
Personalized Procedural Content Generation to Minimize
Frustration and Boredom Based on Ranking Algorithm

Hong Yu and Tyler Trawick
Georgia Institute of Technology

85 Fifth Street NW, Atlanta, GA 30308
{hyu8,gtpd}@gatech.edu

Abstract

A growing research community is working towards pro-
cedurally generating content for computer games and
simulation applications with various player modeling
techniques. In this paper, we present a two-step proce-
dural content generation framework to minimize play-
ers’ frustration and/or boredom according to player
feedback and gameplay features. In the first step, we dy-
namically categorize the player styles based on a simple
questionnaire beforehand and the gameplay features. In
the second step, two player models (frustration & bore-
dom) are built for each player style category. A rank-
ing algorithm is utilized for player modeling to address
two problems inherent in player feedback: inconsis-
tency and inaccuracy. Experiment results on a testbed
game show that our framework can generate less bor-
ing/frustrating levels with very high probabilities.

Introduction

Both offline and online procedural content generation (PCG)
research have attracted great interest in recent years, for
both gaming and simulation applications. Offline PCG has
been applied to make the development process more effi-
cient, while online PCG has been applied to improve the
replay value and adapt difficulty level dynamically (Doran
and Parberry 2010; Hecker et al. 2008; Pedersen, Togelius,
and Yannakakis 2009). The research on personalized and
player-adaptive procedural content generation is an emerg-
ing field in recent years (Yannakakis and Togelius 2011;
Schuytema 2007). This paper seeks to procedurally gener-
ate personalized game levels in order to give players a better
experience.

Player experience is critical in computer games. Our as-
sumption is that a game that is much too difficult for a given
player’s skill level will cause her to be frustrated. Likewise, a
game that is much too easy will cause boredom. A game will
be the most fun when it minimizes both of these, and thus
an approximation of player enjoyment can be gained from
measuring two factors: boredom and frustration. The claim
underlying this research is the game flow theory (See Fig-
ure 1) which provides a framework explaining the relation-
ship between the emotion boredom and frustration (Sweetser

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Player Ability

D
iff

ic
ul

ty

Zone of Boredom

Zone of Frustration

Optim
al

Flow

Figure 1: Graph illustration of the game flow theory.
(Sweetser and Wyeth 2005)

and Wyeth 2005; Csikszentmihalyi 1990; Murray and Ar-
royo 2002; Vygotsky 1986). The game flow describes the
relationship between game difficulty and player ability. The
ideal situation is achieved when the player stays in the op-
timal flow channel throughout the game, without stepping
into the zone of frustration or boredom, resulting in a game
that is less frustrated, less boring and more fun.

In this paper we propose a two-step framework to attack
this problem. In the first step, the players are classified into
different player style categories according to player features
which record their in-game behavior and a simple question-
naire collected beforehand. In the second step, we build two
player models for every category based on player feedback
and corresponding gameplay features: a frustration model
and a boredom model. In this paper, the player feedback
consists of frustration and boredom comparisons for pairs
of levels the player has played. A ranking algorithm is uti-
lized for player modeling in order to avoid the inaccuracy
inherent in the players’ feedback. With this framework, sub-
sequent testing players will firstly be assigned to a category,
and will then be presented with game levels generated from
the player model for that category which are optimal in terms
of minimizing frustration or boredom. In the experiments,
we built a simple level game to test the framework.

Related Work

Procedural content generation has attracted increasing atten-
tion from computer game research area recently. The PCG
can be used offline to help game designers and make the
development process more efficient, such as game world or
terrain generation (Parish and Mller 2001; Roden and Par-

208

Proceedings of the Seventh AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment

berry 2004; Doran and Parberry 2010), character generation
(Hecker et al. 2008), and so on. Such works typically focus
on satisfying authorial intentions and constraints, and con-
sequently do not explicitly model player behaviors. On the
other hand, online PCG such as story generation (Riedl et al.
2008), level generation (Togelius, Nardi, and Lucas 2007;
Shaker, Yannakakis, and Togelius 2010), and so on, usu-
ally include an explicit or implicit player model for proce-
dural generation. This paper is a contribution to the latter
efforts. Our work is also related to dynamic difficulty adjust-
ment (Spronck, Sprinkhuizen-Kuyper, and Postma 2004), in
which they change game difficulty by adjusting rule weights.
In this paper we focus on adjusting frustration and boredom
levels to give player a better experience.

