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Abstract

The creation of effective autonomous agents (bots) for com-
bat scenarios has long been a goal of the gaming indus-
try. However, a secondary consideration is whether the au-
tonomous bots behave like human players; this is especially
important for simulation/training applications which aim to
instruct participants in real-world tasks. Bots often compen-
sate for a lack of combat acumen with advantages such as ac-
curate targeting, predefined navigational networks, and per-
fect world knowledge, which makes them challenging but
often predictable opponents. In this paper, we examine the
problem of teaching a bot to play like a human in first-person
shooter game combat scenarios. Our bot learns attack, explo-
ration and targeting policies from data collected from expert
human player demonstrations in Unreal Tournament.
We hypothesize that one key difference between human play-
ers and autonomous bots lies in the relative valuation of game
states. To capture the internal model used by expert human
players to evaluate the benefits of different actions, we use
inverse reinforcement learning to learn rewards for different
game states. We report the results of a human subjects’ study
evaluating the performance of bot policies learned from hu-
man demonstration against a set of standard bot policies. Our
study reveals that human players found our bots to be signif-
icantly more human-like than the standard bots during play.
Our technique represents a promising stepping-stone toward
addressing challenges such as the Bot Turing Test (the CIG
Bot 2K Competition).

Introduction

Although there are many factors that contribute to the im-
mersiveness of a gaming experience, the thrill of combating
an exciting adversary can lift the gaming experience from
ordinary to memorable. Yet the question remains— what
is the key element underlying interesting adversarial behav-
ior? Creating human-like adversarial intelligence poses sig-
nificantly different challenges from the related problems as-
sociated with creating non-player characters with realistic
dialog, emotion, and facial animations (Cassell et al. 2000).

Variability in execution has been listed as an important
desiderata for adversaries (Wray and Laird 2003); the ideal
opponent should not be repetitive and predictable in its ac-
tion selections (Schaeffer, Bulitko, and Buro 2008). How-
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ever, over-reliance on randomized action selection can sab-
otage effective gameplay by making autonomous opponents
seem like distracted amnesiacs (Hingston 2010b). Also, op-
ponent modeling has been highlighted as an important tech-
nology that can be coupled with the bot’s decision-making to
create adaptive gameplay in more structured domains such
as football (Laviers et al. 2009).

More fundamentally, we hypothesize that the problem
with intelligent bots is that their valuation of actions is sig-
nificantly different from a human player’s. For instance, a
human player will recklessly chase an opponent even when
their health status is dangerously low just to experience the
thrill of the chase. Many commonly-used game algorithms
such as A* path planning optimize subtly different metrics
than human players; for instance, A* implementations often
use an exclusively distance-based heuristic that does not ex-
press player movement preferences to avoid certain types of
terrain.

In this paper we propose an approach to resolve this prob-
lem of mismatched valuations by having our bot directly
learn reward functions from expert human player demon-
strations. Our experimental testbed, constructed using the
Pogamut toolkit (Gemrot et al. 2009), can be used to acquire
data from expert human Unreal Tournament players playing
deathmatch games. We attempt to learn policies for attack,
exploration, and targeting modes from human data. Re-
wards for attack and exploration actions are learned using
inverse reinforcement learning (Ng and Russell 2000).

IRL attempts to solve the opposite problem as reinforce-
ment learning; instead of learning policies from rewards,
IRL recovers rewards from policies by computing a candi-
date reward function that could have resulted in the demon-
strated policy. During the demonstrations, the most frequent
actions executed by human players in a set of designated
game states are recorded. A reward model is learned of-
fline using the CPLEX solver based on a set of constraints
extracted from the expert demonstration. Using value iter-
ation (Sutton and Barto 1998), a policy is created from the
reward vector and then executed by our bot. For the tar-
geting mode, we simply fit a parameterized model to the
expert data. Rather than having the bot rely on the auto-
mated targeting provided by the game, our bot samples from
the learned distribution. Our bot switches between these
three modes (attack, exploration, and targeting) based on
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game cues such as opponent proximity and availability of
resources.

