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Abstract

This research aims at building a preference-based player
model of Civilization IV players. Our model incorporates at-
tributes which are defined for AI players. We use a sequen-
tial minimal optimization (SMO) classifier to build the player
model based on a training set with observations of a large
number of games between six AI players. The model was val-
idated on a test set of games between the same six AI players.
While it did not seem to generalize well to the preferences of
different AI players, it did manage to accurately predict some
of the preferences for a veteran human player. Further tests
showed that AI players with the same play styles but differ-
ent preference values were often confused by the model. We
conclude that for a complex game such as Civilization IV a
model that attempts to accurately predict specific preference
values is hard to construct. A model that focusses on play
styles might succeed better.

Introduction

A player model is a representation of specific attributes of a
player of a game. In practice, when player modeling is im-
plemented in game artificial intelligence (AI), it is usually in
the form of opponent modeling. The AI creates a model of
its (human) opponent, to allow it to be more effective in de-
feating this human player. There are many games, however,
where the goal of the game AI is not to defeat the human. In-
stead, the goal of such game AI might be to entertain the hu-
man player, or to assist him in acquiring certain skills. One
could argue that to achieve such goals, it is highly import-
ant for the AI to gain an insight into the player’s particular
traits. Hence, it is beneficial for the AI to have access to an
appropriate model of the player. As such a model does not
treat the human (only) as an opponent, we prefer the term
‘player model’ over the term ‘opponent model.’

In practice, player/opponent models usually are action
models. I.e., they store the action that the human player is
most likely to take in a given situation. An action model
can be beneficial when the human player is treated as an
opponent which must be defeated, as the AI can use it to
predict the opponent’s next move. However, for other goals
an action model is less suitable. If the AI strives to entertain
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or train a human, a player model should encompass the hu-
man’s preferences and skills, i.e., what the player desires to
accomplish or experience in the game, and to what extent he
is able to do that.

A player model that encompasses preferences and skills
(which we will refer to as a ‘preference model’) has the po-
tential to be much more useful than an action model, as it
has explanatory power and is better able to generalize over
actions. Still, in practice preference models are seldom used.
The reason is that it is a much harder task to capture pref-
erences in a model than it is to capture actions, as actions
are clearly measurable, while preferences are not (to a lesser
degree, the same holds for skills). In the present paper, we
investigate to what extent it is possible to build a preference
model of a player of the highly complex strategy game Civil-
ization IV. We employ the preferences that are encoded into
the AI players of Civilization IV, build models for several
of them based on game observations, and use these models
to predict preferences of different AI players and of human
players. Our goal is to be able to predict accurately the pref-
erences of a Civilization IV player by observing a game state
in which this player is involved.

Background

Most research in game AI is directed at deterministic two-
player board games with perfect information. The standard
approach for such game AI is tree search.In 1993, two re-
search groups started investigating the incorporation of ex-
plicit opponent models in tree search techniques. Carmel
and Markovitch (1993) focussed on learning of opponent
models, while Iida et al (1993) focussed on potential op-
ponent model applications in tree search. In follow-up re-
search, Uiterwijk and Van den Herik (1994) investigated
search techniques that concentrated on fallibility of an op-
ponent, and Donkers (2003) defined probabilistic opponent
models that took into account uncertainty about the oppon-
ent’s strategy.

While opponent modeling may be useful for determin-
istic, two-player games of perfect information, they are
seldom employed in practice because the consequence of
using a faulty opponent model may be that the AI plays
significantly worse than it would without taking the op-
ponent model into account (Donkers 2003). In imperfect-
information games, however, the inclusion of an explicit op-
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ponent model is often a necessity for strong gameplay. See
for example the work by Egnor (2000)on Roshambo, and the
work by Billings (2006) on Texas Hold’m Poker.

In video games, opponent modeling is increasing in im-
portance (Fürnkranz 2007). The main reason is that the pur-
pose of AI in video games is usually ‘entertaining the human
player,’ rather than ‘defeating the human player’ (van den
Herik, Donkers, and Spronck 2005). Entertainment should
not only be evoked, but also be maintained (van Lankveld et
al. 2010). A game that succeeds in doing that for consid-
erable time is appreciated more by players than a game that
does not. Therefore maintaining entertainment in a game is
beneficial for the developers’ future business. Furthermore,
in ‘serious games’ where training is the purpose of the game,
a good player model may assist the game in achieving its
goals in an efficient and effective manner.

