
The SAM Algorithm for Analogy-Based Story Generation

Santiago Ontañón
Artificial Intelligence Research Institute (IIIA)
Spanish Council for Scientific Research (CSIC)

Campus UAB, 08193 Bellaterra, Spain
santi@iiia.csic.es

Jichen Zhu∗
School of Visual Arts and Design

University of Central Florida
Orlando, FL, USA 32826-3241

jichen.zhu@ucf.edu

Abstract

Analogy-based Story Generation (ASG) is a relatively
under-explored approach for story generation and com-
putational narrative. In this paper, we present the SAM
(Story Analogies through Mapping) algorithm as our
attempt to expand the scope and complexity of sto-
ries generated by ASG. Comparing with existing work
and our prior work, there are two main contributions
of SAM: it employs 1) analogical reasoning both at
the specific story content and general domain knowl-
edge levels, and 2) temporal reasoning about the story
(phase) structure in order to generate more complex sto-
ries. We illustrate SAM through a few example stories.

Introduction

Story generation is an important area for interactive digital
entertainment and cultural production. Built on the age-old
tradition of storytelling, algorithmically generated stories
can be used in a wide variety of domains such as computer
games, training and education. In addition, research in story
generation may shed light into the broader phenomena of hu-
man and computational creativity (Gervás 2009). Compared
with the established narrative forms such as prose fiction,
however, computer-generated stories are still in its early
stage. Despite the recent progress in the area, such as in
planning-based approaches (Meehan 1976) and multi-agent
simulation-based approaches (Theune et al. 2003), these sto-
ries are still fairly rudimental in terms of both the depth of
meanings and the range of their varieties.

Different story generation techniques have specific built-
in narrative affordances and constraints. For instance, the
planning-based story generation approach lends itself very
well to stories that are action-based, goal-driven with strong
causal connections between events. By comparison, compu-
tational analogy-based story generation (ASG) is a relatively
under-explored research direction that can generate stories
where events are inter-connected based on their intrinsic as-
sociations. In this paper, we continue our existing work on
ASG, focusing on expanding the scope and complexity of
the stories our system can generate. More specifically, we

∗Jichen Zhu is currently at Drexel University, Philadelphia, PA.
Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

present the SAM (Story Analogies through Mapping) algo-
rithm, which generates stories by transferring story content
from a complete source story to a partial target story.

The approach presented in this paper builds on the work
done in the Riu system (Ontañón and Zhu 2010), and gen-
eralizes the latter in two key aspects: first, SAM allows the
generation of longer stories with more complex time struc-
tures; second, SAM allows the inclusion of domain knowl-
edge in the process of story generation. Comparing with
other existing systems, there are two main contributions of
SAM: it employs 1) analogical reasoning both on the spe-
cific story content level and the general domain knowledge
level, and 2) temporal reasoning about the story (phase)
structure in order to generate more complex stories.

This paper is organized as follows. We first provide back-
ground on story generation and computational analogy. We
then formally describe the SAM algorithm and show sev-
eral example stories generated by SAM. Then, we compare
SAM with other story generation systems andwe conclude
the paper with discussion and future directions.

Background

Automatic story generation is an interdisciplinary topic fo-
cusing on devising models for algorithmically structuring
and producing narrative content and/or discourse. In gen-
eral, story generation systems can be classified into three
main categories (Bailey 1999): character-centric, author-
centric and story-centric, depending on whether the systems
focus on simulating characters, simulating the authorial pro-
cess, or reasoning about the story structure itself.

• Character-centric systems generate stories by simulating
characters in a world. Examples in this category include
Tale-spin (Meehan 1976) and the Virtual Storyteller (The-
une et al. 2003).

• Author-centric systems, such as the MEXICA system
(Pérez y Pérez and Sharples 2001), model the author’s
throught process during the process of story-writing.

• Story-centric systems, such as the Fabulist (Riedl 2004),
generate stories by modeling the structural properties of
the stories themselves.

Different techniques have been studied in story genera-
tion, the most common of which is automated planning.

67

Proceedings of the Seventh AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment



Salient examples of planning-based story generation sys-
tems include Tale-spin (Meehan 1976), Universe (Lebowitz
1984) and Fabulist (Riedl 2004). By contrast, computational
analogy algorithms have not been sufficiently explored in
the domain of story generation.

