
Multi-Agent Coordination Using
Dynamic Behavior-Based Subsumption

Frederick W. P. Heckel and G. Michael Youngblood
The University of North Carolina at Charlotte

Game Intelligence Group, Department of Computer Science
9201 University City Blvd, Charlotte, NC 28223-0001

{fheckel, youngbld}@uncc.edu

Abstract

Team coordination of non-player characters can create a
deeper sense of immersion in real-time games by allowing
characters to work together to produce better tactics and strat-
egy. Achieving multi-agent coordination can be a difficult
problem, and can incur substantial computational costs. Our
goal with this work is to produce a reactive method for coor-
dinating game characters that will allow computationally in-
expensive team coordination. Reactive teaming creates teams
of agents through the use of simple constant-time agent inter-
actions without increasing the difficulty of authoring game
characters.

Introduction

Poor or nonexistent team coordination of non-player charac-
ters in games can break the immersive experience for play-
ers. When an AI agent is surrounded by allies but behaves
as though it is alone, the result is an unbelievable situation.
Team coordination allows characters to work together and
produce better tactics and strategy, which generates better
behavior. Characters acting alone are limited in their space
of action; the lone sniper in an action game can find a hid-
den position offering an excellent view of an ambush area,
but without teammates to drive the enemy to the ambush, the
sniper may end up being useless. A worse problem is when
the game provides AI characters as allies for the player but
the allies hinder the player.

Achieving multi-agent coordination can be a difficult
problem that can incur substantial computational costs. In
real-time games, the problem is compounded by the highly
dynamic nature of the environment. As characters are dis-
abled, the tactical or strategic environment changes, or team
capabilities change, carefully built team plans can be com-
pletely invalidated.

When creating individual agents, reactive control meth-
ods are frequently used because of their fast response times
and low computational cost. Reactive control may not gen-
erate optimal behavior, but it does allow inexpensive agents
that are easy for AI designers to build. Our goal with this
work is to apply the idea of reactive control to the problem
of team coordination in real-time games. Reactive teaming

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

should provide fast and computationally inexpensive agent
coordination that, while not making any guarantees about
the quality of the plan, are still easy to author by AI design-
ers. In this paper, we present our formulation of a reactive
teaming technique using behavior-based subsumption archi-
tecture. We show that the computational complexity of re-
active teaming makes it an appropriate choice for real-time
games, and present case studies that use reactive teaming in
our AI testbed (seen in Figure 1).

Figure 1: Teams of agents in the FI3RST environment

Background
Reactive control is a paradigm in artificial intelligence that
uses the immediate world state to generate actions. The key
observation underlying reactive control is that “the world is
its own best model,” so decisions should be based primar-
ily on the observed state of the environment (Brooks 1990).
Reactive control is a good choice for real-time game en-
vironments because they are highly dynamic and require
fast responses that can be difficult to achieve with plan-
ning methods. Several different reactive architectures are
commonly used, including finite state machines (FSMs),
behavior trees, and subsumption architecture (Isla 2005;
Fu and Houlette 2004; Brooks 1986).

Subsumption architecture is a reactive control method
originally proposed by Rodney Brooks as a robot control ar-
chitecture (Brooks 1986). Agents are defined as a series of

132

Proceedings of the Sixth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment

Figure 2: Subsumption architecture: layers represent behav-
iors, which may be simple or composed of multiple behav-
iors. Higher layers have higher priorities. Circles represent
subsumption policies, which dictate how layers interact.

prioritized layers, as shown in Figure 2. Layers are typically
composed of FSMs that make decisions based on the current
environment state. Higher layers may adjust the control of
lower layers, but lower layers may not interact with higher
layers. Higher priority layers may completely or partially
override (or subsume) lower layers. Transitions are not ex-
plicitly specified, though the closest analog is the subsump-
tion policy. Subsumption is inherently parallel, eliminating
the need for constructions such as ε transitions (in FSMs) or
schedulers (in planning architectures) to achieve parallelism.
Behaviors can be executed in sequence by composing a layer
of multiple behaviors, but executing layers in a sequence is
more complex than in a standard FSM unless each layer has
a discrete effect on world state.