We evaluate the overall performance of our bot in multi-
ple ways. First, we compare the exploration policy learned
by the bot against a set of standard Pogamut (Gemrot et al.
2009) bots on multiple maps. The results of these experi-
ments indicate that our bot is significantly better at foraging
for resources such as health pellets and weapons than a set
of standard UT bots. The combat performance (attack and
targeting) of our bot was evaluated by having a set of human
subjects compare their play experiences with our bot vs. a
standard bot. Players had the opportunity to play both bots
directly in deathmatch competition multiple times, as well
as to view movies of the two bots. Our findings for this ex-
periment indicate that human players rate our bot as more
human-like in gameplay.

Related Work
The 2k BotPrize competition (Hingston 2010a) has stim-
ulated much of the related work in this area. Known as
the “Bot Turing Test”, the BotPrize competition pits au-
tonomous bots vs. a panel of expert human judges drawn
from the gaming industry. The agents fight a modified death
match game in Unreal Tournament against a human player
and a judge; to win the major prize, the bot must convince
four out of five judges of its humanness.

In the 2010 competition no bot was able to win the ma-
jor prize and as in previous competitions the most human
bot did not manage to outscore the least “human” human
player. There are, however, promising strategies that have
emerged for topics such as item acquisition, steering, and
firing techniques. Ideas such as circular strafing, imprecise
aiming, and more complex item seeking strategies have been
demonstrated by various bots (e.g, (Hirono and Thawonmas
2009)).

The top-scoring bot in 2010 was Conscious-Robots from
Carlos III University in Madrid. In many of the submis-
sions, human-like characteristics were implemented for nav-
igation. Relational databases have been used to provide the
bot with long term memory of hotspots where actions com-
monly occurred in the past, instead of going to the last place
an enemy was seen (Hirono and Thawonmas 2009). In con-
trast, our bot uses IRL and expert human demonstrations to
learn key locations for resource acquisition.

The bots, like humans, have different objectives depend-
ing on their state. The ICE 2008/2008 bot had two behavior
states: item collection and combat (Hirono and Thawonmas
2009). The 2008 FALCON bot implemented four states al-
lowing for more variability in action: running around, col-
lecting items, escape, and engage (Wang et al. 2009).

(Hingston 2010b) notes that two of the most historically
common failures among competition bots have been overly
accurate shooting and lack of aggression compared to hu-
man players; our approach was specifically designed to ad-
dress these shortcomings. Note that due to the rules of the
competition, it would not be possible to use inverse rein-
forcement learning to learn an exploration policy directly on
the competition map, but it remains a feasible approach for
attack policies which are not map-specific.

Inverse Reinforcement Learning

To learn attack and exploration policies from expert player
demonstrations, we first use inverse reinforcement learning
to learn a reward model from a set of player demonstrations.
First the expert’s demonstration is converted into a set of
linear programming constraints over states, actions, and re-
wards. The goal is to find a reward model that effectively
explains the player’s action choices. This is done by as-
suming that the observed policy maximizes the selected re-
ward model, and searching for reward values that minimize
the difference between an optimal policy (under that reward
model) and the observed set of demonstrations. To solve the
resulting set of equations, we use the CPLEX solver offline.

We use the IRL formulation defined by (Ng and Russell
2000) and maximize:

N∑

i=1

min
a∈A

{(Pa1(i)−Pa(i))(I− γPa1)
−1r} − λ||r||1

s.t. (Pa1
−Pa)(I− γPa1

)−1r � 0 ∀a ∈ A \ a1
|ri| ≤ rmax i = 1, . . . , N

where a1 is the action index of the policy for current state,
P is the state transition matrix, γ is a discount factor, and
λ is the penalty coefficient. r is the reward vector and rmax

is set to 1. The max-min formulation can be converted to a
problem of only maximization by adding new variables, yi,
to the problem as follows:

yi ≤ {(Pa1
−Pa)(I− γPa1

)−1r}
Maximizing yi is equivalent to minimizing the right-hand

side part of the objective function. By adding the sum over
ρi to convert the first-norm of rewards into linear form, the
overall linear programming formulation becomes:

maximize
N∑

i=1

(yi − λρi)

s.t. yi ≤ {(Pa1 −Pa)(I− γPa1)
−1r} ∀a ∈ A \ a1

ri ≤ ρi
−ri ≤ ρi
ri ≤ rmax

If we define N as the number of states (128 for explo-
ration and 12 for attack mode) and A as the number of pos-
sible actions (4 for both exploration and attack) we have
3N variables and (A − 1)N + 3N = (A + 2)N con-
straints. Hence, we have 384 variables, 768 constraints for
exploration mode, and 36 variables, 72 constraints for attack
mode; due to our simple state space representation, CPLEX
can calculate values for all the reward variables within a few
seconds.