Player experience modeling techniques usually fall into
the following three categories according to (Yannakakis and
Togelius 2011): subjective, objective, and gameplay based.
Subjective modeling relies on the subjective feedback by
players before, during or after gameplay (Tognetti et al.
2010). Very accurate models can be built based on these
subjective data. But this approach is limited by the reliabil-
ity of player feedback. Objective player modeling methods
keep record of a number of real-time player reactions during
gameplay, such as electrocardiography (ECG), electromyo-
graphy (EMG) and so on, and study the relationship be-
tween these features and player emotion (Yannakakis, Mar-
tinez, and Jhala 2010). These features are more reliable but
usually difficult to obtain, especially for commercial games
(Yannakakis and Togelius 2011). The gameplay based ap-
proaches build the player model by collecting player features
during gameplay, such as the player’s death rate, weapon
preference, and so on (Shaker, Yannakakis, and Togelius
2010; Pedersen, Togelius, and Yannakakis 2009; Hastings,
Guha, and Stanley 2009). The gameplay based player mod-
eling is the most computationally efficient and least intru-
sive among all these three but they usually require several
strong assumptions that relate the player features to player
preference (Thue et al. 2007). It is possible to combine them
and build more efficient player models (Shaker, Yannakakis,
and Togelius 2010). Our work can be viewed as a hybrid
approach which combines the subjective and gameplay fea-
tures. Neuro-evolution algorithms have been widely used for
player modeling (Martinez, Hullett, and Yannakakis 2010;
Pedersen, Togelius, and Yannakakis 2009). Martinez et al.
use a similar two-step model to learn player preference. Here
we apply a new player modeling algorithm in order to solve
the uncertainty problems in player feedback.

AI Model
Our purpose is to generate personalized levels in order to
minimize the frustration and/or boredom of the players. Dif-
ferent types of players usually find different things boring
or frustrating, and thus we need to model different cate-
gories of players during the training process. Our AI model
is composed of two steps: the player styles categorization
and player modeling.

We classify all the gameplay features into two cate-
gories (Pedersen, Togelius, and Yannakakis 2009; Shaker,
Yannakakis, and Togelius 2010): controllable features and

player features. Controllable features control how the levels
are generated, such as the parameters that affect the num-
ber of enemies and the difficulty of the levels. Player fea-
tures record players’ activities during gameplay, such as how
many enemies the player killed, how many times the player
died, how long did it take to finish the level, and so on. In the
training process, all the gameplay features and the players’
frustration and boredom feedbacks are collected. In the test-
ing process, we generate the optimal combination of control-
lable features which are supposed to minimize the players’
boredom/frustration levels.

Dynamic Player Style Categorization

Previous research on player modeling usually assumes sev-
eral predefined player types and classifies new players ac-
cording to these types (Peinado and Gervas 2004; Thue et
al. 2007). This could possibly bring some problems, as these
categories are based on pre-conceived notions of different
player styles. It is difficult for the predefined categories to
cover all possible player types, which could vary from game
to game. We try to avoid the problem by acquiring the player
style information from player features. In the training pro-
cess, we cluster the player features of all the players into sev-
eral categories which represent different player styles. Then
in the testing process, a new player’s style can be identi-
fied dynamically by computing its relationships to the clus-
ter centers.

