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Abstract

RTAA∗ is probably the best-performing real-time heuristic
search algorithm at path-finding tasks in which the environ-
ment is not known in advance or in which the environment is
known and there is no time for pre-processing. As most real-
time search algorithms do, RTAA∗ performs poorly in pres-
ence of heuristic depressions, which are bounded areas of the
search space in which the heuristic is too low with respect to
their border. Recently, it has been shown that LSS-LRTA∗,
a well-known real-time search algorithm, can be improved
when search is actively guided away of depressions. In this
paper we investigate whether or not RTAA∗ can be improved
in the same manner. We propose aRTAA∗ and daRTAA∗, two
algorithms based on RTAA∗ that avoid heuristic depressions.
Both algorithms outperform RTAA∗ on standard path-finding
tasks, obtaining better-quality solutions when the same time
deadline is imposed on the duration of the planning episode.
We prove, in addition, that both algorithms have good theo-
retical properties.

Introduction

Several real-world applications require agents acting in
complex environments to repeatedly act quickly in a pos-
sibly unknown environment. Such is the case of virtual
agents that repeatedly perform pathfinding tasks in commer-
cial games (e.g., World of Warcraft, Baldur’s Gate, etc.). In-
deed, it has been reported that game companies impose a
time limit on the order of 1 millisecond for the path plan-
ning cycle that determines the move of every game character
(Bulitko et al. 2010).

Real-time heuristic search (e.g. Korf 1990; Koenig 2001)
is a standard approach used to solve these tasks. It is in-
spired on A∗ search (Hart, Nilsson, and Raphael 1968), but
a mechanism is provided to bound the time taken to produce
a movement. Real-time heuristic search algorithms repeat-
edly perform planning episodes whose computational time
is bounded. Like standard A∗, real-time heuristic algorithms
use a heuristic function to guide action selection. Unlike A∗
search, the heuristic function is updated by the algorithm
during execution. Such a process is usually referred to as
the learning of the heuristic. The learning process guaran-
tees that algorithms like LRTA∗ (Korf 1990) always finds a
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solution if any exists in finite, undirected search spaces.
Researchers (e.g. Ishida 1992) have observed that algo-

rithms like LRTA∗ perform poorly when they enter heuris-
tic depressions. Intuitively, a depression is a bounded con-
nected component of the search space, D, in which the
heuristic underestimates too much the cost to reach a solu-
tion in relation to the heuristic values of the states in the bor-
der of D. Most state-of-the-art real-time heuristic search al-
gorithms (Bulitko et al. 2010; Koenig and Likhachev 2006;
Hernández and Meseguer 2005; 2007; Koenig and Sun
2009) deal with this issue either by doing more lookahead
while planning, or by increasing the amount of learning.

In a previous paper, we proposed aLSS-LRTA∗, a variant
of LSS-LRTA∗ (Koenig and Sun 2009) that actively guides
search away of heuristic depressions; a principle called de-
pression avoidance (Hernández and Baier 2011). aLSS-
LRTA∗ typically outperforms LSS-LRTA∗, especially when
the lookahead phase is limited to explore few states.

Although relatively popular, LSS-LRTA∗ does not seem
to be representative of the state-of-the-art in real-time
heuristic search when time is taken into account; RTAA∗
(Koenig and Likhachev 2006), on the other hand, does
seem to be. Indeed, Koenig and Likhachev (2006) show
that RTAA∗ is the correct choice when the time per plan-
ning episode is bounded; we have verified those results,
but omitted them for space. RTAA∗ is similar in spirit to
LSS-LRTA∗; its learning mechanism yields a less informed
heuristic but it is faster and simpler to implement.

