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Abstract

We address the challenges of evaluating the fidelity of AI
agents that are attempting to produce human-like behaviors
in games. To create a believable and engaging game play ex-
perience, designers must ensure that their non-player char-
acters (NPCs) behave in a human-like manner. Today, with
the wide popularity of massively-multi-player online games,
this goal may seem less important. However, if we can reli-
ably produce human-like NPCs, this can open up an entirely
new genre of game play. In this paper, we focus on emulat-
ing human behaviors in strategic game settings, and focus on
a Social Ultimatum Game as the testbed for developing and
evaluating a set of metrics for comparing various autonomous
agents to human behavior collected from live experiments.

Introduction

Development of non-player characters (NPCs) in interactive
games gets at the root of the field of artificial intelligence
— the creation of autonomous agents that exhibit human-
like behavior. In serious games such as virtual training en-
vironments, we may need to quickly develop NPCs that
emulate the behaviors of an indigenous population, which
varies according to culture, socio-economic, and religious
factors (Rickel 2001). In other games, realistic NPCs can
lead to more engaging game-play, enabling richer develop-
ment of story lines and realism of game play even in online
multiplayer games. Here we focus on the need for metrics to
evaluate the verisimilitude of autonomous agent behaviors
relative to actual human behavior. We also describe a set of
techniques for learning agent models directly from human
data.

The classical Turing Test relies on human evaluation to
judge the similarity of the conversation produced by the ar-
tificial agent relative to actual human conversation. In more
restricted problems, such as classification, we are satisfied
when a machine consistently produces the correct label (a
perfect match), given a test data point. In this paper, we
are concerned with domains falling somewhere in the mid-
dle, where an agent’s human-like behavior will not necessar-
ily produce a perfect match to some predefined standards,
but where we would prefer not to rely exclusively on hu-
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man judgement to determine whether an agent’s outputs are
“close” to real human behavior.

In particular, we are interested in multi-agent game do-
mains where humans make sequential actions, or decisions,
over time. In the emotional agents community, the degree of
realism is typically evaluated by a human judge (Mao and
Gratch 2004). In the machine learning and reinforcement
learning community, agent “goodness” is typically evaluated
relative to optimal behavior, using a metric like expected re-
ward. This notion of optimality is ill-defined in many of the
domains of interest. Optimality of one agent in a multi-agent
game is dependent on the strategies employed by the other
agents. Furthermore, for most games we are interested in,
humans simply do not play optimally, whether it be due to
bounded rationality, preference for following heuristics or
narratives, altruism, or other reasons.

Luckily, human data in multi-agent domains is becoming
easy to collect, given widespread access to the Internet and
online interaction. Thus, we can obtain baseline collections
of behavior trajectories that describe human play. The chal-
lenge is to find a way to compare collections of traces pro-
duced by autonomous agents with this existing baseline, in
order to determine which agents exhibit the most realistic
behavior.

In this paper, we investigate these issues in the context of
the Social Ultimatum Game (SUG). SUG is a multi-agent
multi-round extension of the Ultimatum Game (Henrich,
Heine, and Norenzayan 2010), which has been a frequently
studied game over the last three decades as a prominent ex-
ample of how human behavior deviates from game-theoretic
predictions that use the “rational actor” model. Data gath-
ered from people playing SUG was used to create various
classes of autonomous agents that modeled the behaviors of
the individual human players. We then created traces from
games with autonomous agents emulating the games that the
humans played. We develop several metrics to compare the
collections of traces gathered from games played by humans
and games played by the autonomous agents.

From this analysis, it becomes clear that human behavior
contains unique temporal patterns that are not captured by
the simpler metrics. In SUG, this is revealed in the likelihood
of reciprocity as a function of the history of reciprocity. The
key implication is that it is critical to retain the temporal
elements when developing metrics to evaluate the efficacy of
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autonomous agents for replicating human strategic behavior
in dynamic settings.

