architecture is better than the IMPLANT architecture.

Efficiency Test The speed results are tabulated for both
the IMPLANTTAP and IMPLANT architectures, as shown
in Table 2, whereby it can be seen that the time required to
query a decision in-game is still within a matter of millisec-
onds, which is unnoticeable by the human eye. This shows
that the IMPLANT architecture is still very much viable in
a much more complex setup like this.

The pre-computation time is shown for 5000 epoches in
which 200 states are updated in each epoch. It appears that
pre-computation time is rather lengthy due to the addition of
the model building stage which takes quite a while to sweep
through the huge game world. The pre-computation times
are the same for both IMPLANTTAP and IMPLANT be-
cause it is dominated by the priority sweeping model build-
ing process. Nevertheless, this is still much better than tak-
ing weeks to design and hand-craft the model which is fur-
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thermore prone to human errors. Currently, this seems like
a reasonable tradeoff to make.

Average Average

Pre-computation Query

Time Time

IMPLANT 1h23m 0.002s

IMPLANTTAP 1h23m 0.011s

Table 2: Efficiency test results for the TAP-enhanced IM-
PLANT RPG Agent: Table of average adaptation speeds.
The policy pre-computation and query times are tabulated
for the TAP-enhanced IMPLANT (IMPLANTTAP) and
stripped-down IMPLANT (with no TAP) setups. The pre-
computation times are averaged over 20 runs. The query
times are averaged over 100 runs. The pre-computation
times are the same as the two setups use the same model
builder. The query times are also both within a matter of
milliseconds.

Discussion and Conclusions

This paper has described the enhancements of two impor-
tant aspects of the IMPLANT architecture so as to improve
its applicability across modern game genres. The first is the
infusion of the TAP model into the architecture to actualize
how the states in the POMDP component is defined. The
second is the utilization of a automatic model building pro-
cedure to obtain the game mechanics needed for the rest of
the MDP model in the IMPLANT architecture.

The implementation in a modern RPG game scenario fur-
ther improves the credibility of the IMPLANT architecture
in the applicability towards modern game genres. The ex-
periments performed on the implementation has also shown
that the TAP model is indeed crucial in improving adapta-
tion performance, or more specifically adaptability towards
the player. This chapter hence furnishes the essential details
necessary to improve the generalizability of the IMPLANT
architecture.

It can be seen however that an offline computation time of
over an hour is still needed to build the MDP model, which
somewhat slows down the development process. Neverthe-
less we believe that this is a reasonable tradeoff to make
rather than tediously manually specifying the model. Future
work can hence be targeted at improving this offline compu-
tation time. Alternative methods of reinforcement learning
might also be evaluated to determined whether quicker times
can be obtained.
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