In this paper we report on whether or not depres-
sion avoidance can be incorporated into RTAA∗, and pro-
pose two new real-time heuristic search algorithms. The
first, aRTAA∗, is a rather straightforward adaptation of
aLSS-LRTA∗’s implementation of depression avoidance
into RTAA∗. As aLSS-LRTA∗ does, it avoids moving to
states that have been identified as belonging to a depres-
sion. We show aRTAA∗ outperforms RTAA∗ in path-finding
tasks. The second algorithm, daRTAA∗, is a finer implemen-
tation of depression avoidance that, like aRTAA∗, will prefer
to move to states that do not belong to a depression, but, un-
like aRTAA∗, when no such states are found, it prefers mov-
ing to states that seem closer to the border of the depression.
We show daRTAA∗ outperforms aRTAA∗. We prove both
algorithms have nice theoretical properties: they maintain
the consistency of the heuristic, and they terminate finding a
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solution when such a solution exists.
The rest of the paper is organized as follows. We describe

the basics of real-time heuristic search and argue for the sig-
nificance of RTAA∗ in the next section. We follow describ-
ing the principle of depression avoidance and its implemen-
tation. Next, we present aRTAA∗ and daRTAA∗, and ana-
lyze their properties. We finish with an experimental analy-
sis and a discussion.

Preliminaries

A search problem P is a tuple (S,A, c, s0, G), where (S,A)
is a digraph that represents the search space. The set S
represents the states and the arcs in A represent all avail-
able actions. A does not contain elements of form (x, x).
In addition, the cost function c : A �→ R

+ associates a
cost to each of the available actions. Finally, s0 ∈ S is
the start state, and G ⊆ S is a set of goal states. We say
that a search space is undirected if whenever (u, v) is in
A then so is (v, u). We assume that in undirected spaces
c(u, v) = c(v, u), for all (u, v) ∈ A. We define k(u, v) as a
function that returns the cost of the minimum-cost path be-
tween states u and v. The successors of a state u are defined
by Succ(u) = {v | (u, v) ∈ A}. Two states are neighbors
if they are successors of each other. A heuristic function
h : S �→ [0,∞) associates to each state s an approximation
h(s) of the cost of a path from s to a goal state. h is consis-
tent iff h(g) = 0 for all g ∈ G and h(s) ≤ c(s, w)+h(w) for
all states w ∈ Succ(s). We refer to h(s) as the h-value of s.
We assume familiarity with the A∗ algorithm (Hart, Nilsson,
and Raphael 1968): g(s) denotes the cost of the path from
the start state to s, and f(s) is defined as g(s) + h(s). The
f -value and g-value of s refer to f(s) and g(s) respectively.

Real-Time Search

The objective of a real-time search algorithm is to make an
agent travel from an initial state to a goal state performing,
between moves, an amount of computation bounded by a
constant. An example situation is pathfinding in previously
unknown grid-like environments. There the agent has mem-
ory capable of storing its current belief about the structure
of the search space, which it initially regards as obstacle-
free (this is usually referred to as the free-space assumption
(Koenig, Tovey, and Smirnov 2003)). The agent is capable
of a limited form of sensing: only obstacles in the neigh-
bor states can be detected. When obstacles are detected, the
agent updates its map accordingly.

Most state-of-the-art real-time heuristic search algorithms
can be described by the pseudo-code in Algorithm 1. The
algorithm iteratively executes a lookahead-update-act cycle
until the goal is reached. The lookahead phase (Line 5–
7) determines the next state to move to, the update phase
(Line 8) updates the heuristic, and the act phase (Line 9)
moves the agent to its next position. The lookahead-update
part of the cycle (Lines 5–8) is referred to as the planning
episode throughout the paper.

The generic algorithm has three local variables: s stores
the current position of the agent, c(s, s′) contains the cost
of moving from state s to a successor s′, and h is such that

Algorithm 1: A standard real-time heuristic search al-
gorithm

Input: A search problem P , a heuristic function h, a cost function c.
1 for each s ∈ S do
2 h0(s) ← h(s)

3 scurrent ← s0
4 while scurrent �∈ G do
5 LookAhead ()
6 if Open = ∅ then return no-solution
7 snext ← Extract-Best-State()
8 Update ()
9 move the agent from scurrent to snext through the path

identified by LookAhead. Stop if an action cost along the path
is updated.

