
Trigram Timmies and Bayesian Johnnies:
Probabilistic Models of Personality in Dominion

Kevin Gold
Rochester Institute of Technology

Abstract

Probabilistic models were fit to logs of player actions
in the card game Dominion in an attempt to find evi-
dence of personality types that could be used to clas-
sify player behavior as well as generate probabilistic bot
behavior. Expectation Maximization seeded with play-
ers’ self-assessments for their motivations was run for
two different model types – Naive Bayes and a trigram
model – to uncover three clusters each. For both model
structures, most players were classified as belonging to
a single large cluster that combined the goals of splashy
plays, clever combos, and effective play, cross-cutting
the original categories – a cautionary tale for research
that assumes players can be classified into one cate-
gory or another. However, subjects qualitatively report
that the different model structures play very differently,
with the Naive Bayes model more creatively combining
cards.

Introduction

Personality: players have it, and we would like artificial
agents in games to have it, too. Player personality can come
through in terms of which strategies or play styles they pre-
fer to engage in; the PaSSAGE system, for example, catego-
rizes roleplaying gamers as Fighters, Storytellers, Method
Actors, Tacticians, and Power Gamers (Thue, Bulitko, and
Spetch 2008), while Bartle made the observation that mas-
sively multiplayer game players tend to fall into the cate-
gories of Achievers, Explorers, Socializers, and Killers (Bar-
tle 2003). Ideally, if we could detect a player’s play style or
motivation, it would be possible to give the player more of
what the player wants, and less of what the player prefers not
to deal with. In multiplayer matches, we may even want to
pair players off who share values about what makes a good
game. A player who enjoys creative, offbeat approaches to
the game may not want to play against a player who uses all
the latest optimal strategies off the Internet, and vice versa;
the creative player may feel that the effective player’s strate-
gies are cheap, while the effective player may feel that the
creative player provides no challenge.

When it comes to AIs in games, we know many ways of
making them optimal, and few ways to make them play with

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

personality or in a “fun” way. Methods such as Expectim-
inimax or game theoretic approaches can solve games opti-
mally given enough processing power, but have no way to
degrade gracefully besides reduced lookahead, which does
not exactly equate to personality. In machine learning, usu-
ally there is a right and a wrong answer, and all agents
are herded toward rightness. Approaches to personality in
games are typically hardcoded and not meant to coexist with
competitive, complex behavior; the makers of Microsoft’s
Bicycle Texas Hold ’em characterized poker AIs by how
“loose” versus “tight” and how “aggressive” versus “pas-
sive” the AIs were in their bets; this conveyed personal-
ity, but the AIs were predictable and easily beaten (Ellinger
2008).

This work explores using probabilistic models to mine
personalities and unpredictable but sensible play from ex-
isting player data. By measuring conditional probabilities of
play from game logs, models can be created that particularly
match segments of the player population in their frequencies
of choosing particular plays. The models can serve several
purposes. Run on a particular player, they can be used to
classify the player according to type, and then predict the
probabilities of the player’s next plays. Run as a bot, the
model can generate behaviors matching observed player fre-
quencies; through careful choice of conditional dependence
relationships, the bot behavior can be sensibly predicated on
its previous plays while remaining unpredictable. Finally,
the exact categories of players need not be fixed ahead of
time; using Expectation Maximization, the models can drift
to the clusters actually present in the data, rather than as-
suming a player ontology that may simply be false.

Building models that can be applied to both bots and play-
ers is a novel approach that comes with several potential ad-
vantages over other techniques. First, the play that is gen-
erated is not optimal play that has been subsequently brain
damaged, but matches observed player behavior; it therefore
degrades more gracefully, insofar as it will always match
some group of players’ rough frequencies of play, and ide-
ally generates more humanlike play. Second, the probabil-
ities are generally inspectable, which allows the personal-
ities generated to give some insight into how actual play-
ers play the game, and why particular plays of the AI are
made. Third, the behavior created can be unpredictable,
since it selects actions from a conditional probability dis-

140

Proceedings of the Seventh AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment



tribution rather than always choosing the optimal play; this
should make playing against bots derived from the models
more fun.