By using IRL, we avoid having to hand-code rewards for
particular states based on domain knowledge and instead can
directly leverage the experience of expert players. After IRL
returns the reward model, we run value iteration offline to
learn a policy. During gameplay, the bot simply performs a
policy lookup based on the current game state which can be
executed very rapidly.
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Bot Design

Our system was trained to play two-player deathmatch mode
in Unreal Tournament; the winning objective is simply to
score the highest number of kills during a set period of time.
We created our game bot and our data collection bot using
the Pogamut (Gemrot et al. 2009) platform.

Pogamut was developed to allow programmers to connect
to the Unreal Tournament (UT) server using Java. It in-
cludes three types of connections: server, observation and
bot. The server connection allows the developer to access
player and map information, add a built-in UT bot or re-
move a bot from game. The observation connection opens a
link to a player and gives information about the world from
the perspective of that player. This information not only in-
cludes the player’s location, shooting and orientation data
but also provides information about other items and play-
ers in sight. The bot connection creates a programmable bot
that can move, jump, shoot, detect visible players, and spot
items.

Our bot uses a finite state machine to switch between three
different modes; we learn the policies for each mode sepa-
rately as described in the following sections. Exploration
mode is designed to gather resources (ammo and health
packs) from the environment when the user is not fighting
opponents. As soon as an enemy is visible, the bot switches
into attack mode. The targeting mode is triggered during
attack mode when firing at the opponent.

Exploration Mode

To learn a policy for the exploration mode, we divide the
current map is into an occupancy grid. Since certain cells
are hazardous, only regions of the map that have been ex-
plored safely are included in the occupancy grid. Therefore
we initialize the map by having the user perform a short ex-
ploration and then using the initial exploration data to gen-
erate a safe occupancy grid. Using the grid map, we collect
a series of short (15 second) segments from the user’s ex-
plorations for processing. During a single segment, the user
typically explores one region in the map.

This data demonstrates how a user explores various map
areas and which spots are preferentially visited. We then
convert the user’s movements to a reduced set of actions (up,
down, left, and right). State transitions are recorded, and
from that data, actions are extracted. We predefine a simple
transition matrix between states in which many states are
linked by deterministic transitions. First, the path demon-
strated by the expert is cleaned by by filling the gaps and
diagonal jumps between cells to align with the four-way
connectivity of our action space. A reduced state space is
generated using only the cells covered by the path.

The demonstration is converted into actions which are
used to learn the reward model and policy for that section
of the state space using the following procedure:
1. Our IRL script is used to automatically generate con-

straints based on the expert demonstration.
2. A consistent reward vector for the observed states is com-

puted using CPLEX.
3. Rewards for unobserved states are set to 0.

Figure 1: Architectural diagram showing training and game-
play in exploration mode.

4. Value iteration is executed until the error threshold
reaches 10−4.

5. The policy, the start, and end cells for the demonstration
are saved.
The process is repeated for each demonstration to create

multiple policy maps for each area of the map. The train-
ing process is depicted in the top field of the Figure 1. At
the end of training process, a set of policies are generated
which are then used by the bot during game play. During
the game, the bot either selects the policy closest to its cur-
rent position or chooses to explore a completely new region
(30%). To move to a new region, it randomly selects a new
policy and then uses A* search to move between its current
position and the starting location of the next policy. The bot
collects any resources (weapons or health packs) it detects
while in exploration mode before continuing to follow the
learned policy.

Attack Mode

To train the bot for attack mode, we collected 45 minutes of
log files at 20 frames/sec of an expert player fighting an op-
ponent. The log file contains the following fields: 1) times-
tamp 2) location (x,y,z) 3) health level 4) shooting status 5)
enemy visibility 6) jumping status 7) angle to the enemy in
XY plane 8) currently used weapon. After data acquisition
the log file is filtered to create state-action pairs for the parts
of the session that the opponent is visible to the player.