A naive Bayesian approach is applied to identify the
player style. We use a soft clustering algorithm and assign
the player to multiple categories with different probabilities,
which are used as likelihood. Furthermore, we incorporate
information from a simple questionnaire which is supposed
to be related to the player styles. The questionnaire is treated
as the prior knowledge and the player style category can be
computed as the posterior with Bayesian theory as in Equa-
tion 1. The experiment results section will talk about the
questionnaire in more detail.

p(Ci|x) ∝ P(Ci)p(x|Ci) (1)
where x is the player feature and Ci is player style cate-
gory i. P(Ci) is the prior probability for category Ci given
player’s response in the questionnaire. p(x|Ci) is the likeli-
hood computed from the soft clustering algorithm. In prac-
tice, we compute the prior P(Ci) as in Equation 2.

P(Ci)
.
= p(Ci|Q1,Q2, ...Qn) (2)
∝ p(Q1|Ci)p(Q2|Ci)...p(Qn|Ci)p0(Ci)

Q1,Q2...Qn represent the questions in the questionnaire and
n is the total number of questions. Equation 2 takes the naive
Bayesian assumption that all the questions are conditionally
independent given the category i. p0(Ci) is the prior proba-
bility of the player in category Ci. p0(Ci) and p(Q j|Ci) can
be computed directly from the training data by counting the
corresponding appearing frequencies.

Ranking for Player Modeling

In the second step, we compute two player models for
each category of players: a frustration model and a bore-

209

dom model. This is treated as a supervised learning prob-
lem: given the controllable features and player features, the
player models are supposed to predict the corresponding
boredom or frustration labels from the player’s feedback.

However, there are two issues associating with the bore-
dom/frustration labels which prevent us to treat the learning
problem as a traditional classification or regression problem.
The first issue is that these subjective labels are inconsistent
among players. By inconsistent we mean that different play-
ers could have completely different labeling criterions. Sup-
pose that we use the numbers 1 to 5 as labels for frustration,
where a higher number corresponds to more frustration. A
frustration label 3 given by player A does not necessarily
mean that player A feels more frustrated than player B even
if B labeled the same game level by 2. The direct compari-
son of the labels across player usually makes little sense. The
second issue with the labels is that they are inaccurate. In-
accurate means that even the label values given by the same
player are not accurate. For example, if the player feels a
little frustrated, she could label the game level by 4, or 3
sometimes. In another case, when a player labels level one
by 4 and level two by 3, she is supposed to feel more frus-
trated with level one than level two. But she is also likely to
label the two levels by 4 and 2. In other words, it is inac-
curate when the players try to quantitate their feelings into
numbers.

In order to overcome the two difficulties resulted from the
noise inherent in player feedback, we utilize a ranking algo-
rithm for the player modeling. Notice that when the player
leaves a higher frustration label for level A than level B, it is
probable that she feels more frustrated with level A than B.
In other words, the information from relative comparisons
of labels given by the same player is more reliable than the
label values themselves. Some ranking algorithms such as
RankSVM (Joachims 2002) can be used to address the prob-
lem. It only takes relative comparisons between feature data
points as input.

In the test process, we perform an exhaustive search in the
level space and present the best levels to the player which are
supposed to minimize frustration or boredom. The exhaus-
tive search can be done by firstly generating all the possi-
ble combinations of controllable features. The correspond-
ing ranking model built in the training step is used to rank
all these feature combinations. The one obtaining the lowest
ranking score (corresponds to the least boring or frustrating)
is then selected.

The whole AI model can be summarized as follows.
Given the features and player feedbacks in the training step,
we perform:

• Cluster the features from all the players into different
categories Ci.

• For every category i, compute po(Ci) and p(Qk|Ci), k =
1,2...n

• For every category i, train a boredom ranking model Bi
and a frustration ranking model Fi.

Then in the testing step, after we obtain the testing player
features x and the questionnaire:

Figure 2: The gameplay of the test-bed game.

• Compute p(x|Ci) using a soft cluster.

• Compute p(Ci|x) according to Equation 1 and 2. Iden-
tify the player category k.

• Use Bk or Fk to rank the controllable feature space and
find the optimal controllable features to minimize bore-
dom or frustration.