Reactive techniques are often adapted as behavior-based
control methods. Behavior-based control was proposed by
Maja Mataric as an alternative to subsumption for robot con-
trol (Matarić 1992). Behavior-based layers are more modu-
lar and act as “black boxes,” in that interaction between the
layers is very limited. In addition, behaviors may be more
complex than typical reactive controllers. They may reason
over a limited amount of world state. Aaron Khoo described
the use of behavior-based subsumption as a game AI method
with abstracted trigger/action modules (Khoo 2006). While
subsumption in its basic form provides conflict resolution
through the use of prioritized layers, Khoo uses other meth-
ods to resolve action conflicts without static priorities.

Much of the research in multi-agent planning focuses on
providing near-optimal task assignments for teams. Multi-
robot task assignment, a close parallel to game team co-
ordination, can be defined as a scheduling problem (Dahl,
Matarić, and Sukhatme 2009). Scheduling defines a number
of jobs which must be executed by a number of machines,
by a certain deadline. Different approaches have been tak-
ing to finding near-optimal teams, including planning, auc-
tions, and free-market methods (Brumitt and Stentz 1996;
Gerkey and Matarić 2002; Kalra et al. 2005).

Approaches to team coordination of behavior-based
agents often focus on local approaches. Werger observed

that emergent team behaviors developed from agents with
no awareness of the team (Werger 1998). While this is
possible, it becomes difficult to design teams which coor-
dinate through emergent behavior. Learning and swarming
approaches without explicit communication have been suc-
cessful (Shell and Matarić 2005). Adding explicit commu-
nication which conveys a teammate’s state provided success
with a robotic box-pushing task (Matarić, Nilsson, and Sim-
sarian 1995).

In games, teams of agents are commonly coordinated
through a combination of decentralized and centralized AI.
Decentralized team AI extends individual agent controllers
to take their teammates’ current observations and intentions
into account (van der Sterran 2002a). Decentralized meth-
ods are considered to be too weak to perform sophisticated
coordinated actions, so centralized methods provide an ad-
ditional level that issues commands to individual agents.
When centralized methods are used, the team coordinator
uses either an authoritarian or coaching style, depending on
the requirements (van der Sterran 2002b). Decentralized
teams may use blackboards to communicate information be-
tween agents, which provide a central shared memory area
that agents can read and update (Orkin 2004). The informa-
tion shared by AI agents in the game No One Lives Forever
2 includes requests for agents to move when they are block-
ing another agent, messages to change pathfinding behavior,
notifications of events, and requests for behaviors to be exe-
cuted.

Team coordination can be implemented in the Goal Ori-
ented Action Planning architecture by providing hierarchical
goal planning (Pittman 2008). When an action is chosen at
a high level unit, the action includes suggestions of goals
for the subordinate units under its command. Each level of
the command hierarchy filters goal suggestions downward.
Note that in this implementation, goals cannot be added to
the controllers of lower level units, but instead importance
modifiers are applied to the available goals. Modifiers can
be either positive or negative.

Figure 3: The BEHAVEngine Architecture.

Our approach to teaming draws from reactive control
methods to create team coordination that is more structured
than emergent approaches, but without the complexity of
planning. The work described in this paper is implemented
as part of the Behavior Emulating Hierarchical Agent Vend-

133

ing Engine (BEHAVEngine) (Heckel, Youngblood, and
Hale 2009b). BEHAVEngine provides a behavior-based
subsumption engine for controlling game characters, and
uses our FI3RST (FIrst and 3rd-person Realtime Simula-
tion Testbed) environment to provide a game testbed. The
subsumption architecture implemented by BEHAVEngine
is a hybrid system and includes elements inspired by cog-
nitive models, including modular perceptual, memory, and
action systems which are independent of the subsumption
controller, as shown in Figure 3.