The Social Ultimatum Game

To ground our subsequent discussion, we begin by intro-
ducing the Social Ultimatum Game. The classical Ultima-
tum Game, is a two-player game where P1 proposes a split
of an endowment e ∈ N to P2 who would receive q ∈
{0,δ ,2δ , . . . ,e− δ ,e} for δ ∈ N. If P2 accepts, P2 receives
q and P1 receives e−q. If P2 rejects, neither player receives
anything. The subgame-perfect Nash or Stackelberg equilib-
rium has P1 offering q = δ (i.e., the minimum possible of-
fer), and P2 accepting, because a “rational” P2 should accept
any q > 0, and P1 knows this. Yet, humans make offers that
exceed δ , make “fair” offers of e/2, and reject offers greater
than the minimum.

To represent the characteristics that people operate in
societies of multiple agents and repeated interactions, we
introduce the Social Ultimatum Game. Players, denoted
{P1,P2, . . . ,PN}, play K ≥ 2 rounds, where N ≥ 3. In each
round k, every player Pm chooses a recipient Rk

m and makes
them an offer qk

m,n (where n = Rk
m). Each recipient Pn then

considers the offers they received and makes a decision
dk

m,n ∈ {0,1} for each offer qk
m,n to accept (1) or reject (0)

it. If the offer is accepted by Pm, Pm receives e−qk
m,n and Pn

receives qk
m,n, where e is the endowment to be shared. If an

offer is rejected by Pn, then both players receive nothing for
that particular offer in round k. Thus, Pm’s reward in round k
is the sum of the offers they accept (if any are made to them)
and their portion of the proposal they make, if accepted:

rk
m = (e−qk

m,n)d
k
m,n + ∑

j=1...N, j �=m
qk

j,mdk
j,m (1)

The total rewards for Pm over the game is the
sum of per-round winnings, rm ∑K

k=1 rk
m. A game

trajectory for Pm is a time-series of proposed of-
fers, Ok

m = (Rk
m,q

k
m,n,d

k
m,n) and received offers,

Ok
n,m = (Rk

n,q
k
n,m,d

k
n,m). At time k, the trajectory for Pm

is T k
m = (Ok

m,{Ok
n,m}n,Ok−1

m ,{Ok−1
n,m }n, . . . ,O1

m,{O1
n,m}n).

Assuming no public information about other players’
trajectories, T k

m includes all the observable state information
available to Pm at the end of round k.

A screenshot of the offer phase in our online Social Ulti-
matum Game is shown in Figure 1.

Metrics

Let Cm be the collection of trajectories Pm produces by
taking part in a set of Social Ultimatum Games. In other
domains, these traces could represent other interactions.
Our goal is to evaluate the resemblance of a set of human
trace data C to other sets of traces ˜C, namely those of au-
tonomous agents. We need a metric that compares sets of
multi-dimensional time series: d(C, ˜C). Standard time-series
metrics such as Euclidean or absolute distance, edit distance,
and dynamic time warping (Mitsa 2010) are not appropriate
in this type of domain.

Figure 1: The Social Ultimatum Game Interface

One challenge arises because we are interested in the un-
derlying behavior that creates the trajectories rather than su-
perficial differences in the trajectories themselves. If we can
collapse a collection of traces C to a single probability dis-
tribution Q, by aggregating over time, then we can define a
time-collapsed metric,

d(C, ˜C) = KL(Q|| ˜Q)+KL( ˜Q||Q) (2)

where KL denotes the Kullback-Leibler divergence. The
sum enforces symmetry and nonnegativity. Time-collapsed
metrics for SUG include:

• Offer Distribution. Let QO be the distribution of offer
values {qk

m,n} observed over all traces and all players.

• Target-Recipient Distribution. Let QR denote the likeli-
hood that a player will make an offer to the kth most likely
recipient of an offer. This likelihood is non-increasing in
k. In a 5-person game, a single player may have an target-
recipient distribution that looks like {0.7,0.1,0.1,0.1}
which indicates that they made offers to their most-
targeted partner 7 times more often than their second-
highest-targeted partner. We can produce QR by averaging
over all games to characterize a player and further average
over all players to characterize a population.

• Rejection Probabilities. For each offer value q, we have
a Bernoulli distribution QBq that captures the likelihood
of rejection by averaging across all players, games and
rounds in a collection of traces. We then define a metric:

dB(C, ˜C) =
10

∑
q=0

KL(QBq || ˜QBq)+KL( ˜QBq ||QBq).