Player modeling in video games is a challenging task
for at least three reasons: (1) the environment is often
highly complex, (2) there is little time for making obser-
vations, and (3) the environment is often only partially ob-
servable (Houlette 2004). It is rarely attempted in video
games. When it is, it is usually in the form of action
modeling (Donkers and Spronck 2006). Action models
are usually built by simply counting actions or by pat-
tern recognition methods, such as N-grams (Laramée 2002;
Millington 2006). For most games action models are of lim-
ited use, as they can only be applied in the specific situations
for which they stored actions. Preference models, in con-
trast, encompass preferences and skills of a player, such as
predicting in which situation a player will behave aggress-
ively. These models have explanatory power and the abil-
ity to generalize to novel situations (Donkers and Spronck
2006).

In recent years several implementations of preference
models have been attempted. Bauckhage et al (2007) used
a Markov Decision Process to model a player’s strategies in
Quake II. Rohs (2007) built rudimentary preference models
for AI in the game Civilization IV. Yannakakis and Hallam
(2007) investigated the modeling of game players with the
specific purpose to increase player satisfaction. Thue et al
(2008) researched how player models can be used to create
stories that fit the player’s interests. Sharma et al (2007) im-
plemented a player model that represented a player’s likes
and dislikes for particular story elements in a game. Van
Lankveld et al (2010) demonstrated how a single-valued
player model can be used to maintain entertainment in a
simple arcade game. Van Lankveld et al (2009) also did pre-
liminary work on building a psychologically verified model
of a player’s extraversion by observing the player’s behavior
in a role-playing game. Finally, Bakkes (2010) investigated
how player models can be automatically discovered to in-
dicate high-level preferences for strategies in the RTS game
Spring. None of this research has been applied in published
games yet.

The work discussed in the present paper distinguishes it-
self from previous research by attempting to ramp up the
complexity of the environment and the level of detail of the
models. It also attempts to apply the models to predict the
preferences of human players.

Experimental Setup

The goal of our experiments is to create a viable player
preference model for Civilization IV players. We build this
model based on a training set of observations of gameplay of
Civilization IV AI players. We test the accuracy of the mod-
els we obtain against four test sets. The first test set consists
of observations on the same AI players as used to build the
training set. The second test set consists of observations on
different AI players. The third and fourth test sets consist of
observations on two human players, one casual player and
one veteran player.

Civilization IV

Sid Meier’s Civilization IV (from hereon: Civilization IV)
is a highly complex turn-based strategy game in which the
player controls a civilization. One or more rival civilizations
populate the game world. The rivals are controlled either by
AI, or by other human players. The players move in turn:
on his turn, a player gets to command all his units and mi-
cromanage his societal, political, economical, military, and
scientific structures. He can also engage in diplomatic con-
tacts with his rivals, to make deals about trades and to come
to political agreements. In its normal setup, the game lasts
up to 460 turns. During this time, each of the civilizations
attempts to grow and develop, outperforming rivals, to be
the first to fulfill a victory condition. There are six differ-
ent victory conditions, some focussing on military conquest,
and others on scientific or cultural domination. In contrast
with other strategy games, most of the turns of Civilization
IV are spent in peaceful (though often tense) relationships
with neighboring rivals. For the present research, we used
version 1.61 of the base game of Civilization IV.

Player Model

In Civilization IV each civilization is represented by a leader.
For AI players each possible leader has different prefer-
ences and a different playing style. For instance, Alexander
the Great is an opportunistic, aggressive, military-oriented
player, while Hatshepsut is a mildly-aggressive, peaceful,
culturally-oriented leader. Because of the different ways
leaders behave in the game, we decided to base our player
models for Civilization IV on the behavior of these leaders.

The behavior of leaders is for a large part determined
by their preferences.The developers of Civilization IV spe-
cified a list of parameters for the leaders which they call ‘fla-
vors.’ These flavors are represented by a name and a value in
the range {0, 2, 5, 10}. There are two possibilities for each
leader: (1) either the values for all flavors are zero, except
for one which has value 10, (2) or the values for all flavors
are zero, except for one which has value 2, and one which
has value 5. The higher the value for a flavor, the more a
leader ‘prefers’ that flavor. Besides the flavors, several other
preferences are specified for each leader. One of those is the
preference for ‘aggression,’ which is represented by a value
in the range {1, 2, 3, 4, 5}. The higher the value for ‘aggres-
sion,’ the more aggressive a leader will behave.