Methodology
The primary mechanism used by our reactive teaming
method is a dynamic layer stack. Agents can add and re-
move entire behavior layers at runtime, and layers are mon-
itored for failures. Agents on teams can coordinate with one
another by exchanging behavior layers. These layers can be
transferred in their entirety, or subdivided to reduce the bur-
den of each agent and possibly improve the speed of the task.
Reactive teaming can also make use of environmental infor-
mation to provide convincing cooperation without explicit
task division.

Behavior Transfer

The core of reactive teaming is the agent-to-agent transfer
process. Typically agents in teams will be selected to per-
form a particular behavior based on their suitability. This
requires evaluation of each agent with respect to each be-
havior. If all behaviors are assigned at once, the computa-
tional complexity is typically O(mn) for n agents and m
tasks. The number of messages required to communicate
utility values is also typically the same. Online assignments,
where one task is assigned at a time, will still require O(n)
complexity and communication to assign tasks.

Just as reactive control greatly reduces the complexity of
individual agent controllers, reactive teaming reduces the
complexity of team coordination. Instead of assigning be-
haviors globally, all assignments are local. Furthermore, for
an agent to be assigned a task, it must request one.

All task assignments are one-to-one transfers. Take two
agents in a virtual environment, A and B. Agent A has no
current behaviors, or may have simple placeholder behav-
iors (we will refer to A as a generic agent, and assume that
all generic agents have a single default wander behavior).
Agent B has one or more defined behaviors (we will re-
fer to B as a fully-defined agent). When A encounters B,
it will request a behavior from B. Then B will choose a
behavior to transfer to A, offer the transfer, and if A can
execute the behavior, it will accept it. Otherwise, A will
reject the behavior. No utility value is calculated, and no
other agents are considered during the process. The result is
that while it may take up to O(n2) agent interactions to dis-
tribute behaviors in the worst case (n−1 generic agents, and
each generic agent queries all other generic agents before the
fully-defined agent, with no child behavior transfers), these
interactions are amortized over multiple game ticks. This
amortization is important as it prevents the task distribution
process from dominating the limited CPU resources avail-
able during each frame of the game.

In heterogeneous environments, this method of behavior
assignment may result in non-optimal assignments. Related
to this problem is that this technique does not allow behav-
iors to be pushed to other agents, as receiving agents must
request behaviors. Behaviors may also be distributed un-
evenly, depending on the policy for choosing which behavior
to transfer. Additional refinements can address each of these
problems in different ways. Behavior pushing may be im-
portant in situations where teams of agents are organized in
hierarchies. These hierarchies can be created through high-
level user logic to issue team commands through the envi-
ronment. The exact behavior of agents with regard to trans-
fers is represented as a policy. The policy is a three-tuple,
(r, t, i), defining a strategy for when to request a layer, how
to decide which behavior should be transferred, and where
to insert the new layer.

Request Policies

Agents must decide when to request a behavior transfer. We
have defined four approaches to deciding when to request a
transfer: failure, cooperative, greedy, and command.

An agent using the failure policy will request a behavior
transfer when one or more layers are failing to execute prop-
erly. This may occur in a number of different cases. First,
a layer may no longer be able to activate correctly because
one or more prerequisites are no longer available. An ex-
ample of when this may occur is if a behavior requires a
specific object (or object with specific affordance), and that
object is no longer available. The subsumption controller
can check behavior prerequisites to discover this without at-
tempting to execute the behavior, so that behaviors that are
failing to trigger at all can be detected. In other cases, a be-
havior may attempt to execute and fail; this can occur when
an agent attempts to navigate to a part of the world that is
no longer accessible. Another more rare condition that can
occur is if too many agents are attempting to use a limited
resource in the world, such as an object. An example is a
scenario in which several agents are attempting to perform
an object removal behavior. If the agents are grouped to-
gether and repeatedly attempt to pick up the same object,
the behavior will fail. Repeated failures will result in the
behavior being chosen for replacement, and so the team can
self-correct if too many agents have the same behavior in
this case. Failure cases will not monitor the behavior that
failed to check if it is available once more.