As a model of the human cognitive process of analogy-
making, computational analogy operates by identifying sim-
ilarities and transferring knowledge between a source do-
main S and a target domain T . The intuitive assumption
behind analogy is that if two domains are similar in certain
key aspects, they are likely to be similar in other aspects.
Given a target domain T , this process is composed of four
stages (Hall 1989): 1) recognition of a candidate analogous
source, S; 2) elaboration of an analogical mapping and in-
ferences between source domain S and target domain T ; 3)
evaluation of the mapping and inferences, and; 4) consoli-
dation of the outcome of the analogy for other contexts (i.e.,
learning). In this paper, we demonstrate how SAM exploits
the elaboration stage of computational analogy.

Existing computational analogy approaches can be clas-
sified into three classes: symbolic, connectionist and hybrid
models; an in-depth overview can be found at (French 2002).
SAM internally uses the Structure Mapping Engine (SME)
algorithm (Falkenhainer, Forbus, and Gentner 1989), a sym-
bolic approach, although SAM can be generalized to use any
other computational analogy algorithm.

SAM grew out of the Riu system (Ontañón and Zhu
2010), a text-based interactive narrative system that uses
story generation to narrate stories about the connection be-
tween two parallel worlds — a real world and a memory
world. One of the challenges we had in Riu was the limited
scope and complexity of the stories that the ASG component
of the system can generate. As a result, SAM reflects our lat-
est effort to extend analogy-based story generation towards
a more mature narrative form.

SAM: Story Analogies through Mapping

This section presents the SAM algorithm for story genera-
tion. Given a complete source story S, and an incomplete,
target, story T , the goal of SAM is to generate a new story
R by transferring knowledge from S in order to complete T .
Let us first introduce the story representation formalism.

Story Representation

The representation formalism used by SAM is an extension
of that in our prior work in ASG (Ontañón and Zhu 2010).
After briefly summarizing our existing representation, we
will focus on the essential modifications and generalizations
developed in order to expand the scope and complexity of
the stories generated by our ASG system.

As in our prior work, a basic story S is represented as
a set of phases, PS , where each phase represents a dif-
ferent instant of time. The story elements in a phase are
represented in two parallel forms: a computer understand-
able description (CUD) and a human understandable de-
scription (HUD). The CUD is a frame-based representation
of the phase, whereas the HUD consists of a collection of
pre-authored natural language phrases and sentences. The

HUD captures explicit knowledge about the story author’s
preferred instantiations of a given story in natural language.
The CUD and HUD are linked, so that when SAM employs
analogical reasoning to manipulate the CUD, it can also ma-
nipulate the HUD accordingly (to some extent) to produce
the resulting story in natural language.

Fig. 1 illustrates the above elements in a basic story. The
story is about a robot character, Ales, who had a pet bird
when he was young. It has two phases; in the first phase,
Ales plays with the bird, and in the second, the bird dies
and Ales is sad. The nodes in the CUD representing enti-
ties (Ales, the bird, etc.) are shown as dark grey ovals and
relations between entities are shown as white boxes. An
important part of the CUD relations are drawn from force
dynamics (Talmy 1988) (e.g. agonist, stronger, antagonist,
move-tendency) to annotate the force relationship between
different entities. Elsewhere (Ontañón and Zhu 2010), we
have demonstrated that the force dynamics annotations are
useful to identify deep analogies between stories and im-
prove the results of ASG.

Two main extensions to this story representation were
done in order to generate more complex stories. First, we
generalize the definition of the phase structure. Instead of
assuming that all phases are linearly sequenced, we general-
ized to a directed acyclic graph (DAG) to represent a wider
range of how phases can be organized, such as branches and
alternatives (e.g. stories with multiple alternative endings).
Nodes in the DAG represent phases, and there is an edge
from a phase p1 to another phase p2, when p2 can happen
immediately after p1. When there is a path from a phase p1
to another phase p2, we say that p1 precedes p2. When there
is no path from p1 to p2 nor from p2 to p1, we say that p1 and
p2 exclude each other, since one cannot happen if the other
does. In the example shown in Fig. 1, the phase structure
has two nodes, and Phase 1 precedes Phase 2.

The second main extension is the addition of background
knowledge. Our prior representation included a special
phase, called “common”, where entities and relations that
are shared among all the phases can be specified to avoid
replication. We extended this idea to include additional do-
main knowledge about the entities and relations potentially
relevant to the stories, and called it common knowledge,
which is also divided in a CUD and a HUD.