The particular game examined here is Dominion, a popu-
lar fantasy card game that is reminiscent of Magic: the Gath-
ering. As in Magic, each card behaves differently, and can
contain rules text that changes the way the game is played;
“Masquerade,” for example, has players passing cards to
their left, while “Possession” allows a player to take control
of another player’s turn, and “Stash” is a card that can be
placed anywhere in the deck after shuffling. Unlike Magic,
Dominion is not a collectible card game; instead, players
attempt to assemble decks of clever combos as the game
progresses, “buying” cards for their decks by playing cards
from their hands that allow them to acquire better cards (Fig-
ure 1). Coding the AI behavior for each of the 138 cards
available for the game was beyond the scope of this paper,
but the heart of the game is in what players choose to “buy”
to put in their decks, and this is the behavior we will be con-
cerned with for the rest of the paper. The game is interesting
in that many cards are not useful by themselves, but only in
conjunction with others; while “King’s Court,” which plays
any other card in the hand three times in a row, is one of the
most powerful cards in the game, an AI that chose to buy
only King’s Court cards would be in dire straits. An online
server exists for the game that helpfully logs all games, of
which there are currently (mid-May 2011) over 10,000 be-
ing played a day; this paper limits itself to using only six
days of data for training, and a seventh for evaluation.

Here, we compare two probabilistic models that can be
trained with these logs of play: a Markov model that condi-
tions on the last card bought as well as the last card bought
at the same price; and a Naive Bayes like model that condi-
tions on how likely each buy is given the presence or absence
of each available card in the player’s deck. Within each
model, Expectation Maximization was run to create three
clusters of players with different parameters; these mod-
els were initialized based on players’ statements about what
they liked about the game, to see whether these differences
persisted in creating clusters based on preferred play styles.
The player motivations considered were the categories sug-
gested by Magic lead designer Mark Rosewater for why peo-
ple liked collectible card games: “Timmy,” who plays to ex-
perience the thrill of big, splashy plays; “Johnny,” who en-
joys the games because of the creativity in coming up with
new combos; and “Spike,” who plays simply to win (Rose-
water 2002). Though the clusters were initialized with the
ground truth of real players’ self-assessed motivations for
playing, the clusters that emerged painted a rather different
picture in Dominion.

Background

Related work

The idea of building Bayesian network personality models
is novel to this work, but it builds on related work in prob-
abilistic reasoning about goals, player goal and play style
detection, and models of agent personality.

One of the more direct inspirations for this work was a

Figure 1: A screenshot of the available buy screen, from
dominion.isotropic.org, including help text for the Bishop
card. (Five more actions are obscured by the help text.)

model for recognizing player goals in multi-user dungeons,
from their locations and actions (Albrecht, Zukerman, and
Nicholson 1998). The model was able to recognize which
quest the player was on with a high degree of accuracy, and
to a more limited extent, predict the player’s next action and
location. A variant on such a system for real-time, action-
oriented games used input-output hidden Markov models to
predict a player’s current goal (Gold 2010).

Approaches to personality in games have generally taken
the approach of modeling personality as a sliding scale on
several attributes; interestingly, these approaches often end
up deciding to set the scale all the way in one direction or
another, to more clearly get across the concept that a per-
sonality is present (Ellinger 2008; Evans 2009). Some ap-
proaches also direct non-player character behavior in a way
that more closely matches the player’s perceived preferences
(Yannakakis and Hallam 2004).

Two primary approaches that have been used to fit AI
models to human behavior in games are case-based reason-
ing (Laviers et al. 2009) and plan network learning (Lesh
and Etzioni 1996). The present work differs from case-based
reasoning in that this work is probabilistic, and selects ac-
tions according to a distribution based on the amalgamation
of many games, with similarity to actual games observed
only in the expectation. Jeff Orkin’s The Restaurant Game
has been used to train AIs to behave sensibly in roleplay-

141



ing a restaurant interaction, automatically clustering player
behavior into “sensible” and “not sensible” based on the ge-
ometric mean of the Markov transition probabilities in a plan
network learned from online play (Orkin and Roy 2007).
This work draws inspiration from The Restaurant Game and
presents two ways of conditioning on slightly more informa-
tion, as well as a more general approach for clustering be-
haviors. Starcraft build order strategies have been studied in
the context of performing machine learning to classify hand-
labeled strategies, including a variety of machine learning
algorithms such as C4.5, nearest neighbors, and exemplar-
based methods (Weber and Mateas 2009). The present work
is a step toward automatically generating the kinds of clus-
ters that were hand-labeled in that work, and also shows how
the same model used for recognition can be run “in the oppo-
site direction” to produce interesting non-deterministic be-
havior.

It is also known that Electronic Arts logs play probabili-
ties in their sports games, and uses these to drive AI behavior
(Guevara 2010); but no smoothing or generalization occurs
in that work, leaving their data set somewhat sparser than it
could be.