We can also define time-dependent metrics that acknowl-
edge that actions can depend on observations of previous
time periods. One prominent human manifestation of this
characteristic is reciprocity. We define two time-dependent
metrics based on reciprocity:

• Immediate Reciprocity When a player receives an ac-
ceptable offer from someone, they may be more inclined
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to reciprocate and propose an offer in return in the next
round. We can quantify this p(Rk+1

m = n|Rk
n = m) across

all players and games in a collection of traces. This prob-
ability defines a Bernoulli distribution QY from which we
can define a metric dY as before.

• Reciprocity Chains Taking the idea of reciprocity over
time further, we can calculate the probability that an offer
will be reciprocated, given that a chain of reciprocity has
already occurred. For example, for chains of length c = 2,
we p(Rk+1

m = n|Rk
n = m,Rk−1

m = n); for c = 3, we calcu-
late p(Rk+1

m = n|Rk
n = m,Rk−1

m = n,Rk−2
n = m). As before,

these probabilities can be used to define a Bernoulli distri-
bution QYc for each length c. Then, for some L, we define

dY
L (C, ˜C) =

L

∑
c=1

KL(QYc || ˜QYc)+KL( ˜QYc ||QYc).

We expect that the longer a pair of players reciprocate, the
higher the likelihood that they will continue doing so. The
exact probabilities can be obtained from human data.

Autonomous Agents

In this section, we describe various agent models of be-
havior. We first apply traditional game-theoretic analysis to
the Social Ultimatum Game to derive the “optimal” behav-
ior under rational actor assumptions. We then describe two
distribution-based agents that do not model other agents but
are capable of incorporating human behavior data. Finally,
we describe an adaptive agent that incorporates some aspects
of human behavior such as fairness and reciprocity.

Game-Theoretic Agents

In previous work, we analyzed the behavior of game-
theoretic agents in the multi-player, multi-round Social Ul-
timatum Game. We showed that even though accepting all
non-zero offers is not a dominant strategy, the Nash equi-
librium from the one-shot, two-agent Ultimatum Game still
translates to a similar equilibrium strategy in the Social Ul-
timatum Game.

Let strategies be characterized by the statistics that they
produce in steady-state: the distribution of offers made by
each player, where pg

m(n,q) denotes the likelihood that Pm
will give an offer of q to Pn, and the distribution of offers ac-
cepted by each player, where pa

m(n,q) denotes the likelihood
that Pm will accept an offer of q from Pn.

Proposition 1 In the Social Ultimatum Game, accepting all
offers is not a dominant strategy.

Proposition 2 In the Social Ultimatum Game, Nash equi-
librium outcomes only happen when players employ strate-
gies of the form “greedy’ strategies, where

pg
m(n,q) = 0, ∀q > δ ,m,n, pa

m(n,δ ) = 1,∀m,n, (3)

i.e.,“greedy” strategies where players only make the mini-
mum offers of δ , and all players accept all minimum offers.

Proof details are provided in (Chang, Levimboim, and Mah-
eswaran 2011).

Distribution-Based Agents

One way to create agents that satisfy a set of metrics is to
use the metrics to generate the agent behavior. Using only
time-collapsed metrics, one could create a distribution-based
agent (DBA) as follows. Learn distributions of offer value,
target recipient and rejection percentage from human data.
Find the appropriate target-recipient distribution based on
number of participants and assign agents to each position
(i.e., most likely to least likely). In offer phases of each
round, choose a target by sampling from the target-recipient
distribution and an offer value by sampling from the offer
distribution. For received offers, decide via Bernoulli trial
based on the rejection percentage for that offer value.

The DBA has no notion of reciprocity. We also investi-
gated a class of distribution-based reciprocal agents (DBRA)
which behave like the DBA agents in all aspects other than
target selection. If DBRA agents receive an offer it will de-
cide to reciprocate based on a reciprocation percentage that
is learned from human data. If multiple offers are received,
the target is chosen using a relative likelihood based on the
target-recipient distribution. Similarly, if it doesn’t receive
any offers, it uses the target-recipient distribution. While the
distribution-based agents act on the basis of data of human
play, they do not have models of other agents and conse-
quently execute an open-loop static policy. The following
model introduces an adaptive model that is not based simply
on fitting the metrics.