In the example shown in Fig. 1, background knowledge is
shown below the dotted line in the common knowledge box.
In this case, we have specified that birds have a beak and
wings, and that wings have feathers. The more additional
knowledge specified, the better SAM will be able to find
analogies between stories, as we illustrate later.

The SAM Algorithm

In this section we will present the SAM algorithm1. SAM
takes three input parameters: T , S, and mi. T and S are
the target and source stories, and mi is a phase mapping
from T to S (which is optional). SAM(T, S,mi) returns
a new story R, resulting from extending T by analogy with

1SAM can be downloaded from: https://sites.google.com/site/
santiagoontanonvillar/software

68



Figure 1: Complete representation of a basic story.

Figure 2: The four steps of the SAM algorithm.

S. Internally, SAM uses Structure Mapping Engine (SME)
(Falkenhainer, Forbus, and Gentner 1989) to generate ana-
logical mappings between T and S. The execution of SAM
consists of four main steps, illustrated in Fig. 2:

1. Generate all possible phase mappings: Let PT and PS

be the sets of phases of the two stories, and given an injec-
tive mapping m from PT to PS (i.e. a mapping such that
each element of PT is mapped to one of PS , and in which
not two elements of PT are mapped to the same element
in PS), we say that the mapping is consistent if for each
pair of phases p1, p2 ∈ PT :

• If p1 precedes p2, then m(p1) precedes m(p2)

• If p1 and p2 exclude each other, then m(p1) and m(p2)
exclude each other.

If a phase mapping mi is specified as input parameter,
then M = {mi}, otherwise, SAM computes M as the set
of all the possible consistent injective mappings from PT

to PS . An example consistent injective mapping between
two stories is shown in Fig. 3.

2. Find the analogical mappings: for each phase mapping
m ∈ M , SAM does the following:

• Let Pm
S = {p ∈ PS |∃p′ ∈ PT : m(p′) = p}, i.e. all

the phases from S in the mapping m.
• emS is constructed as all the entities in the CUDs of the

phases in Pm
S and in the common knowledge of S. eT

is defined as all the entities in the CUDs of T .
• rmS is constructed as all the relations in the CUDs of the

phases in Pm
S and in the common knowledge of S. rT

is defined as all the relations in the CUDs of T .
• SME is called using eT ∪ rT as the target domain and
emS ∪rmS as the source domain. SME returns two things:
an analogical mapping gm from the target domain to the
source domain, and a numerical score sm.

m∗ ∈ M is selected as the phase mapping in M that max-
imizes sm. If M is empty, m∗ will not be defined, and
SAM will return an error token.

3. Construct a resulting story R: a new story R is con-
structed in the following way:

• The phase structure DAG of R is copied from S.
• The set of phases in R is PR = PT ∪ (PS \Pm∗

S ). The
CUD of the common knowledge of T is added to all
the phases in PR that came from PT , and the CUD of
the common knowledge of S is added to all the phases
in PR that came from PS .

• The common knowledge in R is empty.

4. Transform R using the analogical mappings: The re-
verse of the analogical mapping gm∗ is applied to all the
phases in PR. For each phase p ∈ PR, the following two
steps are executed:

• For each entity or relation e ∈ p such that ∃e′ ∈ ST :
gm∗(e′) = e, we substitute e by e′ in p.

69



Figure 3: A phase mapping between target T and source S.

• Each time we substitute an element e ∈ p by another
element e′, using the links between the CUD and the
HUD, we substitute the corresponding sentence frag-
ment of e in the HUD of p by the corresponding sen-
tence fragment of e′.

In all the phases in R that come from PS , if there are any
sentences, entities or relations, that are not linked in some
way to any of the elements or relations that belong to the
mapping gm∗ , those are removed. This last step prevents
transferring irrelevant information to the generated story.
An illustration of this process is shown in Fig. 4, where
we can see parts of the CUD and HUD of a phase, a map-
ping g generated by SME, and the result of transforming
the phase using such mapping is shown.

The previous ASG component in Riu was not capable of
reasoning about the phase structure. Riu’s ASG component
assumed that T had only one phase, and the source story
S had always two phases, the first of which was always
mapped to the only phase in T . In comparison, SAM affords
much more flexible mapping between temporal phases in S
and T and thus more complex mappings between events.
For instance, if the last phases of S are mapped to the first
phases of T , SAM can project backwards in time by infer-
ring what kind of past events lead to the current situation in
T (which Riu could not do). Another example is that SAM
can fill-in the “temporal holes” between phases in T .