We decided to let our player model incorporate a player’s
preference for ‘aggression,’ and six of the flavors. In our
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Table 1: Player model.
Preference Range Interpretation

Aggression 1, 3, 4, 5 Tendency to expand and declare war
Culture 0, 5 Tendency to invest in culture
Gold 0, 2, 5 Tendency to invest in economy
Growth 0, 2 Tendency to invest in food production
Military 0, 2, 5 Tendency to invest in military
Religion 0, 2 Tendency to invest in religion
Science 0, 5 Tendency to invest in research

experiments we focussed on a subset of the leaders. This
lead to a player model consisting of seven parameters, each
with a limited range of values (those which occurred in the
training set). The complete player model is given in Table 1.

Observations

Our player models are built on observations of Civilization
IV games. The games we used were duels between two play-
ers, on a ‘tiny’ map, in which both players started on the
same continent. An observation is an abstraction of a Civil-
ization IV game state. As Civilization IV is a highly complex
game, for which the game state is only partially observable,
such an abstraction will necessarily lose a great deal of in-
formation.

We decided to include in the observations all information
which was easily accessible by the game AI, with two re-
quirements: (1) it should be accessible by human players
too, and (2) it should be accessible by a human player in a
game against another human player. We settled on 25 basic
features, including number of cities, number of units, pop-
ulation size, land size, wealth, score, war declarations, and
values for economy, industry, agriculture, culture, and mil-
itary power. The features are from the perspective of one of
the players, and provide values for that player’s civilization
(e.g., ‘cities’ is the number of cities under the player’s con-
trol). We extended the set of basic features with over 100
composite features, which are comparisons of features with
corresponding features of the opponent (e.g., the difference
in number of cities), or of features with the same features
in earlier turns (e.g., the increase in number of cities). The
composite features demonstrate differences, trends, and de-
rivations. A full list is provided by Den Teuling (2010).

Training Set

The models were built on a training set of observations. To
collect these observations, we let AIs, in the form of leaders,
play Civilization IV in duels. These duels were run auto-
matically, with both leaders controlled by an AI. This is not
standard functionality in Civilization IV, but we could ac-
complish it by using a modification called AiAutoPlay (eas-
ily found by an internet search), which we adapted for our
purposes. We used the ‘Noble’ difficulty setting, in which
neither player has an advantage over the others.

We started with six leaders, which are listed, with their
preferences, in Table 2. Each leader played against each
other leader a total of 8 times, for a total of 40 games per
leader. An observation is recorded at the end of each game

Table 2: Leaders in the training and Alexander test set.
Leader Agg Cul Gold Gro Mil Rel Sci

Alexander 5 0 0 2 5 0 0
Hatshepsut 3 5 0 0 0 2 0
Louis XIV 3 5 0 0 2 0 0
Mansa Musa 1 0 5 0 0 2 0
Napoleon 4 0 2 0 5 0 0
Tokugawa 4 0 0 0 2 0 5

Table 3: Leaders used in the Cyrus test set.
Leader Agg Cul Gold Gro Mil Rel Sci

Cyrus 4 0 0 2 5 0 0
Montezuma 5 0 2 0 5 0 0
Peter 4 0 0 2 0 0 5
Saladin 3 0 0 0 5 2 0
Victoria 3 0 5 2 0 0 0
Washington 3 0 0 2 5 0 0

turn. Each game provided between 240 and 460 obser-
vations. However, since the early turns of a Civilization
IV game progress more or less the same, regardless of the
leader, we decided to remove the observations for the first
100 turns of every game. This lead to a training set with a
total of almost 55,000 observations, roughly 9,000 for each
leader.

Test Sets

We used four different test sets. For each of the games in the
test sets, observations on the first 100 turns were removed,
just as in the training set. The first test set is the Alexan-
der test set, which contains observations on duels fought
between the same six leaders that are incorporated in the
training set. These were 10 new games per leader, for a
total of 17,939 observations. The second is the Cyrus test
set, which contains observations on duels fought between
six different leaders. The six leaders included in the Cyrus
test set are listed in Table 3. These leaders were chosen be-
cause their preference values met the same limitations we
found in the training set. Ten games were played per leader,
for a total of 16,330 observations in the Cyrus test set.

The third is the casual test set, which contains observa-
tions on two games of a human player who was a novice to
the Civilization IV game. One game was played against Ju-
lius Caesar (who was neither in the training set, nor in the
Cyrus test set), and one against Mansa Musa. This test set
contained 656 observations. The fourth is the veteran test
set, which contains observations on four games of a human
player who was reasonably experienced with the Civilization
IV game. He played games against Louis XIV, Tokugawa,
Napoleon, and Mansa Musa. This test set contained 509
observations. Naturally, we do not have values for the pref-
erences of the two human players. Therefore we asked them
to comment their games, indicating their focus and prefer-
ences, and if they decided to change their focus in-game, list
the new focus and the game turn when they changed. We
interpreted their reports and assigned preference values ac-
cordingly. We deliberately asked the veteran player to stick
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to one focus for the game, just like an AI player would.