10 scurrent ← current agent position
11 update action costs (if they have increased)

h(s) contains the heuristic value for s. All three variables
may change over time. In path-finding tasks, when the en-
vironment is initially unknown, the initial value of c is such
that no obstacles are assumed; i.e., c(s, s′) < ∞ for any two
neighbor states s, s′. The initial value of h(s), for every s,
is given as a parameter.

In the lookahead phase (Line 5–7), the algorithm deter-
mines where to proceed next. The lookahead (Line 5) gen-
erates a search frontier of states reachable from s, which
are stored in the variable Open. In RTA∗ and LRTA∗ (Korf
1990) the frontier corresponds to all states at a given depth
d.1 On the other hand, LSS-LRTA∗ (Koenig and Sun 2009),
RTAA∗ (Koenig and Likhachev 2006), and other algorithms
carry out an A∗ search that expands at most k states. The
number k is referred to as the lookahead parameter, and the
states generated during lookahead conform the so-called lo-
cal search space. The variable Open (cf. Line 6) contains
the frontier of the local search space. Also, we assume that
after executing an A∗ lookahead, the variable Closed con-
tains the states that were expanded by the algorithm. Finally,
the next state to move to, snext, is assigned in Line 7, and
generally corresponds to the state s′ in Open that minimizes
the sum k(scurrent, s

′)+h(s′), where k(scurrent, s′) is cost
of the optimal path from scurrent to s′.

When an A∗ lookahead is used with consistent heuristics,
such a state is the one with minimum f -value in Open (see
Algorithm 2).

Algorithm 2: Selection of the Best State used by LSS-
LRTA∗, RTAA∗, and others

Input: A search problem P , a heuristic function h, a cost function c.
1 procedure Extract-Best-State ()
2 return argmins′∈Openg(s

′) + h(s′)

Using the heuristic of all or some of the states in the fron-
tier of the local search space (Open), the algorithm updates
the heuristic value of states in the local search space (Line 8).
Intuitively, after the lookahead is carried out, information is
gained regarding the heuristic values of states in the frontier
of the local search space. This information is used to up-

1These algorithms are usually described assuming d = 1.
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date the h-value of states in the local search space in such a
way that they are consistent with the h-values of the frontier.
As before, different algorithms implement different mecha-
nisms to update the heuristics. In what follows, we focus on
LSS-LRTA∗ and RTAA∗, since these are the most relevant
algorithms to this paper.

LSS-LRTA∗ updates the values of each state s in the local
search space in such a way that h(s) is assigned the max-
imum possible value that guarantees consistency with the
states in Open. It does so by implementing the Update
procedure as a version of Dijkstra’s algorithm (see Koenig
and Sun’s paper for details). Since the value of h is raised to
the maximum, the update mechanism of LSS-LRTA∗ makes
h as informed as it can get while maintaining consistency.

Algorithm 3: RTAA∗’s Update Procedure
Input: A search problem P , a heuristic function h, a cost function c.

1 procedure Update ()
2 f∗ ← mins∈Open g(s) + h(s)
3 for each s ∈ Closed do
4 h(s) ← f∗ − g(s)

RTAA∗, on the other hand, uses a simpler update mech-
anism. It updates the heuristic value of states in the inte-
rior of the local search space (i.e. those stored in A∗’s vari-
able Closed) using the f -value of the best state in Open.
The procedure is shown in Algorithm 3. The heuristic val-
ues that RTAA∗ learns may be less informed than those of
LSS-LRTA∗. The following two propositions establish this
relation formally, and, to our knowledge, are not stated ex-
plicitly in the literature.
Proposition 1 Let s be a state in Closed right after the call
to A∗ in the n-th iteration of LSS-LRTA∗. Then,

hn+1(s) = min
sb∈Open

kn(s, sb) + hn(sb),

where hn denotes the value of the h variable at the start of
iteration n and after the update of iteration n− 1. kn(s, sb)
denotes the cost of the cheapest path from s to sb, with re-
spect to the c variable at iteration n and that only traverses
states in Closed before ending in sb. For RTAA∗, the situa-
tion is slightly different.
Proposition 2 Right after the call to A∗ in the n-th iteration
of RTAA∗, let s∗ be the state with lowest f -value in Open,
and let s be a state in Closed. Then,

hn+1(s) ≤ min
sb∈Open

kn(s, sb) + hn(sb).