Additionally, SAM uses general domain knowledge,
which could not be used in Riu. In its Step 2 and 4, SAM
uses domain knowledge, in addition to specific story content
knowledge. This allows the system to construct analogical
mapping and transform knowledge from S to T that may not
be explicit in the story itself.

Instead of providing a source story to SAM, SAM could
also be used in conjunction to a retrieval mechanism using a
repository of source stories, and letting the retrieval mecha-
nism decide which source story to use.

Examples

In this section we will show two stories generated by SAM
using stories developed for the Riu system as source and
target stories. The first example will serve to illustrate the
analogical mapping and resulting story transformation steps
of SAM (Steps 2 and 4), and the second one to illustrates
the two main contributions of SAM with respect to our prior
work in Riu: the phase mapping process (step 1) and the
utility of background knowledge.

Figure 4: Transformation of a phase in the resulting story by
reversing the analogical mapping g found by SME.

Using the following source story:

Ales remembered the garage in which he had his first oil
change, it was all red. His owners said he was rusty, and
forced him to change his oil, he was a fool to accept. Ales felt
very awkward afterwards, and decided that he would have to
be really rusty before the next time he gets an oil change. He
wondered why no one ever complained about oil changes.

and the following target story:

One day, Ales was walking in an alley, when he saw a cat
in front of him. Ales hesitated about what to do with the cat
since he was late for work. Ales played with the cat.

SAM generates the following story by inserting an extra
phase after the target story:

One day, Ales was walking outside, when he saw a cat
in front of him. Ales hesitated about what to do with the cat
since he was late for work. Ales played with the cat. Ales felt
very awkward afterwards, and decided that Ales would have
to be really rusty before the next time Ales played with the
cat. Ales wondered why no one ever complained about that.

To generate this story, Step 2 of SAM maps elements from
the source to the target using SME. For instance, “getting an
oil change” was mapped to “playing with the cat,” as we can
see in the generated story. Therefore, during Step 4, SAM
took the second phase of the source story, and replaced the
appearances of “getting an oil change” by “playing with the
cat.” Analyzing the CUD of the generated story, we can
see SAM found other interesting mappings that were not re-
flected in the output text such as “owners” to “work” (be-
cause both are pushing Ales to do something against its will,
which can be detected thanks to force dynamics).

The above example involves a source story with 2 phases,
and a target story with a single phase. SAM can generate
much more complex stories, by using more complex source
and target stories, thanks to being able to reason about the

70



phase structure and to allow the inclusion of domain knowl-
edge. For example, by using the story in Fig. 1 as the target,
and the following story as the source:

Around Ales the street was grimy with morning rain and
industrial soot. He’d never seen anything like the city before,
it was his first day in Polis. There had to be a job somewhere
around here for him!
’Look out, a thief!’, Ales heard himself calling. Ahead, the
aristobot, whirled and spotted the would-be pick-pocketer
he’d been warned of. He tossed a quick glower in the re-
treating thief’s direction The aristobot then cast his hands in
affectionate greeting towards Ales.
’Come here, my boy!’
With a slight sense of reluctance, Ales approached the aris-
tobot, whose steel-brushed top hat alone represented more
wealth than Ales had ever seen.
’Octavion Alcorn, in your debtedness Ales,’ thrusting his
hand forward in a gesture of greeting. Ales passively shook
the aristobot’s hand, self-conscious of the difference between
his limp squeeze and Octavion’s vice-like grip. Octavion po-
litely listened as Ales explained his recent arrival to the city,
all the while using an exquisite microfiber handkerchief to
buff the jewel-encrusted palm he’d shaken with.
’You’ve done me a service, sir, now let me provide one in turn,’
the aristobot said, when Ales seemed finished. He scribbled
a coordinate and handed it to Ales. That’s his factory, the
aristobot explained, go there and Ales can find a job.

SAM generates the following story:

Ales used to have a bird when he was young. Ales used
to play with the bird and was very fond of it.
’Look out, a thief!’, Ales heard himself calling. Ahead, bird,
whirled and spotted the would-be pick-pocketer bird’d been
warned of. bird tossed a quick glower in the retreating thief’s
direction bird then cast his wings in affectionate greeting to-
wards Ales.
’Come here, Ales!’
With a slight sense of reluctance, Ales approached bird,
whose flaming red-colored beak alone represented more
wealth than Ales had ever seen.
’bird, in your debtedness Ales,’ thrusting his feathers forward
in a gesture of greeting. Ales passively shook bird’s feathers,
self-conscious of the difference between his limp squeeze and
bird’s vice-like grip. bird politely listened as Ales explained
his recent arrival to the city, all the while using an exquisite
microfiber handkerchief to buff the jewel-encrusted feathers
he’d shaken with.
’Ales’ve done bird a service, sir, now let bird provide one in
turn,’ the bird said, when Ales seemed finished. bird scrib-
bled a coordinate and handed it to Ales. That’s his cage, bird
explained, go there and Ales can find a job.