The greedy policy is similar to the failure policy. It will
request a behavior if one of its own is failing, but unlike the
failure policy, it will monitor the failed behavior. In case
of a prerequisite failure, it will restore the behavior if the
prerequisites are restored. In other types of failures, it will
periodically attempt to restore the failed behavior; if it suc-
ceeds, the replacement behavior will be removed.

The cooperative policy will request a behavior transfer if
it does not currently have a transferred behavior. If the trans-
ferred behavior fails, it will look for a new behavior transfer.
It will not monitor behaviors that have been replaced due to
failures.

A final policy is possible, which is the command policy.
In this case, the agent is part of a command hierarchy, and

134

will respond to requests from commanding agents. When
the agent receives an order from a commanding agent, it will
request a layer transfer from the commander. Note that the
actual layer transfer is still initiated by the receiving (subor-
dinate) agent, and the command-response layer could poten-
tially be placed below other layers, allowing for insubordi-
nate agents.

Transfer Policies

Once a request to transfer a behavior is received by an agent,
it must decide which behavior to transfer. Before trans-
ferring a behavior, the agent must have at least one layer
marked as transferable and which has not exceeded the max-
imum number of transfers. The transferable flag and the
maximum number of transfers are defined when the agent
is authored. We define four possible transfer policies: prior-
ity, distribution, failure, and command.

The priority policy will always choose the highest prior-
ity transferable layer. A variation on this will always trans-
fer the lowest priority transferable layer. The layer trans-
ferred may be one that was transferred to the agent from an-
other. Behaviors that have exceeded their maximum number
of transfers may not be transferred.

A distribution policy is one that aims for even coverage
of its layers. The distribution policy will transfer the highest
priority transferable layer that has the least number of trans-
fers. Alternatively, the lowest priority layer may be chosen.

Failure policies will transfer the highest priority transfer-
able layer that is currently failing. If no layers are failing, it
will fall back on the priority transfer policy.

Finally, the command policy is the complement to the
request policy of the same name. Command policies will
transfer behaviors according to the mapping determined by
a command behavior layer. Note that this effectively allows
auction and planning teaming methods to be used as a layer
of abstraction over reactive teaming.

Insertion Policies

While placement of received layers is defined primarily by
the request policy, the subsumption policy must also be de-
fined. Possible strategies to choose subsumption policies are
override all, override none, replacement, or modality. The
default policy is for a transferred layer to override all. The
opposite of this policy is override none, which will only
override conflicting output produced by lower layers. Re-
placement uses the subsumption policy of the layer being
replaced, or falls back on override all if the transfer is not
a replacement. Modality policies override one or more of
the effector modalities to suppress only specific channels of
action.

Behavior Coordination

While layer transfer provides a simple level of team coordi-
nation, it generally does not create tight interactions between
agents to execute a task. Further coordination methods are
needed to achieve this.

The first method uses influence points and affordances.
Influence points provide a mechanism for placing informa-

tion in the world using navigation meshes as the underly-
ing model instead of the grid-based maps used by influence
maps (Tozour 2001; Heckel, Youngblood, and Hale 2009a).
Characters can place influence points to provide informa-
tion for the entire team without explicitly sending messages
to every other character.

Affordances represent opportunities for action, and are
derived from the concept of the same name in psychol-
ogy (Gibson 1977). Affordances can be attached to objects
to provide hints to agents about how to use the objects, and
were used in The Sims (Simpson 2005). Affordances can
be particularly valuable for teams of agents if they are aug-
mented to include multiple action slots. An action that re-
quires multiple agents to execute, such as moving a large ob-
ject, will create multiple affordances that must be filled for
the action to complete successfully. Even if multiple agents
are not required, using multiple affordances allows agents
to easily cooperate to perform an action without additional
logic in the behavior.