Modeling by Classification

Our preference model is a collection of seven classification
models, one for each preference. To create these classific-
ation models, we applied the Sequential Minimal Optimiz-
ation (SMO) classifier (Platt 1998) to the training set, us-
ing the Weka 3.6.1 environment (Witten and Frank 2005).
We chose SMO, with the default Weka parameter settings,
because in preliminary experiments we compared it to four
other classifiers, and found it to be the most suitable for our
purposes (den Teuling 2010).

Results

We performed three experiments. In the validation experi-
ment, we created our player preference model and validated
it on the Alexander test set. In the generalization experi-
ment, we tested whether the model generalized to accurately
predict the preferences of different AI leaders, by applying
it to the Cyrus test set. In the human players experiment,
we tested whether the model was able to accurately predict
the preferences of two human players, by applying it to the
casual and veteran test sets. The results of these experiments
are discussed below.

Validation

We built a player model with the seven preference values by
applying the SMO classifier to the training set for each of
the preferences. The validation experiment tests the accur-
acy of the player model by applying it to the Alexander test
set. To be considered a useful model, it should outperform at
least a frequency baseline for the preferences. A frequency
baseline is the percentage of the test set that would be pre-
dicted accurately, if the prediction was that all observations
belonged to the preference that occurs most in the test set.
For instance, the value 0 for the preference ‘culture’ occurs
in 11828 of the 17939 observations in the Alexander test set,
therefore the frequency baseline for ‘culture’ is 65.93%.

The results of the validation of the player model on the
Alexander test set are graphically presented in Figure 1.
From these results we can conclude that the accuracy of
our player model is validated on the Alexander test set. For
none of the preferences the model scores worse than the fre-
quency baseline, and for the preferences ‘aggression,’ ‘cul-
ture,’ ‘gold,’ ‘military,’ and ‘religion’ it scores substantially
higher. For the preferences ‘growth’ and ‘science’ improve-
ments over the baseline are only marginal.

Generalization

To test to what extent our validated player model is able to
generalize and accurately predict the preferences of other
Civilization IV leaders, we applied the model to the Cyrus
test set. A frequency baseline was calculated for all prefer-
ences in the Cyrus test set. A comparison of the frequency
baselines and the predictions of the applied player model is
graphically presented in Figure 2.

From these results we must conclude that the player
model acquired from the training set does not generalize

Figure 1: Results of the validation experiment.

Figure 2: Results of the generalization experiment.

well. For all preferences, the player model’s predictions are
worse than the frequency baselines. These results can be
labeled as ‘somewhat disappointing.’ Possible reasons for
why the results are as they are, and potential avenues for
improving them, are discussed below.

Human Players

To test to what extent our validated player model is able
to accurately predict the preferences of human Civilization
IV players, we applied the model to the casual test set and
the veteran test set. For the casual test set, the accuracy
of the player on all preferences scores lower than the fre-
quency baseline. For the veteran test set, the player model
scores substantially higher than the frequency baseline on
the preferences ‘culture’ (92% by a frequency baseline of
51%) and ‘gold’ (81% by a frequency baseline of 56%),
and performs about equal to the frequency baseline on the
preferences ‘growth,’ ‘military,’ and ‘religion.’ Therefore,
somewhat surprisingly considering the results on the Cyrus
test set, the player model is actually reasonably successful
in predicting the preferences of the veteran player. The res-
ults on the casual and veteran test sets are hard to interpret,
as the preference values were assigned by us on the basis of
the player reports. They are further discussed below.

Discussion

In this section we discuss the implications of the results
achieved with the validation experiment, the generalization
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Figure 3: Indication of as whom each leader was classified.

experiment, and the human players experiment.

Discussion of the Validation Experiment

The results of the validation experiment showed that the
preferences in the Alexander test set could be predicted sub-
stantially better than the frequency baselines. The predic-
tions for ‘growth’ and ‘science,’ however, are not much bet-
ter than the frequency baseline. One possible explanation
for the lack of success on the preference ‘growth’ is that
in our training set and test sets, the only values occurring
for ‘growth’ are 0 and 2, i.e., ‘no interest in growth’ and
‘a little bit of interest in growth’ respectively. And as all
civilizations must invest in growth to some extent, no clear
indications for growth preference can be found in our obser-
vations. One possible explanation for the lack of success on
the preference ‘science’ is that there was only one leader in
our training set who is strongly interested in science, namely
Tokugawa, who tends to be unsuccessful in scientific ex-
plorations as he refuses to make deals with other players. It
should be noted that from a gameplay perspective Tokugawa
needs a high value for the science preference, as without it
he would fall way behind in scientific discoveries because of
his isolationist nature.