In this example, the source story has 6 phases, and the tar-
get has 2, the phase mapping m∗ used to generate the story
is exactly the one shown in Fig. 3. Notice that the DAGs
representing the phase structure of each story allows SAM
to automatically align the phases of the two stories in a way
that respects the temporal order of events of both input sto-
ries. Moreover, notice that the second phase of the target

story (when the bird dies) is not present in the generated
story, this is because such phase was found to be analogous
to phase q4 of the source (as shown in Fig. 3). When gener-
ating the resulting text, phases q4, q5 and q6 are alternatives
and one is chosen at random. If q4 was selected, the bird
would’ve died before handing the coordinates to Ales, leav-
ing Ales very sad.

This second example illustrates the usefulness of having
domain knowledge. Giving SAM knowledge that birds have
wings and that there are feathers in the wings allows SAM
to do the analogy that the wings are like the arms of the
aristobot, and the feathers are like its hands. Fig. 4 shows
this mapping, and how a portion of a phase was transformed
using it. If we were to remove that part of the background
knowledge, then, Ales would shake the bird’s hands, instead
of the bird’s feathers in the resulting story. The more in-
formation in the background knowledge in the input stories
given to SAM, the better the mappings that can be found,
and the better the stories generated by SAM. Domain knowl-
edge is also responsible for realizing that factory should be
replaced by cage, as it allows SME to map factory to cage.

Comparison with Other Approaches
The most related algorithm to SAM is the Story Translator
(Riedl and León 2009). It uses analogy as the main genera-
tive method and planning to fill in the gaps in the analogy-
generated content. The input to this system is a story repre-
sented as a plan and two domain models. The latter contain
the set of objects and planning operators available in each
domain. The CAB algorithm (Larkey and Love 2003) is
used to find a mapping between the two domain models, and
this mapping is then used to translate the input story from
one domain to the other, filling the gaps using planning in
case the mapping is not complete.

Notice that the operation of the Story Translator can be
modeled in SAM (except for the final planning step to fill-
in the gaps) by giving SAM two stories in the following
way: the target story has no phases, but just a common
knowledge component, containing all the entities, and ac-
tions available in the target domain, and giving as source a
complete story, accompanied with the same kind of com-
mon knowledge component. In that way, SAM would just
return the source story, but transformed using the analog-
ical mappings found between the target and source stories
(as the Story Translator does). The main difference between
SAM and the Story Translator is thus that SAM generates
analogies between domain models (background knowledge)
and specific stories, whereas the Story Translator only com-
putes analogies between domain models. Another difference
is that SAM directly generates text; the Story Translator re-
turns its generated stories in the form of plans.

Let us now compare with case-based reasoning (CBR)
models of story generation. CBR is a common technique
used in story generation systems, which shares some ba-
sic operating principles with computational analogy. MIN-
STREL (Turner 1993) is a generic model that generates sto-
ries by executing TRAMS (Transform Recall Adapt Meth-
ods). Some of those TRAMS, like the ”Cross-Domain-
Solution” TRAM, use computational analogy. In particular,

71



given a problem (an incomplete story) in a domain D1, the
TRAM finds another domain D2, then an analogical map-
ping between D1 and D2 (similar to the way the Story Trans-
lator does), and then maps the story from D1 to D2, solves
the problem, and then maps back the result from D2 to D1.
In the same way as with the Story Translator, MINSTREL’s
TRAMS that use analogy, do so at the domain definition
level, rather than at the specific story level.

By contrast, MEXICA (Pérez y Pérez and Sharples 2001)
generates stories by adding one action at a time to a given
story. In order to select the next action to add, MEXICA re-
trieves, from a story repository, a past story that is the most
similar to the current state of the story. This process of com-
parison can be seen as trying to find an analogical mapping
between the current story state, and the past stories. There-
fore, while the Story Translator and MINSTREL find analo-
gies at the domain definition level, MEXICA finds them be-
tween specific story states (called Story-World Contexts, or
SWCs), which are equivalent to the phases in SAM. In con-
trast with those systems, SAM uses both domain definitions
(background knowledge) and specific story states or actions
(in the phases) to find analogies between the target and the
source stories.