Adaptive Agents

In order to create adaptive agent models of human play-
ers for the Social Ultimatum Game, we need to incorporate
some axioms of human behavior that may be considered “ir-
rational”. The desiderata that we address include assump-
tions that people will (1) start with some notion of a fair of-
fer, (2) adapt these notions over time at various rates based
upon their interactions, (3) have models of other agents, (4)
choose the best option while occasionally exploring for bet-
ter deals. Each player Pm is characterized by three parame-
ters: α0

m : Pm’s initial acceptance threshold, βm : Pm’s reac-
tivity and γm : Pm’s exploration likelihood

The value of α0
m ∈ [0,e] is Pm’s initial notion of what con-

stitutes a “fair” offer and is used to determine whether an
offer to Pm, i.e., qk

n,m, is accepted or rejected. The value of
βm ∈ [0,1] determines how quickly the player will adapt to
information during the game, where zero indicates a player
who will not change anything from their initial beliefs and
one indicates a player who will solely use the last data point.
The value of γm ∈ [0,1] indicates how much a player will
deviate from their “best” play in order to discover new op-
portunities where zero indicates a player who never deviates
and one indicates a player who always does.

Each player Pm keeps a model of other players in or-
der to determine which player to make an offer to, and
how much that offer should be. The model is composed as
follows: ak

m,n : Pm’s estimate of Pn’s acceptance threshold;
āk

m,n : Upper bound on ak
m,n ; and ak

m,n : Lower bound on
ak

m,n. Thus, Pm has a collection of models for all other play-
ers {[ak

m,nak
m,nāk

m,n]}n for each round k. The value am,n is the
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Pm’s estimate about the value of Pn’s acceptance threshold,
while ak

m,n and āk
m,n represent the interval of uncertainty over

which the estimate could exist. For simplicity, we will as-
sume that δ = 1.

Making Offers In each round k, Pm may choose to make
the best known offer, denoted q̃k

m, or explore to find some-
one that may accept a lower offer. If there are no gains to be
made from exploring, i.e., the best offer is the minimum of-
fer (q̃k

m = δ = 1), a player will not explore. However, if there
are gains to be made from exploring, with probability γm, Pm
chooses a target Pn at random and offers them qk

m,n = q̃k
m−1.

With probability 1− γm, Pm will choose to exploit. The tar-
get is chosen from the players who have the lowest value for
offers they would accept, and the offer is that value:

qk
m,n = �ak

m,n − ε� where ∈ argmin
ñ�=m

�ak
m,ñ� (4)

The previous equation characterizes an equivalence class of
players from which Pm can choose a target agent. The ε pa-
rameter is used to counter boundary effects in the threshold
update, discussed below. The target agent from the equiva-
lence class is chosen using proportional reciprocity, by as-
signing likelihoods to each agent with respect to offers made
in some history window.

Accepting Offers For each offer qk
m,n, the receiving player

Pn has to make a decision dk
m,n ∈ {0,1} to accept or reject it,

based on its threshold:

If qk
m,n ≥ �αk

m − ε�, then dk
m,n = 1, else dk

m,n = 0 (5)

Updating Acceptance Threshold The acceptance thresh-
old is a characterization of what the agent considers a “fair”
offer. Once an agent is embedded within a community of
players, the agent may change what they consider a “fair”
offer based on the received offers. We model this adap-
tion using a convex combination of the current threshold
and the offers that are received, with adaptation parameter
βm. Let the set of offers that are received be defined as:
Rk

m = {qk
i, j : j = m,qk

i, j > 0}. If |Rk
m| ≥ 1, then αk+1

m =

(1−βm)
|Rk

m|αk
m +

(1− ((1−βm)
|Rk

m|)
|Rk

m| ∑
i

qk
i,m (6)

If |Rk
m| = 0, then αk+1

m = αk
m. Thus, offers higher than your

expectation will raise your expectation and offers lower than
your expectation will lower your expectation at some rate.

Updating Threshold Estimate Bounds As a player
makes an offer qk

m,n and receives feedback on the offer dk
m,n,

they learn about Pn’s acceptance threshold. Using this infor-
mation, we can update our bounds for our estimates of their
threshold. The details can be found in an extended version
of this paper.