In attack mode, the state representation is based on a com-
bination of the health and distance status of the player, yield-
ing twelve total states. The state representation is shown in
Table 1. The four possible actions are: 1) shooting and mov-
ing 2) shooting only 3) moving only 4) standing still. Note
that even when the bot is in attack mode, it is not constantly
firing; it can opt to hide or disengage by selecting movement
actions and going to the appropriate distance.

The distribution of these actions across states represents
the aggressiveness of the player. To identify the action be-
ing executed, we considered windows of 250 ms and eval-
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Figure 2: Architectural diagram showing training and game-
play in attack mode.

uated the percentage of shooting and movement the player
performed during that time period to assign each window a
state and action value.

Health
Distance (UT units) 30 60 90

less than 500 1 4 7 10
between 500, 1000 2 5 8 11
greater than 1000 3 6 9 12

Table 1: State representation for attack mode.

After the state-action pairs from the expert’s demonstra-
tion are extracted, a frequency count is performed over the
entire dataset to create a state transition probability matrix.
The transition probability matrix and policy data is then used
as the input to CPLEX to learn a mapping between state and
rewards. Using these rewards, we execute value iteration
to learn the optimal policy that the bot should perform. This
policy is used to guide the bot’s movement and shooting dur-
ing attack mode; note that the learned policy only specifies
the general action, not actual direction of movement or bot
orientation which need to be calculated at run-time. Figure 2
shows the operation of our attack method.

Targeting Mode

To create a more human-like shooting pattern, we collected
data on the expert players’ firing patterns and fitted it to
a separate Gaussian distribution based on the distance be-
tween the player and the enemy. The learned parameters are
shown in Table 2. Interestingly, the angular variance of the
player’s shooting angle is actually reduced when shooting at
farther ranges; this reflects the tendency of most players to
spend a longer time aiming at distant targets.

Whenever the bot can see the enemy or detects that an
enemy is in the vicinity, it switches from exploration to at-
tack mode. The bot is alerted to the presence of the enemy

by detecting damage, seeing a bullet shot by enemy, or hear-
ing noise from the enemy. When the bot switches to attack
mode, it calculates the current state using the relative health
level and distance to the enemy. The bot selects an action
(attack, move, or both) based on the learned policy. If the
bot is going to attack, it changes its weapon to most de-
structive weapon that it carries. After generating an angle
to shoot by drawing from the applicable Gaussian distribu-
tion, the bot calculates the location to shoot. If the bot opts
to move, it runs and jumps in a circle to maintain the dis-
tance recommended by the learned policy. The center of the
circle is mapped to a navigation point within a known safe
region to protect the bot from moving to unknown hazardous
locations.

Evaluation

We evaluated both the exploration and combat performance
of our bot. For exploration, we seek to create a bot that can
effectively forage for health packs and weapons, based on a
policy learned from expert players on the same map; essen-
tially the bot is learning the areas that produce the richest
yield of resources. The metric used is simply the amount
of health packs the bots were able to collect within a five
minute interval. We compared our bot to two standard bots
included within the Pogamut distribution: Navigation and
Rayscan.

The Navigation bot simply moves from one navigation
point (navpoint) to another and periodically uses A* to move
to a new randomly selected navpoint. This bot is good at
covering large sections of the map very rapidly and pick-
ing up resources along the way. The Rayscan bot scans the
game world with using ray-tracing and performs obstacle
avoidance to avoid hazards; the advantage of this policy is it
enables exploration and foraging in areas not covered by the
navigation grid. We performed five runs of each bot over the
same map. As Figure 3 shows, our bot, using the exploration
policy learned by IRL, outperforms the other two fixed pol-
icy bots at this task and a t-test indicates that the differences
are statistically significant (α = 0.01).