Dominion and isotropic.org

Dominion is a card game in which each player assembles
his or her own deck over the course of the game, in the
hopes of producing a deck that has good synergy and can
ultimately rack up the most points. Cards fall into three cat-
egories: action cards, which are the heart of the game and do
whatever they say in their text; treasure cards, which allow
the player to acquire more cards for their decks; and victory
cards, which are simply worth points at the end of the game.
A player normally may play only one action card and “buy”
one new card for their deck per turn, but action cards can
generally allow the player to exceed these limits; in fact, a
player may end up having a very lengthy turn if actions are
played to get more actions, some of which are used to draw
more cards, which themselves may be actions that increase
the number of actions, and so on. The game supports 2 to 4
players.

The action cards are at the heart of the game, and a set of
10 action cards available for purchase (out of over 138 possi-
ble at the time of this writing) is different every time (Figure
1). Most action cards do more than one thing; “Witch,” for
example, allows the player to draw 2 cards and also places
a useless Curse card worth -1 point into each other player’s
deck, making their draws less useful. Some cards do noth-
ing by themselves, but are meant to used in conjunction with
other cards; “King’s Court” takes any other action in the
player’s hand and plays it three times.

Fans of the game have set up an online server (domin-
ion.isotropic.org) which logs all the games played, includ-
ing which cards were available, the usernames of players,
and turn by turn plays and buys. This particular study will
only make use of 6 days of play – May 1 to 6, 2011 – for its
training data, and a 7th for some predictive evaluation. The
six-day data set contains 62,045 game logs from over 6000
players, while the seventh day contained 8,294 logs for eval-
uation. The logs available on the site cover several months

Deck

Buy

LastCardAtCost

C1?

C2?

C3?

C4?

LastCard

Buy

Figure 2: The two graphical models used to determine card
buy probabilities. The Naive Bayes model, left, conditions
on the presence or absence of cards in the deck, while the
trigram model conditions only on the most recent buy and
the most recent at the same cost.

of play, and are available for anonymous download.

Models and Expectation Maximization

A Bayesian network is a concise means of expressing the
probability that an event occurs, given the occurrence or
non-occurrence of related events; see (Hyde 2008) for an in-
troduction to their game-related uses. A node in a Bayesian
network corresponds to the outcome of a particular event; a
“conditional probability table” for each node expresses how
often the event occurs given some other event.

In this particular work, the models represent player buy
patterns over the course of the game. Two different models
were evaluated: a Markov-like “trigram” model that selects
each card based on the last buy as well as the last buy at
the same cost; and a dynamic “Naive Bayes” model that se-
lected cards based on which of the cards in the pool were
already in the player’s deck. The two models’ structures are
summarized in Figure 2.

Once trained, these models can be used for three pur-
poses: producing behavior with the frequencies of an actual
group of players; classifying a player to a cluster of players
with similar buy frequencies; or predicting a player’s next
buy, using the frequencies of that player’s cluster. Note that
all buys are public, as are all game logs on the server, so an
AI opponent always has the necessary information to both
classify a player and predict the player’s next buy.

Dynamic Naive Bayes model

A player’s decision about which card to buy next for the deck
is contingent on the current content of the player’s deck,
the selection of cards available for purchase, and the money
available. The content of the player’s deck is modeled here
as a set of Boolean variables C1,C2, . . . ,CN , representing for
each card available for purchase whether the player has al-

142



ready bought it and put it in the deck. The goal here is re-
covering the quantity

βb = P(Buy = b|C1,C2, . . . ,CN ,Money = m) (1)

with the βb simply being a convenient shorthand for the
equations to follow. To choose a card semi-randomly in a
player-like manner, we would like this probability to be as
close as possible to some actual group of players’ behavior,
without needing to specify an exponential number of condi-
tional probabilities.

Invoking Bayes’ rule to turn around the conditional prob-
abilities results in:

βb ∝ P(C1, . . . ,CN ,Money|Buy = b)P(Buy = b) (2)

Now we make the Naive Bayes conditional independence
assumption – equivalent here to assuming that the cards in
the deck will all “hang together” purely by virtue of this next
card – and the equation becomes

βb ∝ P(b)P(Money|b)∏
i

P(Ci|b) (3)

We will make the simplifying assumption that players will
always buy one of the most expensive cards available, so
P(Money|Buy) is quietly dropped from the equation; though
in principle, we might condition on similar terms for as
many independent factors as care to.