However, if hn is consistent and s is in the path found by A∗
from scurrent to s∗, then

hn+1(s) = min
sb∈Open

kn(s, sb) + hn(sb).

Proposition 2 implies that, when using consistent heuristics,
RTAA∗’s update yields possibly less informed h-values than
those of LSS-LRTA∗. However, at least for some of the
states in the local search space, the final h-values are equal
to those of LSS-LRTA∗, and hence they are as informed as
they can be.

An advantage of RTAA∗’s update scheme over that of
LSS-LRTA∗ is that the former runs faster. When given
a time deadline of T units of time per planning episode,
RTAA∗ will find better solutions than LSS-LRTA∗ (Koenig
and Likhachev 2006). We carried out an independent empir-
ical evaluation over 12 game maps in which we confirmed
that observation. For example, given a deadline of 0.005
milliseconds for the planning episode, RTAA∗ finds solu-
tions on average 11.6% cheaper than those found by LSS-
LRTA∗. For a deadline of 0.02 milliseconds, RTAA∗ finds
solutions on average 41.5% cheaper than those found by
LSS-LRTA∗. We concluded that RTAA∗ seems superior to
LSS-LRTA∗ when time per planning episode is restricted.

Depression Avoidance

A heuristic depression is a bounded region of the search
space containing states whose heuristic value is too low with
respect to the heuristic values of states in the border of the
depression. Depressions exist naturally in heuristics used
along with real-time heuristic search algorithms and are also
generated during runtime.

Ishida (1992) was perhaps the first to analyze the behav-
ior of real-time heuristic search algorithms in presence of
such regions. For Ishida, a depression is a maximal con-
nected component of states that defines a local minimum of
h. Real-time search algorithms like LRTA∗ become trapped
in these regions, precisely because movements are guided
by the heuristic. As such, once an agent enters a depression,
the only way to leave it is by raising the heuristic values of
the states in the depression high enough as to make the de-
pression disappear. Algorithms capable of performing more
learning than LRTA∗, such as LSS-LRTA∗ or RTAA∗, also
perform poorly in these regions because their movements are
also only guided by the value of the heuristic.

In previous work, we proposed a definition for cost-
sensitive heuristic depressions that is an alternative to
Ishida’s and takes costs into account (Hernández and Baier
2011). Intuitively, a state s is in a cost-sensitive heuristic
depression if its heuristic value is not a realistic cost esti-
mate with respect to the heuristic value of every state in the
border, considering the cost of reaching such a state from s.
Formally,

Definition 1 (Cost-sensitive heuristic depression) A con-
nected component of states D is a cost-sensitive heuristic
depression of a heuristic h iff for any state s ∈ D and every
state s′ in the boundary of D, h(s) < k(s, s′)+h(s′), where
k(s, s′) denotes the cost of the cheapest path that starts in s
and traverses states only in D before ending in s′.

aLSS-LRTA∗

aLSS-LRTA∗ (Hernández and Baier 2011) is a modifica-
tion of LSS-LRTA∗ that implements depression avoidance:
a principle that dictates that search should be guided away
from states identified as being in a heuristic depression. It
is a simple but effective modification of LSS-LRTA∗. When
deciding the next move aLSS-LRTA∗ prefers states that are
not yet marked as belonging to a depression. Based on the
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observation that Dijkstra’s algorithm will update the heuris-
tic of a state if it’s in a cost-sensitive depression of the local
search space, a state is marked as being part of a depres-
sion when its heuristic value is updated. To select the next
move, the algorithm chooses the best state in Open that has
not been marked as in a depression. If such a state does not
exist the algorithm selects the best state in Open, just like
LSS-LRTA∗ would do.