Finally, some tasks are not easily shared with affordances
or influences and must be modified when transferred. Be-
havior division provides an additional solution. When the
primitive behavior is written, the programmer can include
divide and merge methods. Divide methods split the be-
havior into two sub-behaviors, while merge methods take
two sub-behaviors and re-combine them. Division is used
when a behavior is transferred from one agent to another,
while merging is used if an agent removes a transferred layer
from its controller. Some behaviors in the BEHAVEngine
behavior library are written to include these methods. The
simplest example of this is division of an explore behavior,
which maintains a list of regions to visit. When the explore
behavior is transferred to an additional agent, the current list
of regions is broken into two parts, so that two agents will
work together to cover the area faster. If later the second
agent decides to stop performing the task, it will notify the
first agent, which will then restore its list of regions to ex-
plore. The division task is most appropriate to spatial tasks,
though it is possible to apply to others.

Evaluation

Reactive teaming is implemented as part of BEHAVEngine.
Failure strategies are activated once a layer has activated at
least 5 times and failed 50% of the activations. Generic
agents are implemented as characters with one behavior, ei-
ther a simple wander behavior that causes the agent to wan-
der around the world, or a null behavior, which provides no
behavior. The maximum number of behavior transfers is set
per-behavior.

Evaluation focuses on the computational complexity of
creating and maintaining the team and development of sce-
narios in which reactive teaming can be used. Evaluating
teams in games is a difficult task, because metrics for team
performance are game-specific and vary widely. Depending
on the type of game and the audience, the metric may be
team score, adaptability to player behavior, or even just fun.
While we do plan to evaluate the reactive teaming method in
games, for this paper we focus on showing that our methods

135

are computationally feasible and demonstrating the types of
team behavior that we have generated in our testbed.

Complexity

In terms of agent complexity, each behavior that is necessary
for the team can be specified just for a single agent. Other
techniques require that each agent has a fully specified set
of behaviors for tasks that it is capable of performing. For
a set of n agents that can perform m behaviors, the over-
all complexity of the team specification is n ∗ m for fully
specified agents, instead of n + m. This reduces the mem-
ory requirements per-agent, as agents only maintain infor-
mation for behaviors that are actually used. In addition, run-
time complexity is reduced, as agents have a smaller number
of behaviors to choose from, rather than having to evaluate
triggering conditions for all behaviors to decide which are
active.

Another aspect of runtime complexity that is perhaps
more important is the cost of allocating tasks. Alternative
task assignment methods include a central authority choos-
ing task assignments for all agents, often through an auction
method. The auction requires first that each agent deter-
mines a score reflecting how well it can perform each avail-
able task. This generates n ∗m scores to be considered. Al-
ternatively, agents that have only limited communication but
full knowledge of the capabilities of other agents can gener-
ate a full plan locally to determine roles for other agents, and
then act on their own role. There are significant processing
requirements for these techniques, and agents will not be ac-
tive for as long as it takes to assign the tasks.

In contrast, reactive teaming requires only constant time
interactions between pairs of agents. The task assignment
procedure only delays the agent that is requesting a behavior,
rather than all agents. The effect of this is that the assign-
ment task, which is O(n2) in the worst case, is amortized
over n game ticks, adding only a linear amount of compu-
tation, O(n), to each game tick for complete team assign-
ments. This is compared to incremental team coordination
methods that add O(n) computation for assigning a single
behavior in one tick, or O(n ∗m) for methods which assign
the entire team at once.

Case Studies

The system described above was implemented as an exten-
sion for BEHAVEngine, and evaluated with several scenar-
ios. Cooperative policies were used for requests, and pri-
ority policies for transfers. Our first scenario included four
generic agents and a fully specified agent with behaviors de-
scribing five patrol routes in the game environment. The
generic agents started up, requested behaviors from differ-
ent agents until the fully specified patrol agent transferred
patrol routes. Communication was treated as independent
of distance, so the agents were able to immediately receive
behaviors without finding the fully specified agent initially.
Since each patrol layer had a transfer limit of one, each agent
received one of the patrol routes, and each patrol route was
satisfied.