βb ∝ P(b)∏
i

P(Ci|b) (4)

The final equation is just the product of P(Ci|Buy = b) for
all the possible cards in the deck and P(Buy= b) for the card
in question. These can be thought of as representing how of-
ten the card is comboed with each other card in the deck, as
well as how popular the card is by itself. Both can be eas-
ily obtained from the game logs by counting how often each
card was in the deck when a particular Buy was purchased,
and comparing it to the total number of times the card was
available for purchase when Buy was bought. A similar pair
of counts can track how often a particular card was bought
when it was available for purchase. Note that a card that is
available for purchase but not in the player’s deck can still
affect the current buy, because the probability that a card
is bought given another card is not in the deck (but is in the
supply) is included in the product for each card in the supply.
Cards can therefore encourage or discourage the purchase of
other cards simply by virtue of being in the supply. (Cards
not available for purchase in a particular game cannot affect
the probability.)

This results in a relatively concise model, but it can be
the case that model likelihood calculations can return NaN
without some smoothing for unobserved events. Thus, all
the observation counts are initialized to pseudocounts of 1,
and all the “possible buy” counts are initialized to 2, to give
starting probabilities of 1/2 for all cards in the absence of
evidence.

Given a set of players to measure probabilities from, cal-
culating all of these parameters requires only a single lin-
ear time pass through the data, keeping track of which cards
were in a player’s deck at each time in a hash table. (The
Expectation Maximization algorithm described later is only
of interest if we are trying to detect clusters of players.)

Once a model is built, it can be used for three purposes.
First, to find a player’s most likely buy at each time step
given a player model, equation 4 is calculated for each buy
of the most expensive price that the player can afford, and
the card with the highest number is chosen.

Second, to find the probability of each buy for the purpose
of deciding behavior semirandomly, the value in equation
4 is scaled by the sum of all such values for a particular
buy price, forcing the probabilities to sum to 1 in typical
Bayesian fashion:

βb =
P(b)∏i P(Ci|b)

∑ j β j
(5)

Third, we can compare multiple models to find the model
that best fits a player. Bayes’ Rule suggests that the prob-
ability that the probability the player fits the model given
their actions is proportional to the probability of their actions
given the model. This is just the product of the buy proba-
bilities of equation 5 over all recorded buy sequences for
that player; the model with the highest likelihood wins. In
practice, of course, multiplying small probabilities results in
underflow, so the logs of the probabilities are added instead.
Deciding which model best fits a player is also a linear time
operation.

Trigram model

As another Bayesian model, the trigram model worked very
similarly to the Naive Bayes model, but its buy choices were
only conditioned on two factors: the previous buy, and the
previous buy at the current amount of money. (This is not
the same as conditioning on the last two cards, which would
be a more precise analogy with “trigrams” in language pro-
cessing; but because we are counting triplets, the term “tri-
gram” seems as good a shorthand as anything.) P(Buy =
b|LastCard,LastCardAtCost) was measured for each triplet
of cards, and for any particular buy decision, the available
choices had their probabilities normalized to sum to 1. Fur-
ther details are omitted for space.

Expectation maximization

Expectation Maximization can be used to define clusters of
players without knowing ahead of time what those clusters
are, and refine their models even as players shift category.
The process consists of alternating between an “Expecta-
tion” step, in which the log likelihood that each player be-
longs to each model is calculated, and a “Maximization”
step, in which the conditional probabilities of each model
are recomputed based on the new reassignments of players
to categories, to maximize the likelihood of the observed
behavior (though here, the probabilities that maximize the
likelihoods are just the observed frequencies of actions).

143



Though some EM methods weight the evidence by the prob-
ability that a player represents one category or another, the
model likelihoods calculated for each player here are orders
of magnitude different, making contributions from the less
likely models negligible, so we simply count a player as be-
longing to the most likely category.

Player categories are completely reassigned during Ex-
pectation, and model probabilities are completely recom-
puted during Maximization. The initial seed was players’
self-descriptions for their motivations for playing (see be-
low). EM was run until it qualitatively appeared to converge,
when the number of players shifting category did not change
much between trials.

Experiment

Methods

Eleven Dominion players were recruited online and asked to
choose which of the following descriptions best described
what they enjoyed about Dominion:

Timmy: I like it when cool things happen, e.g. because
they’re built into the cards (Possession), or because there
was a long chain of action splitters that gets you a lot of
money, or Masquerade ended up doing something weird.
Johnny: I like it when I can find a quirky, unique way to
win, like buying all the curses to end the game, or finding
a weird use for Pearl Diver.