Updating Threshold Estimates Once the threshold
bounds are updated, we can modify our estimates of the
thresholds as follows. If the player accepts the offer, we
move the estimate of their threshold closer to the lower
bound and if the player rejects the offer, we move our es-
timate of their threshold closer to the upper bound using a

convex combination of the current value and the appropriate
bound as follows.

dk
m,n = 1 ⇒
ak+1

m,n = min{βm ak+1
m,n +(1−βm)ak

m,n, ā
k+1
m,n } (7)

dk
m,n = 0 ⇒
ak+1

m,n = max{βm āk+1
m,n +(1−βm)ak

m,n,a
k+1
m,n +2ε} (8)

The min and max operators ensure that we don’t make unin-
tuitive offers (such as repeating a just rejected offer), if our
adaptation rate is not sufficiently high. The adaptive agent
described above fulfills the properties of the desiderata pre-
scribed to generate behavior that is more aligned with our
expectations in reality.

Experiments

Data was collected from human subjects recruited from un-
dergraduates and staff at the University of Southern Cali-
fornia. In each round, every player is given the opportunity
to propose a $10 split with another player of their choos-
ing. Games ranged from 20 to 50 rounds. A conversion rate
of 10 ultimatum dollars to 25 U.S. cents was used to pay
participants, i.e., $5 per 20 rounds per player in an egal-
itarian social-welfare maximizing game. The subjects par-
ticipated in organized game sessions and a typical subject
played three to five games in one session. Between three
and seven players participated in each game. During each
session, the players interacted with each other exclusively
through the game’s interface on provided iPads, shown in
Figure 1. We have collected data from 27 human subject
games thus far. In this paper, we focus on the seven 5-person
games in the dataset. By restricting our attention to five-
player games, we avoid biases that may be introduced if we
attempted to normalize the data from the other games to re-
flect a five-person composition. Analysis on the games of
other sizes yields similar results.

To create the Distribution-Based Agent and Distribution-
Based Reciprocal Agent to the collected data, we calculated
the appropriate distributions (offer value, rejection percent-
age by value, targeted-recipient), by counting and averag-
ing over all games and all players. For the Adaptive Agents,
we analyzed the traces of each game, and estimated game-
specific α,β ,γ parameters of each of the participating play-
ers, as follows. For each player Pm in the game,
• αm : This is set as the player’s first offer in this game.
• βm : When a player decreases his offer to a specific player

from q1 to q2 after K steps (not necessarily consecutive),
we find and store the best β value such that K applications
of βq2 +(1−β )q1 yields a result less than q1+q2

2 (so that
the next offer should be closer to q2 then it is to q1). We
then take βm to be this stored β value.

• γm : This is the likelihood that a player’s offer is less than
the minimum known accepted offer, where the minimum
accepted offer at a given round k is the minimum offer
known to be accepted by any player at time k−1.
Having estimated the population parameters of each

game, we then use them as input to create an autonomous
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agent for each player, and simulate each game ten times to
produce ten traces. Within each of these games, each of the
five players uses the parameters corresponding to one of the
five original human players.

Evaluation
These experiments and simulations result in a collection of
game traces for each of the five types of agent discussed:
Human, Adaptive, DBA, DBRA, and Game-theoretic (GT).
Table 1 shows the similarity between the collection of hu-
man traces and each of the four collections of autonomous
agent traces, according to the metrics discussed earlier.

Adaptive DBA DBRA GT
dO 0.57 0.008 0.008 33.26
dR 0.21 0.0005 0.01 0.19
dB 11.74 0.008 0.11 32.83
dY8 4.22 16.34 20.10 97.02

Table 1: Similarity to human play, based on various metrics.

Note that we do not normalize the metrics to fall within
the same range because the relative importance of the
metrics is unclear. Thus, the similarity between behaviors
should be viewed independently for each metric.

The DBA and DBRA agents score very well on the
three metrics based on offer value, rejection percentage,
and target-recipient. We fully expect this result as both
these agents generate their behavior by sampling from
these distributions. It is also clear that the GT agent per-
forms very differently from the human data, based on
most of the metrics. Naturally, the Adaptive Agent scores
worse than the distribution-based agents on the temporally-
independent distribution metrics dO, dR, and dB, since it
does not explicitly optimize for these metrics, but its be-
havior is still relatively close to human behavior. On the
temporally-dependent reciprocation-chain metric dY8 , the
Adaptive Agent scores much better in similarity to the hu-
man traces.