Comparing SAM to planning-based systems (such as
Tale-spin (Meehan 1976)), the latter have the advantage that
the author can specify the initial and ending state of a story,
and thus have a lot of control of the generated story. In
ASG systems, such control is exerted by providing differ-
ent source stories. The source story in ASG determines both
the way the generated story will unfold, as well as the narra-
tive style of the generated story. Stories generated by plan-
ning focus on actions and change, since each planning oper-
ator corresponds typically to an action executed by a charac-
ter. ASG systems, on the other hand, do not have this bias.
If the source story is very action-based, then the resulting
story will be so, but if the source story is very descriptive,
the same will happen with the resulting story. In terms of
knowledge engineering needed, planning systems require a
domain model with a complete planning operator definition,
and ASG systems require a collection of source stories. Both
of which require significant effort.

Conclusions and Future Work
This paper has presented the SAM story generation algo-
rithm. SAM extends our previous work (Ontañón and Zhu
2010) in ASG in two key aspects: 1) it allows the genera-
tion of arbitrarily long stories thanks to being able to reason
about the phase structure of stories; and 2) it can exploit both
specific story content as well as general background knowl-
edge in order to find analogies between stories.

We have compared SAM with existing story generation
systems and discussed some of their differences and simi-
larities. We have also seen that analogy-based story gener-
ation systems, like SAM, can generate stories which have
a different aesthetic range from stories generated by other
approaches, like planning.

As part of our current and future work, we are working
on improving the automatic text generation capabilities of
SAM. In some cases, the modifications SAM performs in

the HUD due to a change in the CUD produce grammati-
cally or semantically incorrect text. In our current work, we
are working on a case-based reasoning system, capable of
modifying the HUD while maintaining grammatically cor-
rect sentences, and taking into account some semantic con-
straints. Additionally, we are preparing an empirical user
studies to evaluate the quality of stories generated by SAM.

Acknowledgements We thank J. Hunter Sizemore for au-
thoring the stories used for evaluation. Research partially
funded by the project BUSCAMEDIA, CEN-20091026.

References

Bailey, P. 1999. Searching for storiness: Story-generation
from a reader’s perspective. In Proceedings of the AAAI Fall
Symposium on Narrative Intelligence.
Falkenhainer, B.; Forbus, K. D.; and Gentner, D. 1989. The
structure-mapping engine: Algorithm and examples. Artifi-
cial Intelligence 41:1–63.
French, R. M. 2002. The computational modeling of
analogy-making. Trends in Cognitive Sciences 6(5):200–
205.
Gervás, P. 2009. Computational approaches to storytelling
and creativity. AI Magazine 30(3):49–62.
Hall, R. P. 1989. Computational approaches to analogi-
cal reasoning: a comparative analysis. Artificial Intelligence
39(1):39–120.
Larkey, L. B., and Love, B. C. 2003. Cab: Connectionist
analogy builder. Cognitive Science 27(5):781–794.
Lebowitz, M. 1984. Creating characters in a story-telling
universe. Poetics 13:171–194.
Meehan, J. 1976. The Metanovel: Writing Stories by Com-
puter. Ph.d., Yale University.
Ontañón, S., and Zhu, J. 2010. Story and Text Generation
through Computational Analogy in the Riu System. In AI-
IDE, 51–56. The AAAI Press.
Pérez y Pérez, R., and Sharples, M. 2001. Mexica: A com-
puter model of a cognitive account of creative writing. Jour-
nal of Experimental and Theoretical Artificial Intelligence
13(2):119–139.
Riedl, M., and León, C. 2009. Generating story analogues.
In AIIDE 2009. The AAAI Press.
Riedl, M. 2004. Narrative Generation: Balancing Plot and
Character. Ph.D. Dissertation, North Carolina State Univer-
sity.
Talmy, L. 1988. Force dynamics in language and cognition.
Cognitive Science 12(1):49–100.
Theune, M.; Faas, E.; Nijholt, A.; and Heylen, D. 2003.
The virtual storyteller: Story creation by. In Proceedings
of the Technologies for Interactive Digital Storytelling and
Entertainment (TIDSE) Conference, 204–215.
Turner, S. R. 1993. Minstrel: a computer model of creativity
and storytelling. Ph.D. Dissertation, University of California
at Los Angeles, Los Angeles, CA, USA.

72