An additional test scenario created a single garbage-
cleaning robot which was to wander through the world and

pick up objects. Twelve generic agents were added that
wandered the world, and in this case, would request behav-
ior transfers only when within range of one another. Once
a generic agent received the garbage-cleaning behavior, it
would continue to wander, and transfer this behavior to other
agents if requested. This scenario was extended to place two
types of garbage-cleaning bots to pick up different types of
objects. Two types of objects were added at different times.
As the first type of object was cleared, failure and inactivity
transfers occurred, adapting the team to gather the second
type of object. The end result is that, as the environment
changed, the team composition adapted to the changes.

Figure 4: Screenshot of patrol agents in the FI3RST sim-
ulation environment. In this scenario, a single agent with
knowledge of a large (12 point) patrol route is placed in the
world. Generic agents are added, and the patrol behavior is
divided into segments so that the workload is shared among
the team members.

More advanced coordination was tested with the scenario
shown in Figure 4. In this case, a patrol agent with a large
patrol route was placed in the world, and varying number of
generic agents were added to the world. The patrol behavior
used behavior division to split the patrol route into segments,
halving it each time it was transferred until each agent was
walking a two-location segment of the route. The AI engine
was able to run over 150 agents at 10hz with a low CPU load
(approximately 15% for the agent controllers) on an Intel
Core 2 6400 system running at 2.13ghz. Each agent used
A* pathfinding through the navigation mesh for navigation
between patrol points. Larger numbers of agents were not
tested as the graphics pipeline became overloaded.

Conclusions and Future Work
In this paper, we described a method for creating teams of
characters in games using reactive methods. We have shown
that our reactive teaming method is computationally feasible
for larger numbers of agents, and provided case studies to
show how the method can be applied to achieve adaptive
and scalable teams.

Further exploration is still needed for reactive teaming.
Two major areas need additional development. First, agents

136

may need to have self-preservation behaviors which cannot
be overridden. One possibility is to merely allow the place-
ment of a high priority hierarchical layer which must be the
top layer. The second area is in behavior coordination. In-
fluences and behavior division are useful techniques for en-
abling tighter coordination than behavior transfers alone, but
do not provide elegant solutions for certain common situa-
tions. For example, if a group of agents is fighting a group of
hostile agents, the situation may call for all friendly agents
to focus on one particular hostile. This is not an unusual sit-
uation, but there is currently no mechanism to easily allow
agents to convey the message to focus on a certain target.
One possible technique is to enable the agents to exchange
behavior state by transferring memory chunks.

Thus far, we have used reactive teaming in first/third-
person shooter environments, where the primary mode of
cooperation is tactical rather than strategic. Another novel
use of our teaming method is in real-time strategy (RTS)
games: production buildings can be agents that decide what
new units to create, and units are treated as generic agents.
Units can query the production building for behaviors to ex-
ecute. We are investigating the feasibility of evaluating reac-
tive teaming using shipped commercial games, with a plan
to use BEHAVEngine for RTS games as well as first/third-
person shooters.

Acknowledgments

This material is based on research sponsored by the US
Defense Advanced Research Projects Agency (DARPA).
The US Government is authorized to reproduce and dis-
tribute reprints for Governmental purposes notwithstanding
any copyright notation thereon. The views and conclusions
contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of DARPA or
the US Government.