Spike: I like using my knowledge of what cards are better
than others and playing strategically to win.
These players’ choice of self-description were then used

as the seeds for Expectation Maximization, the first pass
of which consisted of setting the three models’ parameters
based on the observed action frequencies of these three cat-
egories of players. There were five self-identified Spikes,
three self-identified Johnnies, and three self-identified Tim-
mies.

The models were then trained on all player data between
May 1 and May 6, using Expectation Maximization to ad-
just the player categories. EM was run until it appeared to
converge, by virtue of the number of players changing cat-
egory reaching a steady state. This took fourteen passes for
the Naive Bayes model, with about 50 players still chang-
ing category, and five for the trigram model, with only 1 still
changing category.

Results

Both model structures, trigram and Naive Bayes, resulted in
all of the original self-classifying Dominion players being
reclassified into a single category over the course of EM. In
both models, this category appeared to combine some ele-
ments of the thrill-seeking “Timmy” personality and some
elements of victory-seeking “Spike.” In both model struc-
tures, the probability of buying “action splitters” that al-
lowed more actions and the probabilities of buying gen-
erally high-quality cards were much higher than the other
two models, which received only a fraction of the play-
ers (roughly 500 each, compared to 5500 in the main cat-
egory). We call this primary cluster “MainlineCombo” for

Model/Cluster Player Type
Trigram NC1 NC2 MC
NoCombo1 0.69 0.67 0.68
NoCombo2 0.68 0.71 0.70
MainlineCombo 0.70 0.70 0.74

Naive Bayes BM AW MC
BigMoney 0.70 0.68 0.65
AlternateWin 0.67 0.73 0.67
MainlineCombo 0.66 0.71 0.73

Random priciest 0.51
Priciest in-deck 0.61

Figure 3: Cross-model predictive accuracy for the two
model structures, and two baseline predictive strategies. The
two smaller clusters are different for each model, and the
player type headers are abbreviations for the cluster names
on the left. On the whole, the model structures perform com-
parably in prediction despite their different feels. Using the
correct cluster to predict a player produces more noticeable
differences for the Naive Bayes model.

both models. In the trigram model, the buying preferences
looked drastically different for this category than the others;
of the top four cards by marginalized conditional probabil-
ity, three provided more actions. By contrast, the other two
models took a more plodding approach to victory, buying
Victory cards at earlier opportunities instead of building up
to giant plays in the late game; we call these clusters “No-
Combo1” and “NoCombo2” in Figure 3, since inspection of
buy probabilities did not suggest qualitative differences be-
tween the two. Inspecting buy probabilities for the two less
popular Naive Bayes models suggested that one took a more
slow and steady approach to victory, while the other was a
more quirky model valuing alternate win conditions such as
Vineyard highly; these are called “BigMoney” and “Alter-
nateWin” in Figure 3. Thus, in each case, the EM procedure
appeared to uncover a single “mainstream” strategy and two
ways to diverge from the mainstream that were unrelated to
the original seeds.

To get an idea of how different the models were, the mod-
els’ next card predictions were carried out for each logged
game on May 7. Players on that day were first classified into
their best-fit models using model likelihood and the param-
eters learned from the first 6 days, and all three clusters for
both approaches were used to predict each player’s next buy
at every stage of the game. This test set consisted of 8,294
games. These were compared to the baselines of buying a
random card from the most expensive cards the player can
afford, and a similar baseline that deterministically picks a
card already in the player’s deck when such a card exists.
The results are shown in Figure 3.

Despite having very similar accuracy at predicting human
behavior, subjects reported that the models felt very different
in practice. By virtue of predicating its actions only on the
most recent action and its previous buy, the trigram model
gave the impression of a rather impulsive player, gravitating
toward good cards, but with no real plan. The Naive Bayes

144



model, on the other hand, constantly surprised with clever
and offbeat combinations of cards, by virtue of its learning
the conditional probabilities between cards and having a way
for cards in the deck and cards in the supply to affect buy-
ing decisions throughout the game. For example, it picked
up on the three card combination of Potion-Mine-Bank, an
uncommon and interesting play. Quantitative evaluation of
the claim that players feel the structures have different per-
sonalities has not yet been performed.