Testbed Game Description

We build a top-down level game similar to Gradius as our
testbed game. Figure 2 shows a screen shot of the gameplay.

In the game, the main goal for the player is to traverse to
the right end of the level. The player can move freely up,
down, left and right in the game world. But unlike Gradius,
we do not shift the game screen continuously. The whole
level consists of several discrete screens, one of which is
exhibited in Figure 2. Once the player has entered the next
screen, she cannot come back to the previous one. The player
cannot preview the terrain in the following screens.

The number and type of Non Player Characters (NPCs)
in every screen are controlled by the controllable features.
There are three types of NPCs in the current game: melee-
attacking enemies, ranged-attacking enemies and the green
balls which can kill the player by collision. The NPCs will
attack the player if they feel threatened. Every NPC has
its own aggression threshold which determines how will-
ing the NPC is to attack the player. Each NPC then asso-
ciates a threat level with the player, calculated by the ag-
gression threshold, the distance to the player, the player’s ac-
tion towards the NPC (i.e. attack), and so on. The player can
choose to attack any NPC with two types of weapons: melee
attacking or bullets. Once the player kills an NPC, there is a
chance that the NPC drops a weapon power-up, which can
upgrade the player’s bullet weapon. Four types of power-ups
are implemented in current game: fire, bolt, poison and evil.
The fire power-up can add special effect to burn the NPCs.
The bolt power-up can hurt the NPCs within a certain area.
The poison power-up will slow down the NPCs. And the
evil power-up will scare the NPCs and decrease their aggres-
sion thresholds. All the weapon power-ups in current screen
can be picked up by the player as she wishes. However, the

210

NPCs will grow stronger as the player acquires more pow-
erful weapons according to a certain probability.

The following list shows all the controllable features ci.
The game engine we built can generate a new level with any
combination of the controllable features.

• The mean numbers of the three types of NPCs per
screen c1,c2,c3. The number of each type of NPCs in a
screen takes a Gaussian distribution.

• The variances of the number of NPCs c4...c6.

• The moving speeds of the three types of NPCs c7...c9.

• The aggression thresholds of the three types of NPCs
c10,c11.

• The attack frequency of NPCs c12.

• The probability of NPCs dropping weapon power-ups
c13.

• The probabilities for the four types of power-ups
c14...c17.

• The amount and variance each power-up increases the
player’s attack c18,c19.

• The health points the NPCs will grow when the player’s
weapon gets powered up c20.

The player’s activities during the gameplay are recorded
in the player features pi. The player features in this paper
are chosen inspired by (Pedersen, Togelius, and Yannakakis
2009) and are listed as follows.

• The player’s death count p1.

• The player’s attacking count p2.

• The player’s killing count p3.

• The time spent to finish the level p4.

• The time spent/killing frequency/attacking frequency
of the player in every screen p5...p10.

• The average life span of the player p11.

• The percentage of time when the player is running p12.

• The player’s weapon preference, melee attacking or
ranged attacking p13, p14.

• The player’s weapon power-up frequency p15...p18.

• The player’s average life span p19.

• The changing of NPCs’ health points p20.

• Fail or succeed p21.

Experiments and Results

Data Collection

To examine our model, we perform a player study in which
41 college students have taken part in data collection pro-
cess for the training step. The players firstly took a simple
questionnaire about their player style preference which was
used as the prior in the AI model section. The question-
naire contains two simple questions right now, what is the
preferred difficulty level (easy or difficult) and what is the

NDCG (p=3) k=1 k=2 k=3
Boredom Model 0.875 0.921 0.905

Frustration Model 0.888 0.917 0.908

Table 1: The average NDCG values of boredom and frus-
tration ranking models built with different number of player
categories.

preferred weapon type (melee or ranged). Then after tak-
ing some time to familiarize themselves with the game in-
terface, each player played three to five random levels. It
usually took less than three minutes per level. At the end the
players were required to compare and rank all the game lev-
els they had played according to their frustration/boredom.
We did not ask for specific frustration/boredom labels from
the players due to the inaccuracy of label values according
to our assumption.