References

Brooks, R. A. 1986. A robust layered control system for
a mobile robot. IEEE Journal of Robotics and Automation
2(1):14–23.
Brooks, R. A. 1990. Elephants don’t play chess. Robotics
and Autonomous Systems 6(1&2):3–15.
Brumitt, B. L., and Stentz, A. 1996. Dynamic mission
planning for multiple mobile robots. In Proceedings of the
IEEE International Conference on Robotics and Automa-
tion, 2396–2401.
Dahl, T. S.; Matarić, M.; and Sukhatme, G. S. 2009.
Multi-robot task allocation through vacancy chain schedul-
ing. Robot. Auton. Syst. 57(6-7):674–687.
Fu, D., and Houlette, R. 2004. AI Game Programming Wis-
dom 2. Charles River Media. chapter 5.1: The Ultimate
Guid to FSMs in Games, 283–302.
Gerkey, B. P., and Matarić, M. J. 2002. Sold!: Auction
methods for multi-robot coordination. IEEE Transactions
on Robotics and Automation 18(5):758–768.

Gibson, J. J. 1977. Perceiving, Acting, and Knowing.
Lawrence Erlbaum Associates. chapter The theory of af-
fordances.
Heckel, F. W. P.; Youngblood, G. M.; and Hale, D. H.
2009a. Influence Points for Tactical Information in Navi-
gation Meshes. In Proceedings, International Conference
on Foundations of Digital Games.
Heckel, F. W. P.; Youngblood, G. M.; and Hale, D. H. 2009b.
Making Interactive Characters BEHAVE. In Proceedings,
Florida Artificial Intelligence Research Symposium.
Isla, D. 2005. Handling Complexity in the Halo 2 AI. In
Proceedings of the 2005 Game Developers Conference.
Kalra, N.; Dias, M. B.; Zlot, R. M.; and Stentz, A. T. 2005.
Market-based multirobot coordination: A comprehensive
survey and analysis. Technical Report CMU-RI-TR-05-16,
Robotics Institute, Pittsburgh, PA.
Khoo, A. 2006. AI Game Programming Wisdom 3. Charles
River Media. chapter 4.10: An Introduction to Behavior-
Based Systems for Games, 351–364.
Matarić, M. J.; Nilsson, M.; and Simsarian, K. T. 1995. Co-
operative multi-robot box-pushing. In IROS ’95: Proceed-
ings of the International Conference on Intelligent Robots
and Systems-Volume 3, 3556. Washington, DC, USA: IEEE
Computer Society.
Matarić, M. J. 1992. Behavior-based control: Main prop-
erties and implications. In Proceedings, IEEE International
Conference on Robotics and Automation, Workshop on Ar-
chitectures for Intelligent Control Systems, 46–54.
Orkin, J. 2004. AI Game Programming Wisdom 2. Charles
River Media. chapter 3.2: Simple Techniques for Coordi-
nated Behavior, 217–227.
Pittman, D. 2008. AI Game Programming Wisdom 4.
Charles River Media. chapter 4.3: Command Hierarchies
Using Goal-Oriented Action Planning, 383–391.
Shell, D. A., and Matarić, M. J. 2005. Cognition and Multi-
Agent Interaction: From Cognitive Modeling to Social Sim-
ulation. Cambridge University Press. chapter Behavior-
Based Methods for Modeling and Structuring Control of So-
cial Robots, 279–306.
Simpson, J. 2005. Scripting and Sims2: Coding the Psy-
chology of Little People. Talk at the 2005 Game Devel-
oper’s Conference. Retrieved from https://www.cmpevents.
com/Sessions/GD/ScriptingAndSims2.ppt.
Tozour, P. 2001. Game Programming Gems 2. Charles River
Media. chapter 3.6: Influence Mapping, 281–297.
van der Sterran, W. 2002a. AI Game Programming Wisdom.
Charles River Media. chapter 5.3: Squad Tactics: Team AI
and Emergent Maneuvers, 233–246.
van der Sterran, W. 2002b. AI Game Programming Wisdom.
Charles River Media. chapter 5.4: Squad Tactics: Planned
Maneuvers, 247–259.
Werger, B. B. 1998. Cooperation without deliberation: A
minimal behavior-based approach to multi-robot teams. Ar-
tificial Intelligence 110:293–320.

137

	AIIDE10
	Contents
	Index
	Help
	Terms
	AIIDE 2010