To get a more intuitive sense of the differences in the trace
data, we also display the actual distributions that underlie
the metrics in Figure 2 which shows the distributions of of-
fer amounts for each of the agent types, the probability of
rejection given each offer amount, the distribution of offer
recipients, ordered from most likely to least likely, and the
probability that an offer will be reciprocated, given that a
chain of c offers have been made between the players in the
past c = 1,2, . . . ,8 time periods.

While the Adaptive Agent may not have been the most
human-like agent according to the other three metrics, the
form of its distributions still reasonably resembled the dis-
tributions produced by human play. However, on the time-
dependent reciprocation-based metric, it is very clear that
the Adaptive Agent is the only one that exhibits behavior
that is similar to human play. This temporal dependence is
crucial to creating agent behavior that emulates human be-
havior.

Finally, note that the aim of the paper is to develop this set
of metrics and discuss the importance of time-dependence in
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Figure 2: (Top to bottom) Distribution of offer amounts; Re-
jection probabilities given offer amounts; Target recipient
distribution; Reciprocation probabilities given a chain of re-
ciprocation of length c = 1,2, . . . ,8.
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constructing and choosing metrics. Thus, we do not perform
validation of the learned agents, since they are meant as il-
lustrations to show the pros and cons of the metrics rather
than as algorithmic results themselves.

Related Work

Our choice to investigate the Ultimatum Game was moti-
vated by its long history in the field and the fact that it is
a leading example of where game-theoretic reasoning fails
to predict consistent human behaviors (Oosterbeek, Sloof,
and van de Kuilen 2004; Henrich, Heine, and Norenzayan
2010). Economists and sociologists have proposed many
variants and contexts of the Ultimatum Game that seek to
address the divergence between the “rational” Nash equi-
librium strategy and observed human behavior, for exam-
ple, examining the game when played in different cultures,
with members of different communities, where individuals
are replaced by groups, where the players are autistic, and
when one of the players is a computer. Interestingly, isolated
non-industrialized cultures, people who have studied eco-
nomics, groups, autists, and playing with a computer all tend
to lead to less cooperative behavior (Oosterbeek, Sloof, and
van de Kuilen 2004; Mascha van’t Wout and Aleman 2006;
Hill and Sally 2002; Carnevale 1997; Frank, Gilovich, and
Regan 1993). Learning human game data is a promising ap-
proach for quickly learning realistic models of behavior. In
the paper, we have demonstrated this approach in SUG, and
proposed metrics that evaluate the similarity between au-
tonomous agents’ game traces and human game traces.

Recently, there has also been other work attempting to
model human behavior in multi-agent scenarios, primarily
in social network and other domains modeled by graphi-
cal relationship structures (Judd, Kearns, and Vorobeychik
2010). In contrast, our work focuses on multi-agent situ-
ations where motivated agents make sequential decisions,
thus requiring models that include some consideration of
utilities and their interplay with psychological effects. Our
Adaptive Agent is a simple model, with parameters that are
fit to the collected data, that demonstrates this approach.

Finally, a critical aspect of this line of work must include
the development of appropriate metrics for evaluating the
verisimilitude of the autonomous agent behaviors to human
behavior. While there is a long literature on time-series met-
rics (Mitsa 2010), in this paper, we show that these metrics
do not capture the temporal causality patterns that are key
to evaluating human behaviors, and thus are insufficient to
evaluate agent behaviors when used alone.

Conclusion

Our goal is to develop approaches to create autonomous
agents that replicate human behavior in multi-player games.
We begin with a simple abstract game, the Social Ultima-
tum Game, which captures many aspects of the sequential
decision-making in such games. To create and evaluate these
agents, one needs appropriate metrics to characterize the de-
viations from the source behavior. The challenge is that a
single source behavior in dynamic environments produces

not a single decision but instead multiple traces where each
trace is a sequence of decisions.

We developed time-collapsed and time-dependent metrics
to evaluate such collections of traces. We showed that agents
built on time-collapsed metrics can miss key characteristics
of human play, in particular an accurate model of temporal
reciprocity. While our adaptive agent was able to perform
closer to this metric, the key is the identification of time-
dependent metrics as a key factor in evaluating emulation
agents. This also has implications on the type of agent model
necessary to have as a substrate upon which one can learn
from human data.
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