The selection of the state to move to is implemented
by the function in Algorithm 4, where s.updated denotes
whether or not the heuristic of s has been updated (i.e.,
whether or not a state is marked). The update procedure
is modified appropriately to set this flag. Despite the fact

Algorithm 4: Selection of the Next State used by aLSS-
LRTA∗ and aRTAA∗

1 function Extract-Best-State ()
2 if Open contains an s such that s.updated = false then
3 s ← argmins′∈Open∧s′.updated=falseg(s

′) + h(s′)

4 else
5 s ← argmins′∈Openg(s

′) + h(s′)

6 return s ;

that aLSS-LRTA∗ does not necessarily move to the best state
in Open, it is guaranteed to find a solution in finite undi-
rected search spaces if such a solution exists. In path-finding
benchmarks, aLSS-LRTA∗ improves the solution cost over
LSS-LRTA∗ by about 20% for small lookahead values and
by about 8.4% for high values of the lookahead parameter.

RTAA* with Depression Avoidance

In this section we propose two variants of the state-of-the-
art RTAA∗ algorithm that implement depression avoidance.
The first, aRTAA∗, is based on aLSS-LRTA∗. The second,
daRTAA∗, is a more fine-grained adaptation of depression
avoidance which prefers moving to states that seem closer
to the border of a depression.

aRTAA∗

aRTAA∗ is a straightforward port of aLSS-LRTA∗’s imple-
mentation of depression avoidance into RTAA∗. RTAA∗ is
modified as follows. First, its update procedure is replaced
by Algorithm 5, which implements the same update rule of
RTAA∗ but, like aLSS-LRTA∗, marks states that have been
updated. Second, RTAA∗’s procedure to select the next state
is replaced by that of aLSS-LRTA∗ (Algorithm 4). As a re-
sult aRTAA∗ is a version of RTAA∗ that avoids depressions
using the same mechanism that aLSS-LRTA∗ utilizes.

Properties of aRTAA∗ aRTAA∗ inherits a number of
RTAA∗’s properties. Since the update rule is not changed,
we can use the same proofs by Koenig and Likhachev (2006)
to show that h is non-decreasing over time, and that h re-
mains consistent if so it is initially. Other properties specific
to aRTAA∗ can also be shown.

Theorem 1 Let s be a state such that s.updated switches
from false to true between iterations n and n + 1 in an ex-

ecution of aRTAA∗ initialized with a consistent heuristic h.
Then s is in a cost-sensitive heuristic depression of hn.

Algorithm 5: aRTAA∗’s Update Procedure

1 procedure Update ()
2 if first run then
3 for each s ∈ S do s.updated ← false

4 f∗ ← mins∈Open g(s) + h(s);
5 for each s ∈ Closed do
6 h(s) ← f∗ − g(s);
7 if h(s) > h0(s) then s.updated ← true

Theorem 2 Let P be an undirected finite real-time search
problem such that a solution exists. Let h be a consistent
heuristic for P . Then aRTAA∗, used with h, will find a solu-
tion for P .

daRTAA∗

daRTAA∗ is based on aRTAA∗, but differs from it in the
strategy used to select the next state to move to. To illustrate
the differences, consider a situation when there is no state
s in the frontier such that s.updated is false. In this case,
aRTAA∗ behaves exactly as RTAA∗ does. This seems rather
extreme, since intuitively we would still like the movement
to be guided away of the depression. In such situations,
daRTAA∗ will actually attempt to escape the depression by
choosing the state with best f -value among the states whose
heuristic has changed the least. The intuition behind this
behavior is as follows: assume Δ(s) is the difference be-
tween the actual cost to reach a solution from a state s and
the initial heuristic value of state s. Then if s1 is a state
close to the border of a depression D and s2 is a state farther
away from the border and “deep” in the interior of D, then
Δ(s2) ≥ Δ(s1), because the heuristic of s2 is more impre-
cise than that of s1. At execution time, h is an estimate of
the actual cost to reach a solution. As such, in summary,
daRTAA∗ always moves to a state believed not to be in a
depression, but if no such state exists it moves to states that
are regarded as closer to the border of the depression.

daRTAA∗ is implemented like RTAA∗ but the procedure
to select the next state to move to is given by Algorithm 6.