In the current system, we collect a 41-dimension feature
vector for every level which contains 20 controllable fea-
tures and 21 player features as described in the last section.
Each of these features is normalized to within zero and one
before the clustering and ranking process.

Experiment Results

All the feature vectors are clustered into k player categories
using the k-means algorithm. For every category, we build
one boredom ranking model and one frustration ranking
model with corresponding feedback labels and the feature
vectors we collected. The Normalized Discounted Cumula-
tive Gain (NDCG)(Jarvelin and Kekalainen 2002), which is
a widely used metric for ranking algorithm performance, is
utilized to compare the ranking models generated with dif-
ferent size of k. The NDCG value is always between 0 and 1
and a larger value means a better ranking list.

Table 1 shows the average NDCG performance at p = 3
for the ranking models. For every category, we randomly
select 80% of the feature data and corresponding feedback
labels in the category to train the ranking models, and the
left 20% are used for testing. This random selection process
is repeated ten times and an average NDCG is computed for
each of the k categories. Notice that these values are higher
than normal since there are at most five levels per query
(player) and we are evaluating the ranking lists at p = 3.
Generally NDCG evaluated at a larger p will be more mean-
ingful. In Table 1, the best case in terms of NDCG perfor-
mance is achieved when k = 2. One reason that the models
generated with k = 3 do not perform better is that we only
have limited amount of training data. With a large k, there
are so few players in each category that the ranking algo-
rithm does not obtain a decent training.

In the case of k = 2, another interesting phenomenon is
that there exists a possible explanation for the two cate-
gories generated by the clustering algorithm. We compare
the player feature centers of the two categories and notice
that the players in category 1 are much more skilled at the
game than category 2. The players in category 2 have much
higher percent of failing rate (87%) than those in category 1

211

Boredom Model Frustration Model
Accuracy 91.6% 87.5%

Table 2: The testing accuracies of the frustration and bore-
dom models when k = 2.

(12%). The death rate of category 2 is also much higher than
category 1 (4.3 vs. 1.8 per level). What is more interesting
is that in the questionnaire collected from the players before
playing the game, 70.7% of the players in category 1 replied
that they preferred difficult levels than easy ones, while only
40% of the players in category 2 had the same preference
over difficult levels.

Another 12 college students took part in the testing pro-
cess. Every tester was required to play a randomly gener-
ated level after he or she took the questionnaire and be-
came familiar with the game. The testers were then clus-
tered into the k categories using a soft version of k-means
algorithm, and classified into one particular category accord-
ing to Equation 1. Our framework would then present an
adapted (the least frustrating or boring) level with the corre-
sponding ranking model. The players were asked to compare
their frustration or boredom between the randomly gener-
ated level and the adapted one. In order to eliminate the noise
introduced by the sequence of levels presented to the play-
ers, we asked every participant to play another pair of levels
in the sequence of firstly the adapted level and then the ran-
dom one. Table 2 gives the accuracies of the models where
k = 2. The accuracy is the percent of level pairs in which the
players felt the personalized adapted level was less frustrat-
ing or boring than the random level. The results show that
our ranking models can generate less frustrating or boring
levels with high probabilities. Note that throughout the ex-
periments, we did not ask for any digital ratings from the
players, which are inaccurate according to our assumption.

The game flow theory suggests that the player will have
the best experience if they feel neither frustrated nor bored.
To test this, we combine the two ranking models (frustra-
tion and boredom) using a simple summation of the model
outputs, and find the levels with the lowest total. Again the
testers were required to play the two pairs of game levels in
the sequence as above except that the second and third lev-
els were adapted to minimize both frustration and boredom.
For each pair of levels, the players were asked to compare
which of the two was more fun. In 18 out of the 24 pairs,
the testers found the adapted level more fun. Thus the final
accuracy for the combined model is 75%.