User Study

To evaluate the attack mode we performed a user study to
evaluate the “humanness” of the bots’ combat performance.
The goal of the user study was to determine whether the
users’ found our bot to be more human-like than a UT bot
without learning. Against autonomous UT bots, our bot
played competitively at level 3 out of 7; we did not attempt
to optimize our bot further since we felt that it was desirable

Distance (UT cms)
0 to 400 400 to 700 above 700

μ -0.4◦ 0.5◦ 0.1◦
σ 9.4◦ 5.4◦ 3.8◦

Table 2: Learned Gaussian parameters for different shooting
distances.
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Figure 3: Evaluation of exploration mode. Our bot outper-
forms the other non-learned Pogamut bots, Navigation and
Rayscan, at foraging.

for all players to occasionally beat the bot and for interme-
diate players to be able to beat the bot half the time. The
experience levels of the thirteen participants, based on self-
reported hours of play, ranged from beginner to expert; all
participants were male between the ages of 18-28.

After a short training period to familiarize the participants
with Unreal Tournament, we explained to the participants
that they were going to play two separate games: one against
a bot and the other against a human player. In reality, both
tests were executed against bots, our bot and a UT bot us-
ing a non-learned policy. Subjects were asked to look for
clues about the humanness of the bot based on shooting,
movement and overall abilities. Each session consisted of
the subject playing four combats, viewing a movie of the
bots, and responding to questionnaires. After each pair of
combats, players were asked to respond to a questionnaire
based on the previous combats. Participants were asked to
rate the bots’ shooting, movement, and behavior on a 1 to 7
scale, where 1 indicated more bot-like and 7 indicated more
human-like. Participants also were asked how fun each op-
ponent was to play. At the end, we asked the participants
to watch the two “players” in combat against one another
and evaluate the players’ shooting, movement and overall
behavior.

From the questionnaires of the 13 participants, we divided
the question responses into four parts: shooting, movement,
overall performance, and fun. We plotted the number of
human-like and bot-like answers for the UT bot and our bot,
then performed Fisher’s exact test which is based on two
categorical datasets of small sample size. For the results
we used left tail (negative correlation), which shows that the
observations tend to lie in lower left and upper right of the
table. In our case, having observations in lower left and up-

per right indicates that the participants rated our bot as more
human-like. As we can see from the results for shooting,
movement and also overall behaviors, our bot appears to en-
gender statistically significantly differences in participants’
perception of the bots’ human-like behavior (p < 0.05).

Attacking Human Bot
UT Bot 5 8
Our Bot 11 2

Left p value = 0.02

Table 3: Questionnaire responses relating to attacking (sta-
tistically significant)

Movement Human Bot
UT Bot 5 8
Our Bot 10 3

Left p value = 0.05

Table 4: Questionnaire responses relating to movement (sta-
tistically significant)

Overall Human Bot
UT Bot 5 8
Our Bot 11 2

Left p value = 0.02

Table 5: Questionnaire responses relating to overall perfor-
mance (statistically significant)

Fun Fun Boring
UT Bot 12 1
Our Bot 11 2

Left p value = 0.522

Table 6: Questionnaire responses relating to fun experienced

Overall Human Bot
UT Bot 7 6
Our Bot 9 4

Left p value = 0.344

Table 7: Questionnaire responses relating to spectator mode

Interestingly, our bot was more successful at fooling hu-
man players during gameplay (which is traditionally thought
to be a harder test) than during spectator movie mode. When
spectating both the bots, the players are able to slow the
movie down and notice repeated patterns and occasional
movement glitches exhibited by both bots. The difference
between our bot and the UT bot is not statistically signif-
icant in movie mode. Also the reported fun between play
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experiences with the two bots was not statistically signifi-
cant.

Conclusion

In this paper, we demonstrate an inverse reinforcement
learning approach for teaching first-person shooter bots to
play using expert human demonstrations. Our bots out-
perform bots using fixed policies at map exploration, and
our user study evaluation reveals statistically significant im-
provements in the “humanness” of our bot. However, IRL
is essentially an underconstrained problem; there are many
possible reward models to fit a single observation sequence.
Hence we feel it will be valuable to consider including addi-
tional constraints, beyond the ones required to create a valid
reward model. In future work, we plan to work on the issues
of generalization; instead of learning demonstrations from
a single map, we will use demonstrations across different
maps to learn a more general model of player combat and
exploration preferences.
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