Algorithm 6: daRTAA∗’s Selection of the Next State
1 function Extract-Best-State ()
2 Δmin ← ∞ ;
3 while Open �= ∅ and Δmin �= 0 do
4 Remove state sb with smallest f -value from Open;
5 if h(sb)− h0(sb) < Δmin then
6 s ← sb ;
7 Δmin ← h(sb)− h0(sb);

8 return s

Properties of daRTAA∗ Since only the mechanism for se-
lecting the next move is modified, daRTAA∗ inherits directly
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Figure 1: A comparison of best solution costs (averaged) ob-
tained by daRTAA∗ and RTAA∗ given a fixed time deadline.

most of the properties of RTAA∗. In particular, h is non-
decreasing over time, and consistency is maintained. We
can also prove termination.
Theorem 3 Let P be an undirected finite real-time search
problem such that a solution exists. Let h be a consistent
heuristic for P . Then daRTAA∗, used with h, will find a
solution for P .

Experimental Evaluation

We compared RTAA∗, aRTAA∗ and daRTAA∗ at solving
real-time navigation problems in unknown environments.
For fairness, we used comparable implementations that use
the same underlying codebase. For example, both search al-
gorithms use the same implementation for binary heaps as
priority queues and break ties among cells with the same f -
values in favor of cells with larger g-values.

We used 12 maps from deployed video games to carry out
the experiments. The first 6 are taken from the game Dragon
Age, and the rest are taken from the game StarCraft. The
maps were retrieved from Nathan Sturtevant’s repositories.2

We average our results over 6,000 test cases (500 test
cases for each game map). Each test case is random. Maps
are undirected, eight-neighbor grids, and the agent is capable
of observing obstacles in neighbor cells. Horizontal and ver-
tical movements have cost 1, whereas diagonal movements
have cost

√
2. We used the octile distance as heuristic.

Figure 2 shows average results for RTAA∗, aRTAA∗ and
daRTAA∗ for 17 different lookahead values. For refer-
ence, we include Repeated A*, a search algorithm for un-
known environments that uses unbounded A* in the looka-
head phase, and that does not update the heuristic values.
We observe that in terms of solution cost, for all lookahead
values, aRTAA∗ consistently outperforms RTAA∗; more-
over, daRTAA∗ outperforms aRTAA∗. Nevertheless, for any
lookahead value, aRTAA∗ spends more time per planning

2http://www.movingai.com/ and http://hog2.
googlecode.com/svn/trunk/maps/. For Dragon Age we
used the maps brc202d, orz103d, orz702d, ost000a, ost000t and
ost100d of size 481 x 530, 456 x 463, 939 x 718, 969x 487, 971 x
487 and 1025 x 1024 cells respectively. For StarCraft, we used the
maps Enigma, FadingRealm, JungleSiege, Ramparts, TwistedFate
and WheelofWar of size 768 x 768, 384 x 512, 768 x 768, 512 x
512, 384 x 384 and 768 x 768 cells respectively.

episode than RTAA∗ does; this can be explained by the ex-
tra condition aRTAA∗ has to check for each state that is
updated. daRTAA∗, on the other hand, spends more time
than RTAA∗ per planning episode. This increase is due to
daRTAA∗’s selection of the next state to move to is less effi-
cient. In RTAA∗ this selection is quick, since it only involves
extracting the best state in Open, which can be done in con-
stant time with binary heaps. daRTAA∗, on the other hand,
may extract several states from the open list per planning
episode. Thus we observe a higher number of heap percola-
tions. The worst-case time complexity of daRTAA∗’s selec-
tion procedure is O(n log n), where n is the size of Open.