Discussion of the Generalization Experiment

The results of the generalization experiment showed that
the preferences in the Cyrus test set could not be predicted
more accurately than the frequency baselines. In fact, in
general the player model scored much lower than the fre-
quency baselines. Our first impression was that the player
model was overfitting the leaders which were included in
the training set and Alexander test set. If that was the case,
then we should be able to create a classification that predicts
the actual leaders from the training set. To investigate this,
we performed a new experiment in which we created, using
SMO, a classification model that distinguishes the leaders.
The results, which are presented in Figure 3, were quite illu-
minating. On the horizontal axis the figure displays the six
leaders in the Alexander test set, and the bars indicate, for
each leader, the number of observations for which they were
classified as the leader represented by the bar.

In Figure 3 we see that Alexander and Mansa Musa are re-
cognized well. We also see that Hatshepsut and Louis XIV

Figure 4: Test set leaders classified as training set leaders.

are often confused with each other, while Napoleon is often
identified as Alexander, and Tokugawa is often identified as
Alexander or Napoleon. Alexander and Napoleon are both
highly-aggressive, military-oriented leaders, while Hatshep-
sut and Louis XIV are both mildly aggressive, culturally-
oriented leaders. Amongst these leaders Mansa Musa is in a
league of his own, as the sole economically-oriented leader.
Tokugawa seems hard to classify, but when he is misclassi-
fied it is mostly as an aggressive, military leader, which fits
him well. Therefore we see that, while our approach seems
to be unable to recognize all leaders, it seems to be particu-
larly effective at recognizing leader play styles.

In Figure 4 we used the leader classification model on the
Cyrus test set. We see that most of the leaders are hard to la-
bel. A strong exception is Washington, who is recognized as
Mansa Musa. Both these leaders have a peaceful, econom-
ically driven play style. We also see that Cyrus, Peter, and
Saladin seem to have similarities with Napoleon. Indeed,
these are the three aggressive leaders of the Cyrus test set.

Play styles translate to preferences only to a limited ex-
tent. Tokugawa is a case in point: he has a very recognizable
(isolationist) play style which the player model cannot rep-
resent, but which has a high impact on the observations. Play
styles of the leaders in Civilization IV are mostly determined
by special-purpose code. For the leaders we picked for our
training set, interest in ‘culture,’ ‘gold,’ and ‘military plus
high aggression’ are easy to recognize, and consequently the
corresponding preferences can be predicted reasonably well.
However, in the Cyrus test set, no cultural or clearly eco-
nomical leaders can be found, and high military is combined
with both high and low aggression. In short, the play styles
of the leaders in the Cyrus test set do not match the training
set. This seems to be the main reason that our model fails on
the Cyrus test set. For future work, we therefore think that
for such complex environments as found in Civilization IV, a
player model should encompass play styles rather than spe-
cific parameter values. We did note, however, that it seemed
easier to predict preferences for which high values were in-
corporated in the training set. Therefore, using our approach
with more ‘extreme’ leaders might also lead to results that
generalize better.
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Discussion of the Human Players Experiment

The main problem with the experiment with human players,
is that we needed to manually translate the written reports
of the players to preference values. When we examined the
results on the human player test sets for misclassifications of
preferences with more than two possible values, we found
that in 60-80% of the cases a misclassification concerned a
‘one-off error,’ i.e., a preference being classified as a neigh-
bor value of the value that we distilled from the reports.

Conclusion
In this paper we discussed the building of preference-based
player models for Civilization IV. We used a training set of
observations on games played by six Civilization IV lead-
ers, with different play styles, to construct a player model
encompassing seven preferences. The model was validated
on a test set containing games played by the same six lead-
ers. However, we found that the model did not generalize
well to different AI leaders. Further investigations showed
that with our training set we can build a player model that re-
cognizes play styles, but that the observation features in the
training set seem to be insufficient to derive precise prefer-
ence values. Experiments with human players show that for
them the player model can predict some of the preference
values well, if the human follows a focused play style.

The results provide indications for three directions of fu-
ture research. First, we might achieve results that generalize
better if we train on leaders with ‘extreme’ preference val-
ues. Second, modeling play style might generalize better
than modeling preference values. Third, in a simpler envir-
onment with less variety of play, our approach might lead to
better results. We intend to follow all three lines of research
in future investigations.
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