Discussions

The experiment results on the testbed game show that our
model can successfully capture the new player’s style and
generate a less boring/frustrating level with a high proba-
bility. This demonstrates that the ranking algorithm is one
possible solution to avoid the inconsistency and inaccuracy
problems inherent in player feedback. It also verifies that the
players, at least some of them, do share a consistent crite-
rion about comparing which level is more frustrating/boring,

which is the basic assumption of our ranking model.
Intuitively, fun is a much more complex to describe and

thus more difficult to estimate in computer games. Previ-
ous studies also show that the accuracies of directly gener-
ating more fun levels are usually much lower than gener-
ating more frustrating/boring ones (Pedersen, Togelius, and
Yannakakis 2009; Shaker, Yannakakis, and Togelius 2010).
Our combined model (minimizing both frustration and bore-
dom) shows a better-than-chance capability of generating
more fun content, although a naive combination method is
applied currently.

The comparison of ranking models generated with differ-
ent k implies that the dynamic player style categorization
improves the ranking performance to some extent. Both the
performance under k = 2 and k = 3 are better than only one
player category. But more data are needed to draw a statisti-
cal reasonable conclusion. It is also impossible to make any
inference on the effect of prior knowledge acquired from the
questionnaire with such a small dataset size. But the prior at
least can help alleviate the overfitting problem in the case of
small dataset.

In our experiments, we encounter a problem which may
be common to all the gameplay based player modeling (Yan-
nakakis and Togelius 2011). The model we develop has no
way of explicitly attributing the causes of frustration or bore-
dom during gameplay, and assumes that the cause is in-
cluded in the set of controllable features. This may not have
been the case, as it is indeed possible that an external fac-
tor, such as the game controls, became frustrating during
a particular level and caused a change in reported frustra-
tion. For any non-trivial game it would be infeasible to test
every atomic element of the game’s design in isolation, so
this type of error can only be avoided by ensuring that the
non-controlled features of gameplay are as useful as possi-
ble. Another problem is the reliability of the player feed-
back. Even with an initial familiarization with the game, the
players will always become more skilled at the game dur-
ing the training or testing process. Thus the quality of player
feedback is inevitably affected. The same level could be less
frustrating due to player learning.

Another interesting finding in these experiments is that
the players could report an increase both in boredom and
frustration from one randomly generated level to the next.
By our initial assumption and the game flow theory this was
impossible, as we assume a game can be one or the other,
but not both simultaneously. These cases occurred when the
game became extremely difficult for very mundane reasons,
i.e. the level contained a large number of fast-moving green
ball enemies which would kill the player on touch. The play-
ers became frustrated at the tedious nature of dodging these,
and bored since dodging the enemies was what the game-
play had been reduced to. Such a scenario was not foreseen
in our assumptions of gameplay.

Conclusions
In this paper, we are motivated by the need for automatically
generating game levels customized to player’s preferences
from player feedback and gameplay features. We present
a two step framework to address this: the dynamic player

212

style categorization and player modeling. Two problems are
identified in the player feedbacks: the inconsistency and in-
accuracy problem. The ranking based modeling algorithm
is proposed to address these problems. In the experiments,
we build a testbed game to examine our framework. Experi-
ment results shows that the framework can generate less bor-
ing/frustrating levels with very high probabilities. We also
combine the two models to minimize both frustration and
boredom simultaneously. A decent accuracy is achieved on
the current test dataset.

There are many avenues for future work. The performance
of the player style categorization is limited to the training
size and the gameplay features we use. The selection of
gameplay features are of importance to the process. It will
also be interesting to study the relationship between the se-
lected features and the categories. The influence of our prior
knowledge is still unexplored until now. The design of prior
questions itself requires plenty of presumptions. In addi-
tion, more priors such as the traditional pre-conceived cat-
egories can be added to alleviate the problem of small train-
ing dataset. In terms of generating more fun levels, we cur-
rently use a naive combination method which directly sums
the outputs of the two models. More sophisticated combina-
tion techniques are worth trying and testing.

Acknowledgments

We wish to thank all the subjects participating in our exper-
iments. Special thanks to Dr. Mark Riedl for his help and
comments.