The experimental results show that daRTAA∗’s more re-
fined mechanism for escaping depressions is better than that
of aRTAA∗. For small values for the lookahead parameter,
daRTAA∗ obtains better solutions than aRTAA∗ used with a
much larger lookahead. For example, with a lookahead pa-
rameter equal to 1, daRTAA∗ obtains better solutions than
aRTAA∗ with lookahead parameter equal to 19, requiring,
on average, 10 times less time per planning episode.

daRTAA∗ substantially improves RTAA∗, which is prob-
ably the best real-time heuristic search algorithm known to
date. daRTAA∗ needs only a lookahead parameter of 25 to
obtain solutions better than RTAA∗ with lookahead param-
eter of 97. With those values, daRTAA∗ requires about 2.6
times less time per planning episode than RTAA∗.

Figure 1 shows a plot of the average best solution quality
obtained by daRTAA∗ and RTAA∗ given fixed time dead-
lines per planning episode. For both algorithms, the solution
quality improves as more time is given per planning episode.
For every time deadline plotted, daRTAA∗ obtains much bet-
ter solutions, especially when the time deadline is small.

Experimentally, daRTAA∗ is clearly superior to RTAA∗.
Of the 102,000 runs, daRTAA∗ obtains a better solution
quality than RTAA∗ on 65.8% of the cases, they tie on 24.8%
of the cases, and RTAA∗ obtains a better-quality solution in
only 9.4% of the cases. In addition, we computed the rel-
ative performance of the algorithms, which is given by the
ratio between the solution costs for each solved problem.
In the 10,000 cases in which the ratio is most favorable to
RTAA∗, the solutions obtained by RTAA∗ are 1.43 times
cheaper on average than those obtained by daRTAA∗. On
the other hand, in the 10,000 cases in which the ratio is most
favorable to daRTAA∗ over RTAA∗, the former algorithm
obtains solutions that are 2.79 times cheaper on average.

If one analyzes the performance on the hardest test cases
for each algorithm, i.e. those for which the highest so-
lution costs were obtained, we conclude again in favor of
daRTAA∗. Indeed, in the 10,000 hardest test cases for
RTAA∗, solutions obtained by RTAA∗ are on average 8.37
times more expensive than those of daRTAA∗. On the other
hand, in the 10,000 hardest test cases for daRTAA∗, so-
lutions obtained by daRTAA∗ are 5.57 times cheaper than
those obtained by RTAA∗.

Finally, we observe all real-time algorithms generate
worse solutions than Repeated A*. However, they do so in
significantly less time. For example, daRTAA∗ with looka-
head 97 obtains a solution 5.1 times worse than A*, but uses
an order of magnitude more time per planning episode.
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k Solution # Planning Time per Time Percolations
Cost Episodes Episode per episode

RTAA∗
1 553,152 510,579 0.0004 183.4 5.7
7 197,781 107,321 0.0016 174.7 39.9

13 109,587 43,835 0.0029 127.8 86.0
19 75,239 24,932 0.0042 104.6 139.9
25 56,989 16,606 0.0055 90.9 198.3
31 46,201 12,191 0.0068 82.5 259.1
37 38,839 9,457 0.0081 76.3 323.9
43 33,675 7,679 0.0094 71.9 389.8
49 29,658 6,403 0.0107 68.4 457.6
55 26,424 5,445 0.0120 65.4 525.8
61 23,971 4,745 0.0133 63.3 593.3
67 21,811 4,173 0.0147 61.2 659.8
73 20,264 3,761 0.0160 60.2 729.7
79 18,857 3,410 0.0173 59.1 794.3
85 17,524 3,099 0.0187 58.0 861.6
91 16,523 2,865 0.0201 57.5 926.3
97 15,422 2,632 0.0214 56.4 992.4