Conclusions
On the whole, the Naive Bayes model performed much more
intelligently in practice, so it is somewhat surprising that it
does no better at predicting human performance than the tri-
gram model. The natural follow-up experiment should be
to determine whether EM can assign players to one model
structure or other based on how well the models capture
player behavior. In preliminary experiments, subjects re-
ported that the two structures felt as though they played with
very different personalities, so different conditional struc-
tures may capture player personality better than card combi-
nation preferences. Perhaps all players attempt to play opti-
mally, but pay attention to different information.

While we have characterized the Naive Bayes models as
“Big Money” and “Alternate Win,” it is important to note
that this is on the basis of slightly different conditional prob-
abilities, and even players in these clusters do not always
play these strategies. Players may choose to employ partic-
ular strategies or not, but such strategies may not actually be
personalities that characterize player behavior across situa-
tions. Experienced players will employ Big Money when it
is useful to do so, but there does not appear to be a large clus-
ter of players that are obsessed with the strategy to the ex-
clusion of others. Strategies are not the same thing as player
personalities.

Probabilistic models are quite versatile, and this work ex-
plores the ways that the same model can be put to multiple
uses in game AI – either classifying players, or generating
predictions for player behavior, or generating behavior, all
from the same model. This is a degree of versatility that is
not exhibited by pure classification methods such as feed-
forward neural networks or SVMs. It was also repeatedly
useful over the course of this work to be able to examine the
conditional probabilities of the models, to determine how
their behavior was put together – again, a feature not readily
available to several other methods.

This work did not particularly find evidence for the
“Timmy,” “Johnny,” and “Spike” models of player motiva-
tion. Apparently, players can behave very similarly in-game,
but for different reasons. It may be that these models are
specific to Magic or collectible card games in particular; or
it may be that they say more about how players view them-
selves than how they behave in-game. Nevertheless, they
may be a useful way to talk about bot personalities.

The fact that the final clusters did not reflect their seeds
suggests that future work must be careful to not assume its
ontologies. One survey respondent objected to the classifi-
cation system in the first place, arguing that her reasons for
enjoying Dominion cross-cut the categories; the EM results

bore this out. Despite the success of classification as a data
mining approach, generative models and models that are al-
lowed to shift their category systems may show that players
do not fit neatly into researchers’ preconceived categories.

References

Albrecht, D.; Zukerman, I.; and Nicholson, A. E. 1998.
Bayesian models for keyhole plan recognition in an adven-
ture game. User Modeling and User-Adapted Interaction
8(1–2):5–47.
Bartle, R. 2003. Designing Virtual Worlds. New Riders
Games.
Ellinger, B. 2008. Artificial personality: a personal ap-
proach to AI. In Rabin, S., ed., AI Game Programming Wis-
dom 4. Boston, MA: Course Technology. 17–26.
Evans, R. 2009. AI challenges in Sims 3. Invited talk,
AIIDE.
Gold, K. 2010. Training goal recognition online from low-
level inputs in an action-adventure game. In Proceedings of
AIIDE 2010. Menlo Park, CA: AAAI Press.
Guevara, D. 2010. How AI is applied to commercial games.
FLAIRS Invited Talk.
Hyde, D. 2008. Using Bayesian networks to reason about
uncertainty. In Rabin, S., ed., AI Game Programming Wis-
dom 4. Boston, MA: Course Technology. 429–442.
Laviers, K.; Sukthankar, G.; Molineaux, M.; and Aha, D. W.
2009. Improving offensive performance through opponent
modeling. In AIIDE 2009. AAAI Press.
Lesh, N., and Etzioni, O. 1996. Scaling up plan recognition
using version spaces and virtual plan libraries. Technical
report, Department of Computer Science and Engineering,
University of Washington, Seattle, Washington.
Orkin, J., and Roy, D. 2007. The Restaurant Game: Learn-
ing social behavior and language from thousands of players
online. Journal of Game Development 3(1):39–60.
Rosewater, M. 2002. Timmy, Johnny, and Spike. “Making
Magic” article, www.wizards.com/magic/.
Thue, D.; Bulitko, V.; and Spetch, M. 2008. Player mod-
eling for interactive storytelling: a practical approach. In
Rabin, S., ed., AI Game Programming Wisdom 4. Boston,
MA: Course Technology. 633–646.
Weber, B., and Mateas, M. 2009. A data mining approach to
strategy prediction. In Proceedings of the IEEE Symposium
on Intelligence and Games.
Yannakakis, G. N., and Hallam, J. 2004. Evolving oppo-
nents for interesting interactive computer games. In Pro-
ceedings of the 8th International Conference on the Simula-
tion of Adaptive Behavior ’04: From Animals to Animats 8,
499–508. MIT Press.

145