References

Csikszentmihalyi, M. 1990. Flow: The psychology of opti-
mal experience. Harper Perennial.
Doran, J., and Parberry, I. 2010. Controlled procedural ter-
rain generation using software agents. IEEE Transactions
on Computational Intelligence and AI in Games.
Hastings, E.; Guha, R.; and Stanley, K. O. 2009. Evolving
content in the galactic arms race video game. Proceedings
of the IEEE Symposium on Computational Intelligence and
Games.
Hecker, C.; Raabe, B.; Enslow, R.; DeWeese, J.; Maynard,
J.; and Prooijen, K. 2008. Real-time motion retargeting to
highly varied user-created morphologies. ACM SIGGRAPH.
Jarvelin, K., and Kekalainen, J. 2002. Cumulated gain-based
evaluation of ir techniques.
Joachims, T. 2002. Optimizing search engines using click-
through data. ACM KDD.
Martinez, H.; Hullett, K.; and Yannakakis, G. N. 2010.
Extending neuro-evolutionary preference learning through
player modeling. IEEE Conference on Computational In-
telligence and Games (CIG).
Murray, T., and Arroyo, I. 2002. Towards measuring and
maintaining the zone of proximal development in adaptive
instructional systems. International Conference on Intelli-
gent Tutoring Systems.

Parish, Y., and Mller, P. 2001. Procedural modeling of cities.
Proceedings of the 28th Annual Conference on Computer
Graphics and Interactive Techniques.
Pedersen, C.; Togelius, J.; and Yannakakis, G. N. 2009.
Modeling player experience in super mario bros. Compu-
tational Interlligence and Games.
Peinado, F., and Gervas, P. 2004. Transferring game mas-
tering laws to interactive digital storytelling. International
Conference on Technologies for Interactive Digital Story-
telling and Entertainment.
Riedl, M. O.; Stern, A.; Dini, D.; and Alderman, J. 2008.
Dynamic experience management in virtual worlds for en-
tertainment, education, and training. International Transac-
tions on Systems Science and Applications, Special Issue on
Agent Based Systems for Human Learning.
Roden, T., and Parberry, I. 2004. From artistry to automa-
tion: A structured methodology for procedural content cre-
ation. Proceedings of the International Conference on En-
tertainment Computing.
Schuytema, P. 2007. Game design: A practical approach.
Charles River Media.
Shaker, N.; Yannakakis, G.; and Togelius, J. 2010. To-
wards automatic personalized content generation for plat-
form games. Artificial Intelligence and Interactive Digital
Entertainment.
Spronck, P.; Sprinkhuizen-Kuyper, I.; and Postma, E. 2004.
Difficulty scaling of game ai. International Conference on
Intelligent Games and Simulation.
Sweetser, P., and Wyeth, P. 2005. Gameflow: a model for
evaluating player enjoyment in games. Computers in Enter-
tainment.
Thue, D.; Bulitko, V.; Spetch, M.; and Wasylishen, E. 2007.
Interactive storytelling: A player modelling approach. Arti-
ficial Intelligence and Interactive Digital Entertainment.
Togelius, J.; Nardi, R. D.; and Lucas, S. M. 2007. Towards
automatic personalised content creation for racing games.
Proceedings of the IEEE Symposium on Computational In-
telligence and Games.
Tognetti, S.; Garbarino, M.; Bonarini, A.; and Matteucci, M.
2010. Modeling enjoyment preference from physiological
responses in a car racing game. IEEE Conference on Com-
putational Intelligence and Games.
Vygotsky, L. 1986. Thought and language. MIT Press Cam-
bridge.
Yannakakis, G., and Togelius, J. 2011. Experience-driven
procedural content generation. IEEE Transactions on Affec-
tive Computing.
Yannakakis, G. N.; Martinez, H. P.; and Jhala, A. 2010. To-
wards affective camera control in games. User Modeling
and User-Adapted Interaction.

213