aRTAA∗
1 432,806 399,603 0.0005 197.0 9.0
7 146,724 80,528 0.0021 170.0 61.3

13 82,311 33,795 0.0036 121.7 118.4
19 57,232 19,661 0.0050 99.2 181.6
25 45,336 13,660 0.0065 88.2 244.7
31 38,000 10,347 0.0079 81.5 310.1
37 31,290 7,890 0.0093 73.1 380.5
43 27,239 6,450 0.0107 68.8 450.1
49 24,143 5,427 0.0121 65.4 521.1
55 21,908 4,712 0.0135 63.4 590.9
61 19,692 4,080 0.0148 60.5 661.0
67 18,450 3,696 0.0162 59.8 729.8
73 17,118 3,338 0.0176 58.7 800.5
79 15,933 3,031 0.0190 57.6 870.9
85 14,975 2,791 0.0204 56.9 938.3
91 14,171 2,590 0.0217 56.3 1,004.0
97 13,099 2,362 0.0231 54.6 1,071.1

daRTAA∗
1 50,906 47,836 0.0005 19.5 9.1
7 28,932 22,564 0.0023 51.3 90.8

13 22,323 15,704 0.0043 67.6 179.9
19 16,460 10,592 0.0063 66.5 266.5
25 14,116 8,393 0.0082 69.1 351.9
31 12,657 6,924 0.0100 69.5 434.4
37 10,619 5,433 0.0118 64.0 518.2
43 10,771 5,192 0.0134 69.7 603.7
49 9,576 4,436 0.0151 66.9 680.8
55 9,059 4,030 0.0166 66.9 761.0
61 8,195 3,500 0.0180 63.1 835.7
67 7,446 3,047 0.0194 59.0 909.0
73 7,073 2,809 0.0208 58.4 985.8
79 6,628 2,533 0.0220 55.9 1,057.7
85 6,606 2,468 0.0235 58.0 1,128.3
91 6,346 2,297 0.0246 56.6 1,194.8
97 6,397 2,279 0.0263 59.8 1,265.0

Repeated A*
∞ 1,265 571 0.57 328

Figure 2: The table presents average solution cost, number
of planning episodes, time per planning episode in millisec-
onds, total search time in milliseconds, and number of heap
percolations per planning episode for 6,000 path-planning
tasks and 17 lookahead values (k). We performed our exper-
iments on a Linux PC with a Pentium QuadCore 2.33 GHz
CPU and 8 GB RAM.

Discussion

Although daRTAA∗ and aRTAA∗ clearly outperform
RTAA∗ in our experiments, we believe it is possible to con-
trive families of increasingly difficult path-finding tasks in
which daRTAA∗ or aRTAA∗ will find solutions arbitrarily
worse than those found by RTAA∗. Those situations exist
for aLSS-LRTA∗ (Hernández and Baier 2011). Neverthe-
less, it is not clear that the existence of these families of
“worst-case situations” are a real concern from a practical
point of view. On the one hand, we did not spot a significant
number of these cases in our experimental evaluation. On
the other hand, it is easy to come up with families of prob-
lems in which daRTAA∗ and aRTAA∗ perform arbitrarily
better than RTAA∗.

Summary and Conclusions

We have proposed aRTAA∗ and daRTAA∗, two real-
time heuristic search algorithms that implement depression
avoidance on top of the state-of-the-art RTAA∗. aRTAA∗ is
a straightforward adaptation of the implementation of aLSS-
LRTA∗. daRTAA∗ is a more fine-grained implementation
of depression avoidance that, when trapped in a depression,
prefers to move to states that seem to be closer to the border
of such a depression. We showed both algorithms outper-
form RTAA∗, and that daRTAA∗ is the best of the three. We
believe the particular implementation of depression avoid-
ance that we devised for daRTAA∗ holds promise, since it
could be easily incorporated in other search algorithms in
order to find better-quality solutions when time is bounded.
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